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Abstract
Purpose Locating the internal structures of an organ is a
critical aspect of many surgical procedures. Minimally inva-
sive surgery, associated with augmented reality techniques,
offers the potential to visualize inner structures, allowing for
improved analysis, depth perception or for supporting plan-
ning and decision systems.
Methods Most of the current methods dealing with rigid
or non-rigid augmented reality make the assumption that the
topology of the organ is notmodified.As surgery relies essen-
tially on cutting and dissection of anatomical structures, such
methods are limited to the early stages of the surgery.
We solve this shortcoming with the introduction of a method
for physics-based elastic registration using a single view
from a monocular camera. Singularities caused by topologi-
cal changes are detected and propagated to the preoperative
model. This significantly improves the coherence between
the actual laparoscopic view and the model and provides
added value in terms of navigation and decision-making, e.g.,
byoverlaying the internal structures of anorganon the laparo-
scopic view.
Results Our real-time augmentation method is assessed on
several scenarios, using synthetic objects and real organs. In
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all cases, the impact of our approach is demonstrated, both
qualitatively and quantitatively (http://www.open-cas.org/?
q=PaulusIJCARS16).
Conclusion The presented approach tackles the challenge
of localizing internal structures throughout a complete sur-
gical procedure, even after surgical cuts. This information is
crucial for surgeons to improve the outcome for their surgical
procedure and avoid complications.

Keywords Topological changes · Non-rigid registration ·
Elastic registration · Augmented reality · Cutting · Tearing ·
Laparoscopy

Introduction

The last decades show considerable advances in the introduc-
tion of augmented reality during surgery [15]. In particular,
the scientific community and clinicians have been focusing
on minimally invasive surgery (MIS). This type of surgery
has gained popularity and became a well-established pro-
cedure thanks to its benefits for the patient in terms of
infection risks reduction and shortened recovery time. How-
ever, it remains complex froma surgical point of view,mainly
because of the reduced field of view that significantly impacts
depth perception and surgical navigation.

These limitations are reduced with computer guidance by
overlaying a three-dimensional preoperative model of the
patient’s anatomy onto the images provided by laparoscopic
cameras. This augmentation typically involves two steps:
the visualization of the anatomical or pathological structures
present in the medical images, and the registration of the
preoperative model onto the intra-operative view.

Common registration processes are either interactive or
automatic. An interactive registration requires the manip-
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ulation of the virtual organ until its projection on the
laparoscopic images matches the current shape of the organ.
This task is time-consuming and the approach is limited
to rigid registration. An interactive registration requires the
selection of landmarks on both the virtual preoperativemodel
and the intra-operative view whose quality and pairwise
matching can hardly be guaranteed.

For these reasons, many works now focus on automatic
non-rigid registration [9,23,28]. Till now, except for Petit et
al. [21] and our previous work [17,18] none of the proposed
methods consider cuts, and therefore, topological changes,
during the registration process. We advocate that the abil-
ity to detect surgical cuts in the laparoscopic images and to
apply them to the preoperative model in real-time is a key
feature for augmented reality applications. The present paper
addresses the real-time elastic registration of 3Dmodels sub-
ject to topological changes, observed from a single view by
a monocular camera, extending the seminal work of Paulus
et al. [18]. To our knowledge, this is the first work that pro-
poses an automatic update of the topology and placement of
the internal structures of the organs in response to topological
changes detected in the registered models.

Related works

Augmentation of deformable objects

In the context of non-rigid objects, two main behaviors can
be identified: inextensible ones such as clothes and elastic
ones such as soft tissues. First, inextensible surfaces have
been consideredwith the exploitation of distance constraints.
The surface deformation is essentially computed through
parametric geometrical models [2,22]. Approaches based on
learning methods have also been considered. The solution is
estimated from a representative sample of possible shapes
using a dimensionality reduction process [24,25].

As regards elastic behaviors, geometrical properties can-
not be exploited. The closed-form solution constrained by
shading information [14] can capture stretching surfaces and
yields good results. But the method assumes a Lambertian
surface with a single-point light source what greatly limits
the possible applications.

More recently,Agudoet al. [1] describe elastic shapeswith
physical models and combine the finite element method with
an extended Kalman filter. Other approaches try to minimize
a stretching energy [13] that unifies geometric and mechan-
ical constraints using a projective camera and locally linear
deformations. In a similar way, nonlinear elastic models [7]
have been used to augment highly elastic objects. The model
is constrained by features extracted from a single-view cam-
era and a set of boundary points.

The aforementionedmethods cope with the registration or
augmentation of surfaces. Augmenting 3D objects requires
a more advanced acquisition process. For instance, a stereo-
scopic visual tracking [8] can be associated with a physical
model to augment a volumetric object. A regularization
mechanism makes the method more robust to errors in the
tracking process. In a similar way, Leiza et al. [12] exploit a
depth camera to capture a 3D deformed shape.

The approach presented by Petit et al. [20] fits the point
cloud provided by an RGB-D sensor with a tetrahedral mesh
using a geometrical point-to-point coupling. Linear elastic
external forces are applied on an adapted corotational finite
element model increasing the weight of the forces applied to
the contour of the object. The method supports occlusion of
the object and strong or highly elastic deformations. It has
been extended, but only for non-elastic objects, to cope with
fractures [21] that appear when the maximal eigenvalue of
the stress tensor exceeds the toughness of the material.

In the context of computer-assisted surgery, patient-
specific biomechanical models demonstrated their relevance
for volume registration. They take into account anisotropic
elastic deformation to infer in-depth structure motion [9,28].
Pratt et al. [23] use a 4D scan of the heart and a biomechan-
ical model to couple the surface motion with external forces
that emanate from camera data.

Nevertheless, cuts and resection are essential in surgical
procedures. The virtual model on which the augmented view
relies has to be updated to allow a sound localization of the
internal structures or tumors. In the context of image-guided
neurosurgery, Ferrant et al. [6] handle the registration issues
induced by tumor resection with the removal of the elements
of the brain model that contains the resected tumor.

Simulation of cuts, fractures and tears

The simulation of surgical procedures raises specific issues
and challenges. The organs undergo elastic—and sometimes
plastic—deformations and, beyond that, are subject to cuts,
tears or cauterization. The used biomechanical models must
therefore support topological changes or, in other words,
updates in the connectivity of the underlying meshes. The
simulation of cutting, fracture and tearing remains an active
research domain in computer graphics. A good overview is
provided by Wu et al. [29]. In the following, we focus on the
finite element method that is used in this paper.

The composite finite element method [30] (CFEM) uses
a fine grid for the visualization and a coarse one for the
deformations. The cuts are performed on the fine grid and
propagated to the coarse mesh. This approach allows real-
time performance but prevents partial cuts of the coarse
elements to be visible.

The snapping method [16] consists in moving the vertices
of the original mesh toward the separation surface before
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Fig. 1 Pipeline of our method: [S] segmentation, [1] identify image
features pl,f (see “Identification and tracking of features” section),
[2] map image features on model (see “Identification and tracking of
features” , “Cut detection” sections), [N] construct feature neighbor-
hood C0

F (see “Cut detection” section), [3] use initial/updated model
(PV,CV) and compare image pl,f and surface features pl,F by [4] cal-
culating the measure μlm on the neighborhood C t

F , [5] detect outliers,
insert cut points pC , expand cut points to cut lines, [6] expand cut line to

cut surface S (see “Cut detection” section), update topology of model
and internal structures (see “Simulation of cuts”, “Handling internal
structures” sections), [7] solve minimization problem (5) of “Energy
minimization problem” section, [8] display model on output frame; the
dashed flashes are performed at initialization; one frame with image
features can be used several times, repeating the steps [2]–[8] in the
blue area

disconnecting the object along these snapped vertices. The
cuts are limited to the topology of the original object that is
often coarse to ensure real-time performances.

Local remeshing overcomes this limitation and allows
for partial cuts of elements [11]. They may be combined
with snapping to avoid instabilities in the simulation and to
limit the increase degrees of freedom, as proposed by Paulus
et al. [19].

Method overview

In the following, we use XS
E to name a variable X of the

entity E in the simulation state S. The variable X can denote
either one point p, a set of points P , the connectivity c of
one FEM element or the connectivity C of a set of elements.
The name E denotes the entity the variable belongs to. In
the case of a 3D object, we use V for the volume, ∂V for
the surface of the volume, I for the internal structures and F
for the surface features. On the other hand, in a 2D image,
we use f for the features. Finally, the status S can be either
the initial state 0, the current state t or the target state 1.
Let us point out that the targets denote here the features
extracted from the images in the video stream that the vir-
tual model tries to follow. Thus, the targets change with each
video frame. In addition, the current state is related to the

actual position of the virtualmodel, while itmoves toward the
target.

Before a surgical intervention, the organ and its internal
structures are segmented from the preoperative images. Sep-
arate meshes are built for each of the considered 3D objects.
The virtual organ is discretized in a set of tetrahedra C0

V
whose elements are denoted c0V. Those elements connect the
vertices P0

V of the volume mesh that models the organ. The
internal structures are discretized as a surface mesh C0

I that
connects the vertices P0

I . Togeometrically bind the two initial
sets of points, the P0

I are expressed as barycentric coordinates
of the (P0

V,C0
V). Finally, constitutive laws and a set of para-

meters are chosen to approximate the elastic behavior of the
organ and internal structures.

Feature points of the real organ are identified in the laparo-
scopic view and are registered to the virtual model in its
initial position. We denote this set P0

F = {p0l,F}. During the
surgical intervention, the detected features are tracked in the
video stream. They form the target points P1

F = {p1l,F}. The
real and virtual organs are coupled, by means of these two
sets of features points: the tracked features P1

F and their
initial registration P0

F that move according to the defor-
mation of the virtual model and whose current positions
are P t

F .
Our method captures the deformations and detects cuts

and tears, through an analysis of the displacement field of
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these two point clouds. Detected cuts are reproduced on the
virtual organ, and the internal structures are updated pro-
viding additional information for the surgeon during the
advancement of the surgical procedure.

Elastic registration

Physically based model

The choice of the constitutive law determines the set of
deformations that can be represented while discriminating
non-plausible configurations that could be induced by wrong
target surface feature point cloud P1

F .
The constitutive law of St. Venant–Kirchhoff represents

hyperelastic material behavior and is often used to simulate
nonlinear deformations in real-time. However, beyond other
unintended side effects, due to themonotonie in compression,
it can break down under extreme compression [27]. Thus, we
apply the corotational linear elasticity that secures the rota-
tional invariance and thus nonlinear characteristics, while
keeping the simplicity of the stress–deformation relation-
ship in linear materials [26]. The corotational finite element
method uses the polar decomposition of the deformation gra-
dient F = RU to construct a new strain measure

εc = U − I (1)

The global strain energy Wc estimated for each element c
in the FE model is given by the equation:

Wc = λ

2
[tr(εc)]2 + μtr(ε2c ) (2)

where λ and μ are Lamé coefficients and can be computed
thanks to the elastic parameters of the material E and ν. E is
the Young’s modulus and is a measure of the stiffness of the
material, while ν is the Poisson’s ratio which estimates the
compressibility of the material.

We obtain the global internal elastic energy by accumu-
lating the strain energies Wc of the elements:

WI

(
PV,C0

V

)
=

∑

c∈C0
V

Wc (3)

Identification and tracking of features

An initial registration of the biomechanical model to the
video stream can either be performed manually, using
contour-based approaches [5] or using anatomical land-
marks.

From the first frame of a monocular video stream in a
single-view position, we extract 2D features in their initial
positions p0l,f ∈ P0

f using the Speeded-up Feature Detector.
These 2D positions are mapped to the surface of the initially

registered model, and the surface feature points p0l,F ∈ P0
F

are expressed as barycentric coordinates of (P0
V,C0

V). For
the frame-to-frame tracking, the Lucas–Kanade optical flow
yields 2D features p1l,f ∈ P1

f and, with the mapping to the

surface, the target surface feature points p1l,F ∈ P1
F .

Energy minimization problem

In the simulation, the current feature points p t
F are mapped

to the FEMmesh and move according to the mesh nodes P t
V,

so we can write p t
l,F = p t

l,F(P
t
V) ∈ P t

F (P t
V).

The coupling of the real and virtual models is obtained
with the introduction of spring forces between each surface
feature point p t

l,F(P
t
V) and target surface feature point p1l,F,

which accumulate to the stretching energy:

WS

(
P t
F

(
P t
V

)
, P1

F

)
=

∑
l

1

2
kl

∥∥∥p t
l,F

(
P t
V

) − p1l,F

∥∥∥
2

(4)

The parameters kl are experimentally chosen and are in
the same order of magnitude as the Young’s modulus of the
deformable object. The updated set of vertices P t

V is obtained
by solving theminimization problembetween internal elastic
energy and stretching energy:

argmin
P t
V

(
WI

(
P t
V,C0

V

)
+ WS

(
P t
F

(
P t
V

)
, P1

F

))
(5)

The surface feature points P t
F (P t

V) and the internal struc-
tures P t

I (P t
V) are updated applying their initial barycentric

coordinates to the new positions of the P t
V.

Since we use a dynamic simulation, there is no need
for boundary conditions to obtain a stable problem. The
minimization problem is solved every time step using the
conjugate gradient method, and we apply the Euler implicit
method for the time integration.

Topological changes

This section presents the core of the proposed method. We
first give a mathematical formulation of the problem, stating
our assumptions and our goal: provide an updated virtual
organ, including its internal structures, even when dealing
with large deformations and/or topological changes. Then,
we describe the detection of a cut, the way it is processed
and the update of the internal structures.

Problem formulation

We assume that the initial positions of the surface feature
points P0

F , the virtual organ P
0
V, the internal structures P

0
I and

the target positions of the surface feature points P1
F are given.
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The tetrahedral elements C0
V, and respectively the triangular

ones C0
I , connect P

0
V (and, respectively, P0

I ) to the virtual
organ (and the internal structures).

Our objective is to update the shape (geometry and topol-
ogy) of the virtual organ (P0

V,C0
V), based on the final

position of the target surface feature points P1
F . This includes

the deformation and update of the topology of the model
(P t

V,C t
V) and the internal structures (P t

I ,C t
I ). With the pre-

vious notation, the problem can be formulated as:

Given P0
F ,

(
P0
V,C0

V

)
,
(
P0
I ,C0

I

)
and P1

F (6)

Find
(
P t
V,C t

V

)
solving (5) (7)

and minimizing
∥∥∥P t

F

(
P t
V

)
− P1

F

∥∥∥
F

(8)

Whenaground truth of the surface of the volumetricmodel
(P1

∂V ,C1
∂V ) or of the internal structures (P1

I ,C1
I ) are given,

the problem could be complemented by:

Minimize
∥∥∥
(
P t

∂V

(
P t
V

)
,C t

∂V

)
−

(
P1

∂V ,C1
∂V

)∥∥∥
∂V

(9)

Minimize
∥∥∥
(
P t
I ,C t

I

)
−

(
P1
I ,C1

I

)∥∥∥
I

(10)

The choice of the norms depends on the application and
will be discussed in “Results” section. To solve the problem,
the displacement field between the current features P t

F (P t
V)

and target features P1
F is analyzed.Discontinuities in this field

reveal an inconsistency between the biomechanical model
(P t

V,C t
V) and the target surface feature points P1

F . Such an
inconsistency can be triggered by a cut of the real model that
moves the target surface feature points P1

F .

Cut detection

Detection of a cut region

The minimization problem (5) is solved at each time step,
resulting in an update of the biomechanical model (P t

V,C0
V ).

When a smooth deformation of the organ occurs, the bio-
mechanical model (P t

V,C0
V), and with it the surface feature

points P t
F (P t

V), can properly follow the target surface fea-
ture points P1

F . As soon as a cut occurs, observations of the
surface feature points are twofold: First, the uncut model
(P t

V,C0
V) becomes unable to adapt to the motion enforced

by the stretching energy. As a result, the vector between the
current and the target positionsdl(P t

V, P1
F ) = p t

l,F(P
t
V)−p1l,F

diverges around the cut. Secondly, the distance between two
target feature points p1l,F and p1m,F that lie on two different
sides of the cut increases much more than the average dis-
tance between feature points.

To exploit these observations, we call two feature points
p0l,F and p0m,F neighbors iff their initial Euclidean distance

δ0lm,F = ‖p0l,F − p0m,F‖ is smaller than a given radius rP0
F
,

that is related to the density of the features. The Euclea-
dian distances δ t

lm,F and δ1lm,F are defined, respectively, and
will be used in the following. The neighborhood informa-
tion is stored in the graph C0

F = {(l,m)|δ0lm,F < rP0
F
} (see

Fig. 1.[N]).
In the region of a cut, the physical model prevents the

surface feature points P t
F (P t

V) from moving toward their
targets P1

F and the vectors dl(P t
V, P1

F ) and dm(P t
V, P1

F )—
simply denoted dl and dm in the following—point in two
different directions. The similarity of the displacement field
of neighboring features is evaluated through the Euclidean
norm ‖dl − dm‖, taking account of the first observation. For
the second observation, we evaluate the ratio δ1lm,F/δ

0
lm,F

of the initial and final distance of neighboring surface fea-
ture points. An increase indicates either an elongation of the
object or a separation due to a cut or a tear. These two cases
are distinguished by comparing this ratio with its average in
the neighborhood.

Summarizing, we define the measure

μlm = δ1lm,F

δ0lm,F

‖dm − dl‖, ∀(l,m) ∈ C0
F (11)

and we denote μ∅ the mean value over C0
F. With a scenario-

dependent threshold τ , we can identify outliers—i.e., diver-
gent neighbor features—with μlm > τμ∅, (l,m) ∈ C0

F, that
lie in a region where a cut or tear is likely to occur.

Insertion of cut points

To detect the cuts, we first search for couples of neighboring
feature points (l,m) that are outliers for themeasureμlm . For
two outliers (l0,m0), (l1,m1) with μl0m0 > μl1m1 > τμ∅,
the cut should be closer to the (l0,m0) couple. As soon as the
number of outliers exceeds a given threshold n, we insert a cut
point pC at the averaged barycenter of the outliers weighted
with their respective measure.

Then, to avoid the insertion of another cut point in the next
time step at the same location, we delete from the set C t

F of
neighbors the couples that cross the sphere of the radius rpC
around the inserted cut point (see Fig. 2 left, middle). After
the update of the neighbors, the measure defined in (11) is
only evaluated on C t

F.
With the first insertion of a cut point, we introduce a

sequence of cut points {pi0,C , . . . , pin ,C } with i0 = in that
extends to a cut polygon continuously, i.e., new cut points
can be inserted before the first and after the last extremity.
New cut points are inserted before or after the nearest extrem-
ity (Fig. 2, middle) and the polygon fits the widening of the
cut.
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Fig. 2 From left to right: insertion of a cut point based on the barycen-
ters of identified outliers (black crosses); update of the connectivity
information (turquoise connections are not used any more), insertion of
a second cut point yields a cut line (polygon); cut polygon is extended
until the end of its radius rpC

Expansion to cut surface

Using the direction of the camera or a predefined vector, the
separation polygon can be extruded to a separation surface
S, which can be forwarded to any cutting algorithm [29].

Optimizations

The parameters n and rpC allow to balance between the preci-
sion of the cut and the robustness of the cut detection. Setting
these parameters on a high value, i.e., aiming rather at the
robustness than at the precision of the cut detection, reduces
the ability of the detection to react instantly on an emerging
cut. That means, the detection has the tendency to lag behind.
To overcome this negative side effect, we insert another cut
point located at the intersection between the line connecting
the last and the current cut point and the sphere around the
current cut point (Fig. 2, right).

The surface feature points do not go beyond the boundary,
i.e., inserted cut points stop before the boundary of the object,
preventing the occurrence of complete cuts. The preventive
step of the last paragraph results in a cut over the boundary
which alleviates the problem without adding a parameter.

Simulation of cuts

The presented method to detect topological changes is inde-
pendent of the separation algorithm [29]. In our work, we
use a remeshing approach combined with a node snapping
technique [19] which is presented below.

The cutting algorithm updates a FEMmesh at a predefined
or detected cut (or separation) surface S in two steps. First
the cut surface is sampled at the edges of the FEM mesh,
which allows to identify vertices that are close to the cut and
need to be snapped.

After that, in other cases, a local remeshing is performed:
tetrahedra adjacent to a cut edge are replaced to introduce a
vertex inside every tetrahedron traversed by the separation
surface. Then, faces which are adjacent to the cut edge are
flipped to insert new edges between the points on the sep-
aration surface. Finally, the edge that crosses the surface is

deleted and triangles inside the mesh interpolate the separa-
tion surface.

This method introduces less nodes and tetrahedral ele-
ments than similar methods [3,11] and reduces the overhead
on some key steps of the finite element method (e.g., solving
the linear system at each time step), making it well suited for
real-time applications, such as augmented reality in surgery.

Handling internal structures

In our work, we use the biomechanical model (P t
V,C t

V )

of the virtual organ to update internal structures given by
a preoperative scan. For that, the initial positions P0

I and
the initial triangular surface connectivity C0

I represent the
internal structures like vessels, the urinary system, tumors or
others. At initiation, barycentric coordinates are computed
for each point p0l,I ∈ P0

I dependent on the shape functions
used in the finite element formulation. Similar to the sur-
face feature point s, this helps to express the current position
of the internal structures dependent on the biomechanical
model, i.e., p t

l,I = p t
l,I(P

t
V) ∈ P t

I (P t
V).

When the cut or the tearing of the organ yields a detec-
tion of a separation surface S as being described in “Cut
detection” section, we aim on propagating this change to the
internal structures. In order to correctly update the internal
structures, we update the connectivity C t

I by deleting the
triangles that intersect with the separation surface S, i.e.,

C t
I =

{(
c1,I, c2,I, c3,I

) ∣∣∣
[
p t
c1,I,I, p

t
c2,I,I, p

t
c3,I,I

]
∩ S = ∅

}

(12)

Results

In this section, we demonstrate the potential of our approach
to detect a (surgical) cut and to replicate the correspond-
ing topological changes on a virtual model. Our experiments
involve silicone data, in vivo liver data and ex vivo kidney
data. All the results are obtained using a single view from
a monocular camera. Qualitative and quantitative results are
presented with Dice’s coefficient for the first two datasets
(Table 1), and more extensive comparisons are reported with
the latter one.

Experiments on highly elastic silicone bands

Our algorithm was applied in two scenarios involving highly
elastic silicone bands which are cut and then strongly
deformed (see Fig. 3). The tracking of the features, the detec-
tion of the cut and the updates the deformable model due to
topological changes are all performed in real-time on a single
CPU computer.
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Table 1 Dice’s coefficient on silicone data and in vivo liver

Object Dice’s coefficient

Without cutting With cutting

Silicone cut left 0.815 0.952

Silicone cut middle 0.900 0.964

Liver cut 0.906 0.963

Our method results in higher Dice’s coefficients when compared to
methods not taking account of topological changes

Fig. 3 Detection and simulation of cuts in silicone bands demonstrat-
ing the ability of our approach to distinguish between large strains (186
and 166%) and cuts: left without augmentation, right augmented with
an uncut/cut model

Experiments on an in vivo liver

A second experiment was conducted from a video showing
the cutting of a porcine liver lobe (see Fig. 4). A tumor has
been inserted into the virtual representation of the organ.
With no topology update, the augmented view of the tumor
is distorted and misplaced, whereas with our cut detection
and simulation, the tumor stays undeformed and correctly
located below the cut.

Validation on an ex vivo kidney

The last experiment involves the cutting of an ex vivo kidney.
It provides a challenging evaluation of our method, as the
internal structures of the kidney (the calyces, a part of the
urinary system) have a complex geometry and cover a large
part of the organ.

Fig. 4 Augmented reality on cut and deformed liver overlaid by the
virtual organ and a tumor: with a normal elastic model (a) and with our
method (b)

Ground truth

In order to obtain a trustworthy ground truth for the kid-
ney and its internal structures, two CT scans were performed
before and after the manipulation. To ensure a good visu-
alization of the internal structures in the CT images and to
avoid a loss of volume when the cut occurs, we filled the
calyces with a gel that solidifies. The gel contains BaSO4

microparticles, showing high contrast in CT images [4].
The kidneys are cut perpendicularly to the long axis in

the middle of the parenchyma, incising a part of the calyx
system. The cut is widened by stretching the kidney along
its longitudinal axis. The organs and internal structures have
been segmented using active contour techniques (Snakes)
[10]. The resulting surface meshes, displayed in the follow-
ing, have been smoothed using nearest neighbor smoothing
algorithm.

In order to quantify the obtained results, we measure the
(sampled) Hausdorff distance H between the surface and the
internal structures of the kidney comparing the simulated
solution—with and without cutting—with the goal positions
provided by the final CT scan. For the surface feature points,
we use the Euclidean norm:
∥∥∥p t

l,F

(
P t
V

) − p1l,F

∥∥∥
F

=
∥∥∥p t

l,F

(
P t
V

) − p1l,F

∥∥∥
2

(13)

Averages and maximal values for the measures are collected
in Table 2.

Our results

Kidney 1measures 102×27×55mm, the internal structures
58 × 11 × 27mm. We extracted 225 feature points that are
connected using a the radius rP0

F
= 15mm. We applied our

algorithm with a threshold τ = 8 to identify outliers when
comparing to the average of the measure, inserting a new cut

123



468 Int J CARS (2017) 12:461–470

Table 2 Evaluation on ex vivo kidney data

Object Entity Measure Average (mm) Max (mm)

Without cutting With cutting Without cutting With cutting

Kidney 1 P t
F (P

t
V) ‖ . . . ‖F 1.69 0.52 11.2 5.4

(P t
∂V (P t

V),C t
∂V ) H 1.76 1.49 13.1 10.1

(P t
I (P t

V),C t
I ) H 1.10 0.82 8.9 7.6

Kidney 2 P t
F (P

t
V) ‖ . . . ‖F 2.45 1.28 12.9 5.6

(P t
∂V (P t

V),C t
∂V ) H 1.96 1.22 13.1 6.9

(P t
I (P t

V),C t
I ) H 1.69 1.04 7.4 4.6

Our method results in a higher accuracy than standard approaches without cutting

Fig. 5 Augmented reality on cut and deformed kidney 1 (top) and 2 (bottom) overlaid by the virtual organ, the initial registration (left), final
registrations: uncut (middle left), cut (middle right) and reference registration (right)

point pC as soon as we have n = 8 outliers and updating the
neighborhood information using rpC = 7mm.

Kidney 2measures 96×27×56mm, the internal structures
52 × 12 × 32mm. We identified and tracked 219 feature
points in the video stream and applied ourmethodwith rP0

F
=

20mm, τ = 10, n = 3, rpC = 13mm.
In both cases, the simulations were performed at mini-

mally 25 fps, while on average the simulations run at 35 fps
using a single CPU computer. The algorithms proposed in
this work add less than 3% computational costs to a normal
elastic FEM implementation, which is reflected in average
by 0.15ms for the detection of a cut and 0.15–0.25ms for
the update of the internal structures every time step.

For a visual comparison, we refer to the overlaid images
in Fig. 5. More details can be retrieved from Fig. 6, which
displays the values of the sampled Hausdorff distance over-
laid on the meshs. Table 2 summarizes the results by giving
average and maximal values for the measures mentioned in
“Ground truth” section.

Short discussion and additional information

In the presented results, our method shows a clear advantage
over existing approaches that do not account for (surgical)

cuts. Particularly interesting is the impact of the parame-
ters that have to be adapted for the different scenarios—for
example the radius rpC : for a small rpC (e.g., kidney 1), the
cut advances in several steps (a progressing cut), while for a
greater rpC (e.g., kidney 2), cut lines are longer, more robust,
but less precise.

The results are highly dependent on the deformation. The
“Experiments on highly elastic silicone bands” section and
previous work [17] show the potentially positive impact of
strongly deformed objects on the measure. Nevertheless, in
the medical examples, we refrain from using strong defor-
mations, to stay close to the medical workflow.

Limitations and discussion

Clinical feasibility

In the clinical context, the flow of features from a video
stream is difficult to obtain, as surgical tools may block the
direct view on the organ. On the other side, we do not ben-
efit from information present in the images as the current
state of the surgical intervention. For instance, combining
our approach with the identification of surgical tools has a
high potential and will be addressed in the future.
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Object For x ∈ X : inf
y∈Y

d(x,y) For y ∈ Y : inf
x∈X

d(x,y)

Kidney 1 uncut Max

Max

Kidney 1 cut Max

Max

Kidney 2 uncut Max

Max

Kidney 2 cut Max

Max

Fig. 6 Visualization of the two parts found in the Hausdorff distance,
surfaces X of the simulated and Y the reference solution; low values in
blue, high values in red/orange

Measure on the surface feature points

Previous works [17,18] use similar measures. While [17]
relies on the first component δ t

lm,F/δ
0
lm,F, we use δ1lm,F/δ

0
lm,F.

The choice of [17] yields a higher stability for the simulation
as the underlying mechanical model regularizes or smooths
strongmovements or jumps of the surface feature points. Our
measure is closer to what happens with the real object and is
independent on the choice of the virtual model. Finally, the
choice of the measure is dependent on the application and
whether the surface feature points are trustworthy. Future
measures will contain parts purely dependent on the virtual
model, e.g., using the stress or the strain inside the biome-
chanical model, allowing for a better detection of a fracture.

Partial cuts

For the separation surface S a fixed cut direction is given
and does not change in the time of the simulation. Therefore,
the current version of our code cannot handle the detection
of partial cuts in the direction of the camera. But a detection
of a partial cut should be possible, when the cut volume is
surrounded by surface feature points.

Conclusion

In this work, we addressed the coupling of a preoperative
biomechanical model with the real organ, in such a way that
topological changes such as surgical cuts can be taken into
account. As a result, the virtualmodelwith internal structures
like vessels, the urinary system or tumors is kept coherent
with the real organ even after an incision.

The virtual organ is deformed by taking account of its
constitutive law and minimizing a stretching energy based
on the tracking of surface feature points. From the motion
of the different features, we retrieve information about the
occurrence of a cut and the location where it has been per-
formed. We then update the biomechanical model and its
internal structures in real-time.

Our evaluation shows the potential of our approach on
examples ranging from in vitro over in vivo to ex vivo, using
different measurements to compare our methods to the spe-
cific ground truths. Our experimental data are made available
online in order to allow for a better comparison to future
works.1
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