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Abstract

Purpose Multi-organ segmentation from CT images is an
essential step for computer-aided diagnosis and surgery
planning. However, manual delineation of the organs by
radiologists is tedious, time-consuming and poorly repro-
ducible. Therefore, we propose a fully automatic method for
the segmentation of multiple organs from three-dimensional
abdominal CT images.

Methods The proposed method employs deep fully convo-
lutional neural networks (CNNs) for organ detection and
segmentation, which is further refined by a time-implicit
multi-phase evolution method. Firstly, a 3D CNN is trained
to automatically localize and delineate the organs of interest
with a probability prediction map. The learned probability
map provides both subject-specific spatial priors and ini-
tialization for subsequent fine segmentation. Then, for the
refinement of the multi-organ segmentation, image inten-
sity models, probability priors as well as a disjoint region
constraint are incorporated into an unified energy functional.
Finally, a novel time-implicit multi-phase level-set algorithm
is utilized to efficiently optimize the proposed energy func-
tional model.

Results Our method has been evaluated on 140 abdominal
CT scans for the segmentation of four organs (liver, spleen
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and both kidneys). With respect to the ground truth, average
Dice overlap ratios for the liver, spleen and both kidneys are
96.0, 94.2 and 95.4%, respectively, and average symmetric
surface distance is less than 1.3 mm for all the segmented
organs. The computation time for a CT volume is 125s in
average. The achieved accuracy compares well to state-of-
the-art methods with much higher efficiency.

Conclusion A fully automatic method for multi-organ seg-
mentation from abdominal CT images was developed and
evaluated. The results demonstrated its potential in clinical
usage with high effectiveness, robustness and efficiency.

Keywords Multi-organ segmentation - Deep CNN -
Time-implicit multi-phase level sets - 3D CT

Introduction

Abdominal organ segmentation from computed tomogra-
phy (CT) images is a crucial preprocess for computer-aided
diagnosis (CAD) systems, radiotherapy planning as well as
cancer delineation and staging [34], where the estimation of
the anatomical boundary/volume needs to be accurate. Since
diagnostic and interventional imagery of abdomen often con-
sists of 3D image analysis, accurate image segmentation
enables comprehensive analysis and quantitative measures of
shapes and volumes of the target organs, which can be indi-
cators of disorders [17]. In traditional clinical practice, the
delineation of organs is often performed manually by radiol-
ogists in an organ-by-organ and slice-by-slice way, which
is tedious, time-consuming and prone to intra- and inter-
observer variability. While it is prohibitive to manually label
large-scale datasets, its full automation with high efficiency
would enable systematic segmentation of CT images on the
fly as soon as the image is acquired. Thus, developing auto-
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matic segmentation algorithms is very important from the
viewpoints of diagnostic efficiency and feasibility.

Two major challenges exist in automatic abdominal multi-
organ segmentation from CT images [33]. The first one is to
automatically locate the anatomical structures in the target
image. Since abdominal organs are mainly surrounded by
soft tissues, large variations exist in the location, shape and
size of organs among individuals. The other challenge is to
delineate the fuzzy boundaries between adjacent organs and
soft tissues. Abdominal organs, such as the liver, often share
similar appearance and intensities with surrounding tissues
in CT images, especially in noncontrast-enhanced data.

The potential benefits of automated multi-organ segmen-
tation have encouraged an active field of research [9,17,
21,29,31,34,35], which is currently dominated by statisti-
cal shape models (SSMs) or atlas-based methods. For these
prior knowledge-based methods, shape models or probability
atlases are built to capture anatomical knowledge for the tar-
get organs. However, with limited number of data, it is very
difficult to build a model that is general enough to capture
the large variability of the deformable organs, e.g., the liver
and spleen. Although more recent works focused on generat-
ing subject-specific priors by utilizing region-wise local atlas
selection strategy [34], dictionary learning technique [31]
or inter-organ spatial relations [21], the training and testing
process of these methods is highly dependent on initializa-
tion/registration of the prior models, which are computational
intense tasks.

Some learning-based methods [6,8,13] are proposed to
give more efficient localization of the organs. For instance,
landmark-based methods [13] aimed to detect anatomically
meaningful locations to posit the organs. However, it may
be difficult to determine reliable anatomical landmarks for
the deformable abdominal organs. Random forest regression
models [6,8] used training samples with associated features
to locate regions of interest containing the organs. Although
being fast, the used features, which are designed or selected
manually, are critical to its result. The network-based method
proposed in [30] that combined features and classifiers in a
multi-level hierarchical way also needs building handcrafted
features to perform classification task.

Instead of relying on handcrafted features and/or compu-
tational intense registrations, the end-to-end learning-based
convolutional neural network (CNN) enabling to learn hier-
archical features has been introduced for both natural and
medical image segmentation [5,18,27,28]. Typically, there
are two widely used strategies. The first one obtains target
delineation by using a sliding-window setup and conducting
patch-wise image classification [5]. Specifically, by pro-
viding a local patch, the label of its central pixel/voxel is
predicted through the CNN. In [5], this type of strategy
was designed to segment neuronal membranes from electron
microscopy images. Recently, Cha et al. [2] have also used
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this patch-wise training strategy for bladder segmentation
from CT urography in a slice-by-slice manner. To distinguish
between the inside and the outside of the bladder within user-
predefined bounding boxes, over 160 thousand patches were
extracted for training. While methods in this sliding-window
strategy provided large margin improvement in performance
[5], they have several limitations. For instance, using only
local patch for prediction, limited local context information
can be utilized and therefore it is prone to failure to seg-
ment multiple objects with similar intensities/appearances
such as abdominal CT images. The densely extracted patches
processed by a CNN also pose challenges on computational
cost and running time.

In this work, we build on another recently proposed strat-
egy, the so-called fully convolutional network [18], which
can perform end-to-end learning and pixel-to-pixel dense
predictions with a whole image as input. With the help of
in-network up-sampling layers, pixel-wise likelihood map
can be obtained for whole image at a time. Previously,
this framework was designed for 2D natural image seg-
mentation [18] and recently modified for biomedical image
segmentation [27]. In this study, we design a 3D fully convo-
lutional neural network to perform multi-organ segmentation
in abdominal CT images, which is an extension of our fully
CNN-based liver segmentation methods [12,19]. It should
be noted that very recently 3D CNN has been successfully
employed in medical imaging community and solved several
segmentation tasks, such as brain lesion [1] and abdominal
organ segmentation [7,12,19]. For example, in our previous
works [12,19], we utilized 3D fully CNN for liver segmenta-
tion in CT images. As a drastically progressing area, several
semantic segmentation methods based on 3D fully CNN have
been made available since the completion of this work. For
instance, an extension of the U-net [27] named 3D U-net [4]
was introduced and tested for kidney segmentation. A V-net
[20], a modified U-net, was employed for prostate segmenta-
tion. A 3D extension of the deeply supervised network [16],
named 3D DSN [7], was introduced for liver segmentation
and posted after our submission.

For learning-based methods [7,31,34] including CNN-
based methods, the learned predictions are usually refined
by traditional methods for further accuracy improvement.
Take the CNN for example, in [19] the CRF and graph cut
algorithm, which is computational intense for 3D volume,
was used for the refinement of liver segmentation. In [3,7],
a fully connected CRF, which has advantage in capturing
complicated shaped object such as those with holes or thin
structures, was used for liver segmentation refinement. In [2],
Cha et al. employed the traditional level-set method, the
speed of which was limited by small time step in discretiza-
tion.

In this paper, we propose to address the problem of mul-
tiple organ segmentation with a combination of a 3D fully
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CNN and an energy-based refinement model. Specifically, a
ten-layer 3D CNN with volumetric convolutions is designed,
which contains seven contracting layers and three expanding
layers to capture high-level features and perform voxel-to-
voxel likelihood prediction. To capture large variation in
intensity and positions across subjects, we augmented the
data by applying translation transform and intensity scal-
ing. The refinement of the CNN results is formulated as a
multi-phase segmentation problem, which is solved with a
time-implicit multiple surface evolution method [26] by tak-
ing advantage of modern convex optimization techniques.
Coupling the two techniques is to take advantages of both the
detection/prediction capacity of CNNs and the fine-grained
localization accuracy of classical multi-phase segmentation
methods, producing accurate segmentation results and recov-
ering organ boundaries at a level of detail. Instead of being
dependent on the costly registration in training and test-
ing stage as shape and atlas-based methods [21,31,34], no
registration steps are required in our method. While most
previous CNN-based methods [4,7,19] focused on single-
target segmentation, this study is an early attempt for the
more challenging multiple abdominal organ segmentation.
With major components of the algorithm implemented on
graphic processing units (GPUs), our method obtains high
computational efficiency. A large dataset containing diverse
qualities of images with multiple evaluation measures has
been used for method evaluation.

Methods

In this section, we describe the imaging data used in this
study and the proposed multi-organ segmentation frame-
work. Figure 1 shows the proposed segmentation pipeline
that consists of two main steps: (i) 3D CNN-based multi-
organ localization and segmentation, and (ii) refinement of
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Fig. 1 Block diagram of the proposed multi-organ segmentation
method
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the multi-organ segmentation. Firstly, a CT volume is fed
into the trained 3D fully CNN to acquire probability maps
for all voxels, which localize the organs and act as spatial
priors for subsequent fine segmentation step. A simple bina-
rization follows to generate the initial segmentation for the
organs of interest. Next, intensity models, i.e., probability
density functions (PDFs), are automatically estimated with
the initial segmentation. Finally, a time-implicit level-set-
based multi-phase segmentation approach is introduced for
multi-organ refinement, which incorporates the image inten-
sity model, prior probability maps, disjoint region constraint,
as well as gradient edge map.

Dataset

One hundred and forty 3D abdominal CT scans with or with-
out contrast enhancement acquired from 132 patients were
used for our experiments. Among the 140 CT scans, 20 are
from the public dataset MICCAI-SLiverO7 [11] training set
and 120 are obtained from local hospitals. These data are
in three types of contrast-enhancement patterns, i.e., portal
venous phase (67 cases), (early) arterial phases (60 cases)
and noncontrast phase (13 cases). The CT scans are mea-
sured as 512 x 512 x (79 ~ 304) voxels with a spacing of
(0.55 ~ 1.00) x (0.55 ~ 1.00) x (1.00 ~ 2.50) mm/voxel.
The liver, spleen, left kidney and right kidney are consid-
ered as target organs to be segmented. The ground truth was
obtained by trained technicians with the semiautomatic seg-
mentation tool [22,23], and then, the results were approved
and revised by experienced radiologist.

Automated localization and segmentation

For the automated localization and delineation of organs
in 3D CT scans, we design a deep volumetric fully CNN,
which conducts end-to-end learning and provides voxel-to-
voxel prediction. Convolutional neural networks are neural
network architectures that use extensive weight-sharing to
reduce the degrees of freedom of models that are spatially
correlated [15]. As the main blocks of the CNN, convolu-
tional layers and pooling layers are applied alternatively on
the raw input image. Each layer takes as input the output of
the preceding layer and thus builds a hierarchy of increasingly
complex features [38]. In contrast to patch-wise learning, by
employing up-sampling layers, the fully CNN is able to pre-
dict segmentation for the whole volume at once.

As for the first convolutional layer, a CT volume as a
whole is taken as the input. In subsequent layers, the input
image blocks consist of the feature maps of the previous
layer. Features are extracted via a set of filters convolved over
the input image, followed by a nonlinear activity function.
Denote xf_l as the rth output feature map of (I — 1)th layer,
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and the sth output feature map of /th layer can be calculated
as

xl = f(Z(xf—‘ s wl ) +b§,), (1)

where * is the three-dimensional convolutional operation,
wir is the filter linking the rth input map and the sth output,
and bl is the according bias term. The function f denotes
the element-wise activity function, which helps capture non-
linear transforms between the inputs and outputs. Here, we
use the recently proposed nonlinearity Parametric Rectified
Linear Unit (PReLU) [10] defined as

S (xs) = max(0, x;) + a; min(0, x;), (2)

where a; is also a trainable parameter that controls the slop
of the negative part. With parameter ay, this activation can
avoid zero gradients in comparison with ReL.U. More impor-
tantly, we adaptively learn the PReLU parameters jointly with
the whole model. As demonstrated in [10], the PReLU can
improve model fitting with nearly zero extra computational
cost and little overfitting risk.

Next, the convolved feature maps are sub-sampled via
average-pooling layer, which introduces invariance to local
deformations, such as translation, and reduces the compu-
tational cost. This operation takes the average values over
sub-windows within each feature map. In our work, we use
nonoverlapping sub-window of size 2 x 2 x 2.

In addition, some other layer types are used. Specifically,
the local response normalization scheme [14] is applied after

Table 1 Detailed architecture of the 3D CNN

the first convolutional layer to enforce competitions between
features at the same spatial location across different feature
maps. In Doublesize layers [19], every 8 feature map chan-
nels are rearranged into 2 x 2 x 2, i.e., doubling the size in
each dimension and reducing the number of channels to 1/8.

Finally, an element-wise softmax nonlinearity normalizes
the result of kernel convolutions into a multi-nominal dis-
tribution over the labels. Specifically, let b be the vector of
values of length n (the number of classification labels) at a
given spatial position in the feature map, and it computes
softmax(b) = exp(b)/Z, where Z = >"_, exp(b;). The
output values provide likelihood of a specific voxel belonging
to the tissues. Thus, a probability map for each classification
label is generated. Further, our approach performs a multi-
class labeling by assigning each voxel the label with the
largest probability, and this result is regarded as the initial
segmentation of the organs.

The architecture

The detailed architecture is shown in Table 1. This network
takes image blocks of size 496 x 496 x 279 as input and
outputs four probability maps of size 248 x 248 x 256. The
probability maps are then up-sampled to 496 x 496 x 256,
and the values outside this block in the original image are
set to 0. Thus every voxel in the target image is assigned the
probability belonging to four tissue types (background, liver,
spleen and kidneys). To make the training faster and satisfy
the memory limit, the network is spread across four GPUs

Layer Input Filter Padding Stride Output

Conv; — Norm 496 x 496 x 279, 1 Tx7x9 3x3x0 2x2x2 248 x 248 x 136, 96
Pooling, 248 x 248 x 136, 96 2x2x2 0x0x0 2x2x2 124 x 124 x 68, 96
Convy 124 x 124 x 68, 96 S5x5x%x5 2x2x0 2x2x1 62 x 62 x 64,512
Pooling, 62 x 62 x 64,512 2x2x2 0x0x0 2x2x%x2 31 x 31 x 32,512
Convs 31 x 31 x 32,512 3x3x3 Ix1x1 Ix1x1 31 x 31 x 32,2048/4
Convy 31 x 31 x 32,2048/4 3x3x3 Ix1x1 Ix1x1 31 x 31 x 32,2048/4
Convs 31 x 31 x 32,2048/4 3x3x3 Ix1x1 Ix1x1 31 x 31 x 32,2048/4
Convg 31 x 31 x 32,2048/4 3x3x3 Ix1x1 I1x1x1 31 x 31 x 32,2048/4
Convy — Sum 31 x 31 x 32,2048/4 3x3x3 Ix1x1 I1x1x1 31 x 31 x 32,2048/4
Doublesize; 31 x 31 x 32,512 - - - 62 x 62 x 64, 64
Convg 62 x 62 x 64,64 3x3x3 I x1x1 1x1xl1 62 x 62 x 64,512
Doublesize 62 x 62 x 64,512 - - - 124 x 124 x 128, 64
Convg 124 x 124 x 128, 64 3x3x3 Ix1x1 1x1x1 124 x 124 x 128, 128
Doublesizes 124 x 124 x 128, 128 - - - 248 x 248 x 256, 16
Convyg 248 x 248 x 256, 16 3x3x%x3 Ix1xl1 Ix1x1 248 x 248 x 256, 4
Softmax 248 x 248 x 256, 4 - - - 248 x 248 x 256,4

“Conv,” “Norm,” “Sum” denote convolutional layer, normalization and summation, respectively
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with parallelization scheme [14] in intermediate five layers
(from Convs to Conv7).

Network training

We train the network offline using CT scans with segmen-
tations of the liver, spleen and both kidneys. Let ® =
{W, B, A} be the set of parameters to be estimated, where
W, B, A correspond to the filters, biases and PReLLU para-
meters, respectively. Given the predicted probability map of
ith label L;(I7; ©) of jth training image / J and the corre-
sponding true label Yl.j,i =1,...,n,j=1,...,m,wheren
is the number of classification labels and m is the number of
training images, the parameters are optimized by minimizing
the following cost function with respect to ®:

1 m n . ) m
LO)=——3> > Y/logLi(I’;0)+ ZIIWI%. ()
j=1i=1

The first term computes the cross-entropy loss, and the sec-
ond /; regularization term is added to avoid overfitting. The
cost function is minimized using the backpropagation algo-
rithm [14].

Segmentation refinement via multiple surface evolution

The above CNN-based organ detection and segmentation
generate spatial priors and give proper initial segmentations
for the organs. Previous studies [31,34] demonstrate perfor-
mance improvement by combining the intensity information
and spatial prior. Here, we combine the probabilistic priors
and data-driven region and edge information in a multi-region
segmentation model. In addition, a disjoint region constraint
is introduced to enforce the exclusiveness between organs.
Further, the model is efficiently solved in a time-implicit
multi-phase level-set scheme in terms of convex optimiza-
tion [26].

Denote the input 3D CT image /(x) : 2 — R, 2 C R3
and consider n nonoverlapping regions {C; };=1...._», such that
2 = U!_,C;, the multi-region segmentation model is defined
as

mCi’n {E(C) = MEgaa (C) + )L2Eprior(c) + Ereg(c)}v )

which is a combination of the region-based data term

hEga = Y. /C h1 ([~ log Fy (1 (x))]dx, ®)
i=1 7t
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prior term
n
b = 3 [ 300l log Lilds, ©)
i=17¢
and edge-based regularization term
n
Eg= Y 7{(: g(IVI(Ci(s))|ds. )
i=1 7 9Ci

Here in the data term, F;(/(x)) := p({(x)|C;) is the
probability density function estimated from the intensity
distributions within region C; (i = 1,...,n). In the prior
term, we represent the prior probability map by negative
log-likelihood to constrain the segmentation. The negative
log-likelihood map describes the confidence that a certain
voxel belongs to specific region. The lower the value of
—log L;(x) is, the more likely the x belongs to region
C;, and vice versa. The last regularization term acts as a
smooth term with the weight function defined as g(|VI|) =
1/(1 + BIVI|?), where B is a positive constant and fixed to
0.2 in our experiments. Note that the values of function g fall
within the range [0,1] and g is an edge indicator that vanishes
at object sharp boundaries. Spatially varying weights A1 2(x)
are used to adaptively balance the three terms. Specifically,
we set A12(x) = a12/(1 + /3|VI|2), where a1 2 > 0 are
positive constants. This makes the model selectively act as
edge-based or region-based model in different regions.

Surface evolution using time-implicit level sets

For the multi-region segmentation problem (4), which can
be viewed as the evolution of multiple surfaces with respect
to a disjoint region constraint, many algorithms have been
developed. A recent study [26] introduced a time-implicit
multi-phase level-set scheme in terms of convex optimization
with advantages in both implementation and computation,
which is substantially distinct from the classical level-set
approach [32]. Instead of one-by-one phase movement as
in the classical approaches to multi-phase segmentation,
the method used here propagates the surfaces of all phases
simultaneously by means of minimizing costs w.r.t. region
changes, which is a novel principle proposed in [26]. More
importantly, large step sizes for surface propagation are
allowed to ultimately improve efficiency. Each evolution
step can be reformulated as a spatial continuous Potts prob-
lem [25], i.e., a continuous multi-region min-cut problem,
which can be solved fast via a continuous max-flow algo-
rithm [36]. Here, we describe the algorithm briefly and refer
readers to [26] for details and proofs.

For n disjoint regions, C;, i = 1, ..., n, the evolution of
each region over the discrete time frame from ¢ to r + 1

@ Springer



404

Int J CARS (2017) 12:399-411

minimizes total cost of region changes. That is, given the
current regions Cf ,i = 1,...,n, the new optimal surfaces
Cf‘H, i =1,...,n minimize the energy:

néltn; {/C, ¢; (x)dx + /C[.Jr c;’(x)dx} + Z;‘/C, g(s)ds
(3)

subjectto 2 = U?_,C;, Cx NC; = ¥, Vk # 1. Inthe equation,
two types of different regions are defined with respect to Cf +

1. Ci+ indicates expansion of Cl.’ W.I.t. CiH'l: X € Cl.+, and it
is outside Cl.’ at time ¢, but inside Cf“ at ¢ + 1; for such
an expansion of x, with cost cl.+ (x).

2. C; indicates shrinkage of C! w.r.t. Cf“: x € C;,and it
is inside Cf at time ¢, but outside Cf“ at 7 + 1; for such
a shrinkage of x, with cost ¢;” (x).

By introducing the distance function dist(x, BCf) to
the expansion and shrinkage cost, the surface is driven in
a time-implicit manner [37] by both mean-curvature and
region-based information that corresponds to the first two
terms in (4), i.e., A1 Edata(C) + A2 Eprior (C). The expansion
and shrinkage cost functions are defined as

¢; (x) = A1(x)log Fi (I (x)) + Az(x) log(L;(x))
—l—%dist(x, E)Ci’), Vx € Cl-’, 9)

and

¢ (x) = —r1(x) log F; (I (x)) — A2 (x) log(L; (x))

1
—}—Zdist(x, acl), Vx ¢ Cl, (10)

where dist(x, BC,? ) denotes the Euclidean distance of x to
dC;, and h is the surface evolution discrete time step.

Letu;(x) € {0, 1},i =1, ..., n be the indicator function
of region C; and two cost functions Dis (x) and Df (x) w.r.t.
the current surfaces Cf ,i =1,...,n are defined:

D (x) = ¢; (x), where).c eC! (11
0, otherwise
+ t
. , where C!
Di(x) 1= |G 0 Where X £G (12)
0, otherwise

The variational problem (8) can be expressed as the Potts
problem

u; (x)e€{0,1

n n
min }Z <u;,D!'—D} > +Z/ g(x)|Vuildx (13)
i=1 =179
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subject to D7 uij(x) = 1,Vx € £. Detailed proof of
the equivalence between (8) and (13) can be found in [26].
The global optimum of problem (13) can be approximated
through convex relaxation and then be efficiently solved by
the augmented Lagrangian method in a max-flow formula-
tion [36]. In this way, the current surfaces propagate to the
next position in each iteration and finally to the optimal posi-
tionC¥,i =1, ..., n of model (4).

Experiments and results

We evaluated the proposed segmentation framework in the
context of automated simultaneous segmentation of the liver,
spleen and both kidneys. A fivefold cross-validation was con-
ducted on 140 abdominal CT scans. In each cross, 112 CT
scans were used for training the CNN and the rest 28 CT
scans were for testing. The final error was averaged over the
five crosses.

In order to perform quantitative evaluation, the seg-
mentation results were compared with the ground truth.
Volume-based and surface distance-based metrics, namely
Dice similarity coefficient (DSC), Jaccard index (JI) and
average symmetric surface distance (ASD), were computed.
DSC = 100% and JI = 100% mean no under- or over-
segmentation, and ASD = Omm means perfect match
between the automated segmentation and the ground truth
surfaces.

Implementation details and parameter settings

Our implementation of the CNN was based on the cuda-
convnet package.! For data preparation in both training and
testing stage of the CNN, the input of the network was image
blocks of size 496 x 496 x 279 that cropped from original
CT volumes. The intensity range of input volumes was nor-
malized to [—2, 2] firstly. Then, to capture large variation in
intensity across subjects with different contrast-enhancement
patterns, intensities were randomly permuted. Specifically,
I (x) was translated by v and then multiplied by o, where
v € [—0.5,0.5] and o € [0.5, 1.5] were two random values.

The hyperparameters of the CNN architecture described
in Table 1 were selected by conducting a grid search on
the training set. The filter weights were initialized randomly
with Gaussian distribution N (0, 1 x 1072). During train-
ing, weights were updated by stochastic gradient descent
algorithm with a momentum of 0.9. The biases and PReLU
parameters in convolutional layers were initialized to 0 and
0.25, respectively. The number of epochs was fixed to 60
in all cross-validations. The regularization coefficient w in

! https://code.google.com/p/cuda-convnet/.
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Table 2 Statistics for the liver, spleen, both kidneys segmentation results in two stages for data of different contrast conditions
Dataset Subjects Organ DSC (%) I (%) ASD (mm)
I* F* I F I F
Total 140 Liver 94.6 (1.9) 96.0 (1.5) 89.8 (3.2) 92.4(2.8) 2.1(1.3) 1.3 (0.5)
Spleen 89.7 (5.0) 942 (5.4) 81.6 (7.6) 89.5 (6.9) 2.6 (3.4) 1.2 (1.8)
Kidneys 90.1 (5.9) 95.4 (3.2) 82.4 (8.8) 91.3(5.3) 2434 1.0 (0.9)
Portal venous 67 Liver 94.7 (1.6) 96.1 (1.8) 90.0 (2.8) 92.6 (3.1) 2.0 (0.8) 1.3 (0.5)
Spleen 90.5 (3.8) 94.4 (7.5) 82.9(7.2) 90.0 (9.0) 2.1(1.8) 1.2 (2.6)
Kidneys 91.1 (5.4) 95.2(3.2) 82.5(8.4) 91.0 (5.4) 2.3(1.8) 1.1 (1.0)
Artery 60 Liver 94.6 (2.0) 95.8 (1.4) 89.9 (3.4) 92.0 (2.5) 2.0(1.4) 1.30.4)
Spleen 90.0 (4.5) 94.6 (1.3) 82.1(6.2) 89.7 (2.5) 243.2) 1.0 (0.2)
Kidneys 91.7(3.7) 96.0 (2.3) 84.8 (5.8) 92.4 (3.8) 234.5) 0.8 (0.7)
Noncontrast 13 Liver 93.8 (2.3) 96.1 (1.2) 88.4 (4.0) 92.6 (2.1) 3.0 (2.6) 1.2 (0.5)
Spleen 84.2 (5.4) 91.6 (4.3) 73.1 (8.0) 84.8 (6.7) 6.3 (6.6) 1.5(1.3)
Kidneys 81.9(8.8) 93.4 (5.3) 70.2 (11.8) 88.1 (8.3) 3.5(2.0) 1.4(1.1)
The metrics are DSC, JI and ASD. Numbers’ format: mean value (standard deviation)
* [—initial segmentation, F—final segmentation
model (3) was set to 5 x 107*. The learning rate was ini- % T O = o5~ =
.. 8 96 T E 90 = + +
tialized to 2.5 x 10~® and then decreased by a factor of +/2 ol B i ol + . % ﬁ .
every 8 epochs after the 40th epoch. ol X g W ’ g f X
In the multi-organ refinement step, each slice of the input 2 :z - 2 . z j: : .
images and probability maps was downsampled to 256 x 256 6 . 50 T2 -
to reduce the computation cost. Data were smoothed using o 40 S
. . . . . . 82 - -z
anisotropic diffusion [24] as preprocessing. According to e W s
magnitude analysis and experience, the parameters in model — — =
(4) were set as oy = 0.35 and ap = 0.30. The discrete time ” é = ZZ = % % é I
step in surface evolution was set as & = 100. ? ‘ + 70 [ . 80 ; :
g o -l Seol e :
Computational time S - k jz : ol : .
= 30 50 *
Computations were carried out on a Windows desktop with o 20 - =
) =3 sy o> o> & X
Intel Xeon E5-2680 CPU (2.70 GHz) and four graphics cards WY T VET e
of NVIDIA GeForce GTX 980. The training of the CNN ol o B P
was implemented using parallel computing architecture with . 2 30
four graphics cards. In the multi-region segmentation step, g . ’ E e g z;
the convex max-flow algorithm was based on the (GPU ver- % - % ol - 2 s
sion) code of Yuan et al. [36]. Other computations were s o . 10 : )
programmed in MATLAB 2014b. Training the CNN took = % , = - z = i
approximately 12h. The testing time of the CNN on an I PO R

abdominal volume of size 512 x 512 x 279 took around 65.
The surface refinement step took about 119s. The average
total time of testing a case in our dataset was about 125s.

Segmentation accuracy

Quantitative results of our method on the segmentation of
the liver, spleen and both kidneys from images of various
contrast-enhancement patterns are summarized in Table 2.
The dataset is separated into three parts, i.e., portal venous
phase, artery phase and noncontrast phase, and two kinds of

Fig. 2 Box plots of the initial and final segmentation results for the
liver, spleen and kidneys using 140 CT volumes with respect to metrics
DSC, JI and ASD. “I-Liver” and “F-Liver” refer to initial and final seg-
mentations of the liver, respectively, and the same notations for spleen
and kidneys

results that corresponds to the initial segmentation (I) and the
final segmentation (F) are listed for each part. Figure 2 shows
the box plots of results on 140 CT volumes with respect to
the initial and final segmentations. The computed metrics
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Fig. 3 Good and bad results per organ (first and second row, respec-
tively) in terms of DSC. Probability maps are overlaid on the images,
and the red contours correspond to the ground truth. From left to right,
organs are in this order: liver, spleen and both kidneys

in Table 2 indicate that the trained CNN can predict good
initial segmentation with an accuracy over 89% for all the
four organs (in terms of DSC). Also, the combination of the
CNN and time-implicit level-set evolution achieved final seg-
mentations with great agreement with the ground truth. The
refinement step boosted the segmentation performance over
the initial results significantly (p < 0.001 for all organs).

Figure 3 shows illustrative examples of organ localization
by the CNN. The two rows correspond to good and bad results
in terms of DSC. The good cases lead to DSCs of 96.7% for
the liver, 95.3% for the spleen and 95.5% for the kidneys,
while the bad cases gave DSCs of 82% for the liver, 62.3%
for the spleen and 62.9% for the kidneys. As can be inferred
from box plots of initial segmentations in Fig. 2, the CNN
can locate the organs accurately and predict rough shapes of
the organs for most cases in the dataset.

Figure 4 presents three typical examples of segmentation
results for the liver, spleen and kidneys from images of dif-
ferent contrast patterns. The first three columns give axial
projections of the CT volumes, and the fourth column pro-
vides 3D visualization of the automated segmentations. We
can see that the automated segmentations agreed well with
the ground truth.

Effect of the probabilistic prior on the proposed model

To better understand the role of each step, we compared the
outcomes of the CNN, the surface evolution-based refine-
ment without probabilistic prior and the complete proposed
model. The results for one typical volume are shown in Fig. 5.
As can be seen in the first row, the outcome of the CNN
provided an accurate location for the liver, but there was
under-segmentation in the left liver lobe. The outcome of the
surface refinement without probabilistic prior leaked to the
surrounding tissues due to low contrast at the borders. The
complete proposed model evolved the initial surface closer

@ Springer

Fig. 4 Typical examples of segmentation results. From up to down,
segmentation results for CT volumes of portal venous phase, artery
phase and noncontrast, respectively. From /st column to 3rd column
are results for the liver, spleen and kidneys in 2D axial view, respec-
tively. The automated segmentation is outlined in green, and the ground
truth is shown in red. The 4th column provides 3D renderings of the
segmentation results, where the liver is red, spleen is blue, and kidneys
are yellow

to the ground truth. Similar behaviors can be observed in seg-
mentation of the spleen (row two) and kidneys (row three).

Effect of the CNN parameters

Since the depth and width of the CNN are crucial to its
performance, we have studied the effect of different CNN
parameters on segmentation accuracy and the results are
shown in Fig. 6. To determine the number of convolutional
layers, layers from Conv; to Conv; of the CNN (see Table 1)
are adjusted to devise five architectures with 6-10 convolu-
tional layers. The accuracies of initial segmentations for the
liver, spleen and kidneys are shown in Fig. 6a. It indicates
that as convolutional layer number increases, the accuracy
in terms of DSC arises. In addition, we test the effect of the
convolution filter number, which decides the “width” of the
network. We devised three architectures denoted as “CNN1,”
“CNN2” and “CNN3,” which correspond to small, middle
and big networks, respectively. The networks “CNN1” and
“CNNZ2” contain {32, 128, 128, 128, 128, 128, 128, 128, 32,
4} and {64, 256, 256, 256, 256, 256, 256, 256, 128, 4} fil-
ters in the ten convolutional layers, respectively. The network
“CNN3” is the architecture described in Table 1. Comparable
results of the three architectures in Fig. 6b show that accuracy
can be improved as the network becomes wider. Therefore,
in our experiments we set the convolutional number as 10
and used the big network to achieve highest accuracy while
making the computation memory satisfied on our machines.

Effect of the size of training data

One central important factor of the CNN is the availability
of large amount of labeled data, which is rather difficult for
medical images. To evaluate the sensitivity of our method
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Fig. 5 Comparable results for the liver, spleen and kidneys of one
typical CT volume (from fop to down). From left to right are results
of the CNN, the surface refinement without probabilistic prior and the
proposed method, respectively. The automated segmentation is outlined
in green, and the ground truth is colored in red. Note the regions of
leakage indicated by red arrow
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Fig. 6 Effect of the CNN parameters on initial segmentation accuracy

with respect to the size of training data, we tested its general-
ization ability in an experiment where the number of training
data was decreased gradually. This experiment was tested on
28 data, with the number of training data varying from 28 to
112. Note in this experiment no training data were used for
testing.

Figure 7 shows the initial and final segmentation results
of our method with different number of training data. The
accuracy of initial segmentation by the CNN arose as the
number of training data increased, while the final segmenta-
tion result was relatively stable. It indicates that by enlarging
the size of training dataset, the performance of our CNN-
based organ detection and segmentation can be improved.
When the number of training data is limited (e.g., 28 CT
images), the initial segmentation shows severe under-/over-
segmentation. This is because the complex CNN learning
architecture with many parameters to learn can easily lead
to overfitting on a small training set, where the diversity
of data is very limited. Therefore, the low generalization
ability and poor segmentation results can be expected. With

100

95

90
85 i 28 scans
x
S 80 3 56 scans
8 s 84 scans

g @ 112 scans

70 %

65

60 5 & k.

F-Liver I-Kidneys F-Kidneys

Fig. 7 Segmentation results of the proposed method with different
number of training samples with respect to DSC. Here, “I-Liver” and
“F-Liver” refer to initial and final segmentations of the liver, respec-
tively, and the same notations for spleen and kidneys

more data for training, the performance of our CNN model is
improved obviously. When the size of training data becomes
large, the segmentation errors mainly exist in the precise bor-
der localization. Although deeper models with pooling and
convolution can increase invariance and receptive fields thus
capture high-level features, they also smooth responses and
lower the boundary localization accuracy. Taking advantage
of the segmentation refinement method, more details at the
organ boundaries can be recovered. From Fig. 7, we can see
that the results can achieve sound accuracy even with limited
training subjects.

Comparison with state-of-the-art methods

Itis always difficult to directly compare segmentation perfor-
mance with different methods, as they usually use different
datasets, different qualities of manual segmentations and dif-
ferent evaluation metrics. Here, our method was roughly
compared with six state-of-the-art automatic multi-organ
localization/segmentation methods [8,9,17,21,31,34] based
on the same metrics in Table 3. As for the initial segmentation,
the proposed CNN can localize object organs more accurately
than the random forest-based organ localization method [8]
in terms of DSC and ASD. As for the final segmentation, the
proposed method obtained higher DSCs for the liver, spleen
and kidneys than four compared methods except for Lin-
guraru et al. [17]. In terms of JI and ASD, the proposed
method also achieved competitive performance. The work
by Linguraru et al. [17] constructed a 4D graph model with
shape constraints from probabilistic atlas to segment multiple
organs from multi-phase CT images and achieved impres-
sive results. However, since this approach was evaluated
on a small dataset of high-resolution CT images and uti-
lized a general probabilistic atlas, it might be challenged by
more diverse datasets. Other works are based on probabilis-
tic atlas [31,34], SSMs [9] or combination of both [21]. The
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Table 3 Comparison with state-of-the-art automatic multi-organ localization/segmentation methods

Methods Test cases Input image(s) Organs DSC (%) JI (%) ASD (mm) Time
I-Proposed 140 1(arbitrary) Liver 94.6+1.9 89.8£3.2 21£13 6s
Spleen 89.7+£5.0 81.6+7.6 2.6+34
Kidneys 90.1£5.9 82.4+8.8 24434
Gauriau et al. [8] 80 1(arbitrary) Liver 749+5 - 10.6 2 5s
Spleen 60.3£12 - 9.1+3
L-Kidney 69.6+4 - 6.3+4
R-Kidney 70.8+£9 - 5.8+2
F-Proposed 140 1(arbitrary) Liver 96.0+1.5 924428 1.3+0.5 125s
Spleen 942+54 89.5+6.9 1.2+1.8
Kidneys 954432 91.3+53 1.0£0.9
Linguraru et al. [17] 10 2(multi-phase) Liver 96.4+0.7 - 1.1£0.6 3h
Spleen 93.6+1.8 - 09+0.6
L-Kidney 94.0+1.0 - 0.8+0.2
R-Kidney 93.94+0.8 - 0.9+0.1
Tong et al. [31] 150 1(portal venous) Liver 949+1.9 90.1+3.3 - 2h
Spleen 92.5+6.5 86.7+9.7 -
Kidneys 93.6£3.8 88.31+6.1 -
Okada et al. [21] 134 1(arbitrary) Liver 94.1+£24 88.9+4.1 1.7+£0.9 -
Spleen 92.1£8.1 87.0+£9.6 1.2+1.6
L-Kidney 92.3+£10.1 882+ 11.7 1.3+19
R-Kidney 909+ 184 87.1+18.8 1.7+£3.9
Wolz et al. [34] 150 1(portal venous) Liver 94.0+£2.8 88.9+4.38 2.0+2.8 3h
Spleen 92.0+£9.2 86.2+12.7 23+3.0
Kidneys 925+£72 86.8+10.5 23+34
He et al. [9] 30 1(contrast-enhanced) Liver 93.3 - - -
Spleen 89.6 - -
L-Kidney 91.0 - -
R-Kidney 92.2 - -

“I-Proposed” and “F-Proposed” refer to the initial and final results of our method, respectively

works of Tong etal. [31] and Wolz et al. [34] need registration
process, which is computational intense.

Although the comparison is conducted on different
datasets of different sizes, Table 3 still indicates our method’s
advantage in runtime over other methods. The computational
cost in different studies is not necessarily linear with the size
of CT volumes. The runtime of Wolz et al. [34] is defined by
the nonrigid registration step, and the overall time is around
3h. The runtime of Tong et al. [31] increases approximately
linearly with the number of selected atlases during training,
which is significant to the segmentation accuracy. For image
scans with slice sickness of 1 mm, the runtime of Linguraru et
al. [17] is about 2 h per scan. In our method, the CNN-based
organ detection spent around 6s for each CT volume of size
512 x 512 x 279, comparable to that of Gauriau et al. [8].
The average runtime of our refinement method on our dataset
is around 1195, and the total time of our method is 125 s per
volume, which is much lower than those of aforementioned
methods.

@ Springer

Discussion and conclusions

In this paper, we developed a fast automatic multi-organ seg-
mentation framework based on a deep 3D fully CNN and a
multi-phase surface evolution-based refinement model. The
proposed method can simultaneously localize and segment
4 organs, i.e., the liver, spleen and both kidneys, from CT
images of various contrast-enhancement patterns with high
accuracy and efficiency. To automatically detect the organs
from complex backgrounds, a deep CNN was trained to
learn subject-specific probability maps, which provided both
spatial prior constraints and proper initialization for sub-
sequent fine segmentation. Compared to SSMs/atlas-based
methods [9,17,21,31,34], our organ localization needs no
shape model/atlas construction/registration, complicated ini-
tial position searching or shape deformation. Compared to
regression method [8], the CNN-based organ detection is
advantageous to avoid complex feature extraction and selec-
tion process and can achieve higher accuracy. Compared to
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our previous work [19] that also used fully CNN for liver
segmentation, this work considers the simultaneous segmen-
tation of multiple organs, which is a much harder task due
to the diverse variations of organ shapes, appearances and
locations across subjects and highly similar organ intensity
and appearances in each CT volume. To construct a more
powerful network, wider hidden layers and an improved
activation function PReLU [10] have been used. For the
multi-organ segmentation problem, we formulated the CNN-
guided refinement as a multi-phase segmentation problem,
which is solved by a recently proposed convex optimization-
based time-implicit multi-phase level-set algorithm [26].
Compared to multi-label graph cut method, this algorithm
can successfully avoid metrification artifacts and can be
easily implemented on GPUs to significantly improve com-
putational efficiency with much lower memory cost.

A fivefold cross-validation on 140 CT scans showed that
the proposed method yielded mean DSCs of 96.0 £ 1.5,
94.2 +£5.4 and 95.4 £ 3.2% for the liver, spleen and kidneys,
respectively. The mean JIs for the liver, spleen and kidneys
were 92.4 4+ 2.8, 89.5 + 6.9 and 91.3 £ 5.3%, respectively.
In addition, the mean ASDs were less than 1.3 mm for all
organs. By implementing core components of the algorithm
on GPUs, the average computational time on a CT volume
was about 125s, which was much less than most current
methods in literature.

Although the proposed method performs well on a large
and diverse dataset, the experiments and the method still
have several limitations. First, the performance comparison
has only be conducted using different datasets. A more thor-
ough comparison of different methods on the same dataset
will be valuable. Unfortunately, there is no public dataset
available to evaluate multiple abdominal organ segmenta-
tion methods. Although the Visceral Anatomy3 Extended
Benchmark? is an excellent collection of data for this tar-
get, its online evaluation environment is currently only based
on CPU computation, which makes it difficult to evaluate
our GPU-implemented method on this benchmark. Second,
although our method can perform well on most pathological
data, such as livers with tumors and enlarged spleens, in cur-
rent form it does not handle data with missing organs or organ
of different topologies. Even if an organ is missing, the CNN-
based object detection will give a localization prediction. In
Fig. 8a we present an example of localization in a CT image
with a missing right kidney. The kidney is located under the
spleen and so does the final segmentation result even if the
organ is not present. Another special case of the organ with
abnormal topology is shown in Fig. 8b. It is a horseshoe kid-
ney, i.e., the two kidneys are merged. However, the trained
CNN still predicts two separate kidney regions and restricts
the final segmentation. We can see that in the CNN training

2 http://www.visceral.eu/benchmarks/anatomy3-open/.

(b)

Fig. 8 Examples of detection and segmentation by the CNN in the
cases of a missing left kidney and horseshoe kidney. The predicted
probability maps are overlaid on the images, and the green contours
correspond to the final segmentations

process, the spatial information and topology are encoded
into the network. The inferred priors are dominated by the
most training data of complete organs and regular topology.
Third, the parameters of the refinement model are empiri-
cally set without optimal searching on a training set. In the
future work, we will conduct parameter learning in a data-
driven style. In addition, inspired by the work of Dou et al.
[7], the refinement part may be further improved by utilizing
the CRF method.

In conclusion, quantitative evaluation on a large and
diverse dataset and comparisons with state-of-the-art auto-
matic methods showed that the proposed automatic method
can localize and segment the organs, i.e., liver, spleen and
kidneys, accurately and efficiently. The high values of DSC
and JI alone with low ASD suggest that our method could be
potentially used for quantitative measurement of the organs
in clinical application. In the future, we expect to adapt the
proposed framework for more organs, such as pancreas and
gallbladder.

Acknowledgements This work was supported in part by the National
Natural Science Foundation of China (Grant Nos. 11271323, 91330105,
11401231), Zhejiang Provincial Natural Science Foundation of China
(Grant No. LZ13A010002), Natural Science Foundation of Fujian
Province (Grant No. 2015J01254) and Science Technology Founda-
tion for Middle-aged and Young Teacher of Fujian Province (Grant
No. JA14021). J. Peng was also supported by Promotion Program for
Young and Middle-aged Teacher in Science and Technology Research
of Huaqiao University.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical standard This article does not contain any studies with human
participants or animal performed by any of the authors.

Informed consent Informed consent was obtained from all individual
participants included in the study.

References

1. Brosch T, Tang LY, Yoo Y, Li DK, Traboulsee A, Tam R (2016)
Deep 3d convolutional encoder networks with shortcuts for mul-

@ Springer


http://www.visceral.eu/benchmarks/anatomy3-open/

410

Int J CARS (2017) 12:399-411

10.

11.

12.

13.

15.

16.

tiscale feature integration applied to multiple sclerosis lesion
segmentation. IEEE Trans Med Imaging 35(5):1229-1239

Cha KH, Hadjiiski L, Samala RK, Chan HP, Caoili EM, Cohan RH
(2016) Urinary bladder segmentation in ct urography using deep-
learning convolutional neural network and level sets. Med Phys
43(4):1882-1896

Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2015)
Semantic image segmentation with deep convolutional nets and
fully connected crfs. In: International conference on learning rep-
resentations (ICLR)

Cigek O, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O
(2016) 3d u-net: learning dense volumetric segmentation from
sparse annotation. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal
G, Wells W (eds) International conference on medical image com-
puting and computer-assisted intervention, (MICCAI), Springer,
pp 424-432

Ciresan D, Giusti A, Gambardella LM, Schmidhuber J (2012)
Deep neural networks segment neuronal membranes in electron
microscopy images. In: Advances in neural information process-
ing systems, pp 2843-2851

Criminisi A, Robertson D, Konukoglu E, Shotton J, Pathak S, White
S, Siddiqui K (2013) Regression forests for efficient anatomy detec-
tion and localization in computed tomography scans. Med Image
Anal 17(8):1293-1303

Dou Q, Chen H, Jin Y, Yu L, Qin J, Heng PA (2016) 3d deeply
supervised network for automatic liver segmentation from ct vol-
umes. In: International conference on medical image computing
and computer-assisted intervention. Springer, pp 149-157
Gauriau R, Cuingnet R, Lesage D, Bloch 1 (2015) Multi-organ
localization with cascaded global-to-local regression and shape
prior. Med Image Anal 23(1):70-83

He B, Huang C, Jia F (2015) Fully automatic multi-organ segmen-
tation based on multi-boost learning and statistical shape model
search. VISCERAL@ ISBI 2015 VISCERAL Anatomy3 Organ
Segmentation Challenge, p 18

He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers:
surpassing human-level performance on imagenet classification.
In: Proceedings of the IEEE international conference on computer
vision, pp 1026-1034

Heimann T, van Ginneken B, Styner M, Arzhaeva Y, Aurich V,
Bauer C, Beck A, Becker C, Beichel R, Bekes G, Bello F, Binnig
G, Bischof H, Bornik A, Cashman P, Chi Y, Cordova A, Dawant
B, Fidrich M, Furst J, Furukawa D, Grenacher L, Hornegger J,
Kainmuller D, Kitney R, Kobatake H, Lamecker H, Lange T, Lee
J,Lennon B, LiR, Li S, Meinzer HP, Nemeth G, Raicu D, Rau AM,
vanRikxoort E, Rousson M, Rusko L, Saddi K, Schmidt G, Seghers
D, Shimizu A, Slagmolen P, Sorantin E, Soza G, Susomboon R,
Waite J, Wimmer A, Wolf I (2009) Comparison and evaluation of
methods for liver segmentation from CT datasets. IEEE Trans Med
Imaging 28(8):1251-1265

HuP, WuF, PengJ, Liang P, Kong D (2016) Automatic 3D liver seg-
mentation based on deep learning and globally optimized surface
evolution. Phys Med Biol 61:8676-8698. doi:10.1088/1361-6560/
61/24/8676

Jawarneh MS, Mandava R, Ramachandram D, Shuaib IL (2010)
Automatic initialization of contour for level set algorithms guided
by integration of multiple views to segment abdominal ct scans.
In: 2010 Second international conference on computational intel-
ligence, modelling and simulation (CIMSiM). IEEE, pp 315-320
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classifi-
cation with deep convolutional neural networks. In: Advances in
neural information processing systems, pp 1097-1105

Lai M (2015) Deep learning for medical image segmentation. arXiv
preprint arXiv:1505.02000

Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-
supervised nets. In: AISTATS, vol 2, p 6

@ Springer

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Linguraru MG, Pura JA, Pamulapati V, Summers RM (2012) Sta-
tistical 4d graphs for multi-organ abdominal segmentation from
multiphase ct. Med Image Anal 16(4):904-914

Long J, Shelhamer E, Darrell T (2015) Fully convolutional net-
works for semantic segmentation. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp 3431—
3440

LuF, Wu F, Hu P, Peng Z, Kong D. Automatic 3d liver location and
segmentation via convolutional neural networks and graph cut. Int
J Comput Assist Radiol Surg. doi:10.1007/s11548-016-1467-3
Milletari F, Navab N, Ahmadi SA (2016) V-net: fully convolutional
neural networks for volumetric medical image segmentation. arXiv
preprint arXiv:1606.04797

Okada T, Linguraru MG, Hori M, Summers RM, Tomiyama N, Sato
Y (2015) Abdominal multi-organ segmentation from ct images
using conditional shape-location and unsupervised intensity pri-
ors. Med Image Anal 26(1):1-18

Peng J, Dong F, Chen Y, Kong D (2014) A region-appearance-
based adaptive variational model for 3d liver segmentation. Med
Phys 41(4):043,502

Peng J, Hu P, Lu F, Peng Z, Kong D, Zhang H (2015) 3d liver
segmentation using multiple region appearances and graph cuts.
Med Phys 42(12):6840-6852

Perona P, Malik J (1990) Scale-space and edge detection using
anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell
12(7):629-639

Potts RB (1952) Some generalized order-disorder transformations.
In: Mathematical proceedings of the Cambridge philosophical soci-
ety, vol 48. Cambridge University Press, pp 106-109

Rajchl M, Baxter JS, Bae E, Tai XC, Fenster A, Peters TM, Yuan J
(2015) Variational time-implicit multiphase level-sets. In: Energy
minimization methods in computer vision and pattern recognition.
Springer, pp 278-291

Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional
networks for biomedical image segmentation. In: International
conference on medical image computing and computer-assisted
intervention. Springer, pp 234-241

Roth HR, Lu L, Farag A, Shin HC, Liu J, Turkbey EB, Summers
RM (2015) Deeporgan: multi-level deep convolutional networks
for automated pancreas segmentation. In: Medical image comput-
ing and computer-assisted intervention. Springer, pp 556-564
Saito A, Nawano S, Shimizu A (2016) Joint optimization of seg-
mentation and shape prior from level-set-based statistical shape
model, and its application to the automated segmentation of abdom-
inal organs. Med Image Anal 28:46-65

Selver MA (2014) Segmentation of abdominal organs from ct using
a multi-level, hierarchical neural network strategy. Comput Meth-
ods Programs Biomed 113(3):830-852

Tong T, Wolz R, Wang Z, Gao Q, Misawa K, Fujiwara M, Mori
K, Hajnal JV, Rueckert D (2015) Discriminative dictionary learn-
ing for abdominal multi-organ segmentation. Med Image Anal
23(1):92-104

Vese LA, Chan TF (2002) A multiphase level set framework for
image segmentation using the mumford and shah model. IntJ Com-
put Vis 50(3):271-293

Wang C, Smedby O (2014) Automatic multi-organ segmentation
using fast model based level set method and hierarchical shape
priors. Proc VISCERAL Chall ISBI 1194:25-31

Wolz R, Chu C, Misawa K, Fujiwara M, Mori K, Rueckert D (2013)
Automated abdominal multi-organ segmentation with subject-
specific atlas generation. IEEE Trans Med Imaging 32(9):1723—
1730

XuZ, Burke RP, Lee CP, Baucom RB, Poulose BK, Abramson RG,
Landman BA (2015) Efficient multi-atlas abdominal segmentation
on clinically acquired ct with simple context learning. Med Image
Anal 24(1):18-27


http://dx.doi.org/10.1088/1361-6560/61/24/8676
http://dx.doi.org/10.1088/1361-6560/61/24/8676
http://arxiv.org/abs/1505.02000
http://dx.doi.org/10.1007/s11548-016-1467-3
http://arxiv.org/abs/1606.04797

Int J CARS (2017) 12:399-411 411

36. YuanJ, Bae E, Tai XC, Boykov Y (2010) A continuous max-flow 38. Zhang W, LiR, Deng H, Wang L, Lin W, Ji S, Shen D (2015) Deep
approach to potts model. In: European conference on computer convolutional neural networks for multi-modality isointense infant
vision. Springer, pp 379-392 brain image segmentation. Neurolmage 108:214-224

37. Yuan J, Ukwatta E, Tai X, Fenster A, Schnoerr C (2012) A fast
global optimization-based approach to evolving contours with
generic shape prior. University of California, Los Angeles. Tech-
nical report CAM 12, vol 38

@ Springer



	Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets
	Abstract
	Introduction
	Methods
	Dataset
	Automated localization and segmentation
	The architecture
	Network training
	Segmentation refinement via multiple surface evolution
	Surface evolution using time-implicit level sets


	Experiments and results
	Implementation details and parameter settings
	Computational time
	Segmentation accuracy
	Effect of the probabilistic prior on the proposed model
	Effect of the CNN parameters
	Effect of the size of training data
	Comparison with state-of-the-art methods

	Discussion and conclusions
	Acknowledgements
	References




