
Int J CARS (2017) 12:351–361
DOI 10.1007/s11548-016-1488-y

ORIGINAL ARTICLE

MITK-OpenIGTLink for combining open-source toolkits
in real-time computer-assisted interventions

Martin Klemm1 · Thomas Kirchner2 · Janek Gröhl2 · Dominique Cheray2 ·
Marco Nolden2 · Alexander Seitel2 · Harald Hoppe1 · Lena Maier-Hein2 ·
Alfred M. Franz2

Received: 17 May 2016 / Accepted: 8 September 2016 / Published online: 29 September 2016
© CARS 2016

Abstract
Purpose Due to rapid developments in the research areas
of medical imaging, medical image processing and robot-
ics, computer-assisted interventions (CAI) are becoming an
integral part of modern patient care. From a software engi-
neering point of view, these systems are highly complex and
research can benefit greatly from reusing software compo-
nents. This is supported by a number of open-source toolkits
for medical imaging and CAI such as the medical imag-
ing interaction toolkit (MITK), the public software library
for ultrasound imaging research (PLUS) and 3D Slicer. An
independent inter-toolkit communication such as the open
image-guided therapy link (OpenIGTLink) can be used to
combine the advantages of these toolkits and enable an eas-
ier realization of a clinical CAI workflow.
Methods MITK-OpenIGTLink is presented as a network
interface within MITK that allows easy to use, asynchronous
two-way messaging between MITK and clinical devices or
other toolkits. Performance and interoperability tests with
MITK-OpenIGTLinkwere carried out considering thewhole
CAI workflow from data acquisition over processing to visu-
alization.
Results We present how MITK-OpenIGTLink can be
applied in different usage scenarios. In performance tests,
tracking data were transmitted with a frame rate of up to
1000Hz and a latency of 2.81ms. Transmission of images

B Martin Klemm
martin.klemm@hs-offenburg.de

1 Laboratory for Computer-Assisted Medicine, Department of
Electrical Engineering and Information Technology,
Offenburg University, Badstraße 24, 77652 Offenburg,
Germany

2 German Cancer Research Center (DKFZ), Im Neuenheimer
Feld 280, 69120 Heidelberg, Germany

with typical ultrasound (US) and greyscale high-definition
(HD) resolutions of 640 × 480 and 1920 × 1080 is possible
at up to 512 and 128Hz, respectively.
Conclusion With the integration of OpenIGTLink into
MITK, this protocol is now supported by all established
open-source toolkits in the field. This eases interoperabil-
ity between MITK and toolkits such as PLUS or 3D Slicer
and facilitates cross-toolkit research collaborations. MITK
and its submodule MITK-OpenIGTLink are provided open
source under a BSD-style licence (http://mitk.org).

Keywords Computer-assisted interventions · Image-guided
therapy · Ultrasound · Interoperability · OpenIGTLink ·
MITK

Introduction

Technological advances have opened many new doors in
medical imaging, medical image processing and robotics
research. Computer assistance is no longer restricted to
diagnostics and surgical planning but has been expanded
to surgical and radiological interventions. From a soft-
ware engineering point of view, these extensions bring new
requirements, e.g. support for complex clinical workflows,
integration of different kinds of hardware and data, real-time
data processing, and the need for high levels of robustness. In
this context, research can greatly benefit from reusing soft-
ware components and the community has gradually become
aware of the importance of publishing source code to ensure
reproducibility of results [11]. As a consequence, open-
source software for medical imaging applications has gained
popularity in the scientific community in recent years. Instead
of reinventing the wheel, researchers can now concentrate on
their preferred research andother groups can easily reproduce
their results [5].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-016-1488-y&domain=pdf
http://orcid.org/0000-0002-1093-5649
http://mitk.org

352 Int J CARS (2017) 12:351–361

A number of open-source toolkits have been published in
recent years, all with their degree of differentiation. Some are
highly specialized in a certain field, e.g. PLUS [14] and the
medical ultrasound imaging and intervention collaboration
(MUSiiC) [26]. Others provide necessary infrastructure, e.g.
the insight segmentation and registration toolkit (ITK) [18],
OpenIGTLink [29], and yet others combine the functionality
and the infrastructure into one application, e.g. 3DSlicer [23]
and MITK [21,30].

Starting off as stand-alone software components, themen-
tioned toolkits developed towards intra-operable solutions
especially with the introduction of OpenIGTLink.1 A good
example is the combination of PLUS and 3D Slicer [14].
While PLUS is acquiring and processing the data, 3DSlicer is
used to visualize it. OpenIGTLink is an open-source network
protocol originally developed for IGT environments [29]
and is the de facto standard in the medical research field.
It has proved its functionality in many different applications,
such as MRI-guided robotic prostate interventions for com-
munication between scanner, workstation and robot [29] or
neurosurgery for communication between a commercial nav-
igation system and 3D Slicer [29]. A wide range of toolkits
such as 3D Slicer [8], IGSTK [22], MUSiiC [12], MeVis-
Lab [7], PLUS [14] and NifTK [4] already support this
protocol.

MITK provides dedicated modules for IGT (MITK-
IGT, [9,20]), range imaging (MITK-TOF, [25]) and ultra-
sound (MITK-US, [16]) and is used as a basic toolkit by
other open- and closed-source software such as NifTK [4].
These modules have been used for a wide variety of CAI
applications including a needle-based navigation system for
CT-guided radiofrequency ablation of the liver [15], mobile
augmented reality (AR) systems for nephrolithotomy and
forensic medicine [13,19], a navigation system based on a
compact electromagnetic field generator integrated with an
US probe [17] and markerless navigation for percutaneous
needle insertions [24].

We introduce the module MITK-OpenIGTLink that
extends MITK with a network interface to allow cross-
application, cross-toolkit and cross-platform communica-
tion within CAI systems. This module implements the
OpenIGTLink protocol version 2, including full support for
the querying mechanism: Data can be requested and replies
are sent if the data is available. We highlight different usage
scenarios and evaluate themodules performancewith respect
to frame rate and latency.

Methods

MITK-OpenIGTLink is implemented as a module within the
MITK toolkit providing standardized independent commu-

1 See http://openigtlink.org/.

nication across toolkits and medical devices. The implemen-
tation complies with the MITK software process [21] using
a continuous integration,2 a database for tracking changes3

and a dedicated release processwithmanual tests at the appli-
cation level.

This section starts with the requirement analysis, followed
by the architectural overview, and finishes with the method-
ology for validating the developed architecture.

Requirements

The following requirements were identified for MITK-
OpenIGTLink as a communication layer for MITK:

Extensibility The new module must easily integrate into the
pipeline structure ofMITK and its modules to allow for inter-
changeability of e.g. data processingmethods.Using newand
customized OpenIGTLink message types must be possible.

Flexibility The data transmission and its processing inside
the MITK pipelines have to be connected in a flexible way
in order to easily exchange the processing steps.

PerformanceHigh frame rates and low latency are necessary
for real-time applications. The US image data transfer shall
run with 30Hz since typical real-time US devices run with
such a frame rate. Tracking data shall be transmitted with up
to 1000Hz in order to cover robotic applications [29]. The
latency for tracking data caused by MITK shall be one order
of magnitude smaller than the latency caused by the tracking
device itself which is the time from when the tracking device
is sampled until tracking data is available in the PC.

Application-wide availability The module should provide an
application-wide availability of all filters and devices that
are necessary for an OpenIGTLink connection. This makes
multiple configurations of the same component unnecessary.

Portability MITK-OpenIGTLink should be implemented in
C++ and run on Windows, Linux and Mac.

Robustness Messages must not be discarded as long as the
user wants to process all of them. It must be configurable to
keep only the latest message or all.

UsabilityThemodulemust be easy to integrate for developers
and the resulting application or plugin should be easy to use
for the end-user.

Architecture

An architectural overview of MITK-OpenIGTLink is given
in Figs. 1 and 2. MITK-OpenIGTLink is structured in the
following three layers:

2 See http://cdash.mitk.org/.
3 See http://bugs.mitk.org/.

123

http://openigtlink.org/
http://cdash.mitk.org/
http://bugs.mitk.org/

Int J CARS (2017) 12:351–361 353

OpenIGTLink
SDK

Processing
Layer

Applica�on
Layer

Network
Layer

Sockets Message
Types

OIGTL
Device

OIGTL Message
Queue

OIGTL Message
Factory

GUI,
Interac�on

OIGTL Device
Source

OIGTL
Conversion Filter

Processing
Filters

OIGTL
Conversion Filter

Processing
Filters

OIGTL Message
Provider

1
1

1
N

Fig. 1 The MITK-OpenIGTLink layered architecture. The network
layer wraps the OpenIGTLink classes and manages the communica-
tion. The processing layer connects the OpenIGTLink device to the
processing pipeline. TheOIGTLDeviceSource is used for 1 to 1 connec-
tions, while the OIGTLMessageProvider can handle several conversion
filters and supports streams. The OIGTLDeviceSource is statically cou-
pled with the conversion filters, while the OIGTLMessageProvider is
only loosely coupled with them. Both versions can run in parallel, but
normally only one of them is used

Network Layer,
Processing Layer

Network
Communica�on

Reusable GUI
componentsManager

Examples

Fig. 2 Module structure of MITK-OpenIGTLink

Network layer: handles the communication with the
OpenIGTLink SDK

Processing layer: handles the processing of incoming and
outgoing messages

Application layer: handles the management of connections

Figure 1 shows the classes used to connectMITKpipelines
to other OpenIGTLink devices. A pipeline is a concatena-

tion of processing filters, where each filter does a particular
job and sends the result to the next stage of the pipeline.
This approach is based on ITK [10]. In ITK, pipelines are
implemented as pull pipelines, meaning that the processing
is triggered on demand by any filter inside the pipeline (in
general the last one). This stands in contrast to a push pipeline
in which the processing is started from the first pipeline com-
ponent.

Figure 2 shows the module structure. The source code
for the network and the processing layer is contained
in MITK-OpenIGTLink which depends on OpenIGTLink.
MITK-OpenIGTLinkUI provides reusableGUI components.
On top of all these components, there is a manager plugin to
configure the connection. Additionally, different examples
are provided.

OpenIGTLink SDK

The OpenIGTLink SDK4 consists of two parts: a low-level
C library and a higher-level C++ library. OpenIGTLink is
designed to run on top of the transmission control protocol
(TCP) stack. As an alternative to TCP, the user datagram pro-
tocol (UDP) is supported. There is no session management,
which is the reason why an OpenIGTLink message contains
all necessary information (data type, etc.) for the receiver to
interpret it. This simplifies the protocol but also increases the
overhead of eachmessage. Besides the standardmessages for
exchanging tracking data, images, control and monitor infor-
mation, custom message types can be defined. The protocol
version 2 also specifies a queryingmechanismused to request
single messages or streams of a given message type.

Network layer

The network layer interfaces with the OpenIGTLink proto-
col and encapsulates its implementation as provided in the
SDK. It contains all classes for establishing and managing
OpenIGTLink communications and messages.

Client–server architecture The central class in the network
layer is the OIGTLDevice. An OIGTLDevice is responsible
for the communication with other toolkits or devices sup-
porting OpenIGTLink. For sending and receiving messages,
it uses the OpenIGTLink sockets. The device runs three dif-
ferent threads to continuously check for new connections,
receive messages and send messages. This allows the server
to accept new client connections while it is already commu-
nicating with other clients. These threads are continuously
put to sleep for 1ms to reduce the CPU usage of the threads.

The OpenIGTLink client–server architecture is realized
by two specializations of the OIGTLDevice: OIGTLClient

4 See http://openigtlink.org/library.html.

123

http://openigtlink.org/library.html

354 Int J CARS (2017) 12:351–361

and OIGTLServer. You can decide to run a client or a server
or both at the same time. This stands in contrast to other
implementations as in PLUS in which there is only a server
available.

InOpenIGTLink, a server can connect to an arbitrary num-
ber of clients but each client only to one server. Server and
clients are classified by their role during the connection estab-
lishment and not during the connection itself. The client is the
device that requests the connection with the server. During
the connection, both devices (client and server) can request
or send data.

Messages Incoming and outgoing messages are stored in an
OIGTLMessageQueue. These queues can be configured in
two different modes. Depending on the application, it might
be necessary to process all incomingmessages or only the lat-
est one. The outgoing message buffer is used when messages
are created faster than they can be sent.

An additional command queue stores the incoming com-
mands. In the standard there are four different kinds of
commands defined that can be used for the query function-
ality:

GET_MSGTYPE: Used to request a single message with
the typeMSGTYPE. The device answers with a message
of type MSGTYPE or RTS_MSGTYPE.

RTS_MSGTYPE: Used to inform the requesting device that
MSGTYPE messages are not available.

STT_MSGTYPE: Used to request a stream of messages
with the type MSGTYPE. The device answers with a
stream or an RTS message.

STP_MSGTYPE: Used to stop the stream of type MSG-
TYPE. The device has to stop the stream and answers
with an RTS message.

The query mechanism that results from these command
messages can be used for a two-way communication, e.g.
to send control commands to an US machine and receive
image data. This query mechanism is not used by all existing
OpenIGTLink implementations. In these cases, the stream
automatically starts as soon as client and server are connected
to each other. To be compatible with such implementations,
it is possible to configure MITK-OpenIGTLink to also send
messages upon connection. The commands are received and
sent from the OIGTLDevice; however, the handling of these
commands is done in the processing layer.

Custommessage types can be created and have to be added
to the OIGTLMessageFactory before they can be used. This
can be done at compile and at run time. In order to add custom
types to the factory, two things are necessary:

1. A correct name according to the protocol: A data
message is called by its data, e.g. CUSTOMDATA,

whereas a command starts with the command type, e.g.
GET_CUSTOMDATA.

2. A method that allocates this message.

Standard types are automatically added to the factory at com-
pile time.

The factory is registered as a Micro Service and therefore
is available system-wide. C++ Micro Services5 are a low-
level mechanism for a service-oriented modular system. The
goal of this architecture is to hide complex tasks behind a
simple service interface and to make it available to other
components during run time. After registering a service in
one module, it is available to other modules. The selection of
services is based on properties and priorities and is managed
by the so-called module context. In this way, functionality
can be easily extended by registering a new service with a
higher priority [21].

Processing layer

The processing layer holds the components establishing
the connection between ITK style pipeline filters and the
OpenIGTLink devices in the Network Layer. This conver-
sion is important since existing MITK-IGT components are
mainly implemented as such filters. The first step, a so-
called conversion filter, converts either MITK data types into
OpenIGTLink messages or vice versa. Custom conversion
filters can be easily integrated; however, for the most com-
mon data types used in MITK, conversion filters are already
available. In the second step, the message has to be sent or
received. There are two different configurations to achieve
this:

1. Using the OIGTLDeviceSource

The OIGTLDeviceSource manages an OIGTLDevice
and can be statically connected to a conversion filter (left
side of Fig. 1). This configuration is used in applications
where all components are known at compile time.

2. Using the OIGTLMessageProvider
The OIGTLMessageProvider inherits from the
OIGTLDeviceSource and therefore also manages an
OIGTLDevice. The difference is that the provider is only
loosely connected to the conversion filter. At start-up, it
is not connected to any filter. It waits for an incoming
commandmessage and subsequently checks if it can pro-
vide the requested data. To find these data, the provider
looks for conversion filters that are registered as a Micro
Service and that are able to provide the appropriate data
output. Once it finds an appropriate filter, it connects to it
automatically and sends the data. It supports single GET

5 See http://cppmicroservices.org/.

123

http://cppmicroservices.org/

Int J CARS (2017) 12:351–361 355

OIGTL
Device

OIGTL
Device

OIGTL Message
Provider

Module
Context

ImageToOIGTL
MessageFilter

Image
Source

Connect

GET_IMAGE

Connected

Incoming
Command

GetSource(IMAGE)
ImageToOIGTLMessage

Filter

GetImage
GetImage

MITKIMAGE

Send Message
OIGTLIMAGE

OIGTLIMAGE

Register

Fig. 3 Sequence diagram for the query of an image. An OIGTL device
is requesting an image, the message provider looks for available image
sources inside the module context, connects itself to the fitting conver-

sion filter (ImageToOIGTLMessageFilter) and requests an image, and
subsequently, the image is provided, converted and sent to the request-
ing device

commands as well as streaming commands. This con-
figuration is used in applications in which the set-up is
defined at runtime. Figure 3 shows an example for the
request of an image, but other types can be handled in
the same way.

Alternatively,MITK-OpenIGTLink can alsobeusedwith-
out the pipeline by directly sending OpenIGTLink messages
to the OIGTLDevice as indicated in Fig. 1 by the connection
from the application layer to the OIGTLDevice. This might
be useful if the pipelining concept is not used.

Application layer

The application layer consists of ready-to-use MITK plugins
and the MITK-OpenIGTLinkUI module. The latter contains
several Qt6 GUI widgets that allow the developer to easily
integrate the new module into his application. The plugins
include the following views:

– OpenIGTLinkManager: The OpenIGTLink manager
view is not mandatory but can be used to manage
the OpenIGTLink devices registered as Micro Services.
Additionally, it also finds all registered conversion fil-
ters and allows to manually start the streaming of these
sources. Figure 4 shows this plugin with a running exam-
ple in which tracking data is streamed with 500Hz.

6 See http://qt.io.

– OpenIGTLinkExample: This simple example connects
itself to an OpenIGTLink device source and visualizes
the received tracking data.

– OpenIGTLinkProviderExample: The provider example
constructs an IGT-Pipeline that uses previously recorded
navigation data to simulate a tracking device. These
data is transformed into OpenIGTLink messages and
streamed on request (receiving of a STT_TDATA com-
mand).

In addition to these new plugins, existing plugins for IGT and
US applications were updated in such a way that, instead of
hardware devices, these modules can also connect directly to
OpenIGTLink network devices.

Performance analysis

In order to assess the performance of latency and frame rate
parameters in realistic and reproducible environments, two
recently set-up high-end computers7 were used. To neglect
any falsification caused by the network, the two PCs were
directly connected to each other.

The experimentswere performedonLinux.Time synchro-
nization between both computers was achieved by using the
precision time protocol (PTP) [6] and its implementation, the

7 CPU: Core i7-5960X 3.5 GHz 8 cores, RAM: 32 GB, Storage: SSD,
GPU: Geforce GTX970 4 GB PCI-E x16, OS: Ubuntu 14.04.

123

http://qt.io

356 Int J CARS (2017) 12:351–361

Fig. 4 The user interface of the manager plugin. In the top list view,
the device source can be selected. In this example, the provider was
selected. The lower part of the interface is used to set up a connection,
send commands and manage streams

PTP daemon (PTPd).8 PTPd is open source and only avail-
able on Linux.

Previous experiments [4,29] with the OpenIGTLink pro-
tocol mainly focused on the network performance. Clarkson
et al. and Tokuda et al. tested the latency from the generation
of the OpenIGTLink message to the receiving in a second
PC. Our analysis covers the whole pipeline, from the data
generation in MITK to the rendering of the data in the other
MITK instance.

In order to evaluate the latency of all steps of the pipeline
presented before, we defined six measurement points (MPs)
as illustrated in Fig. 5. In eachMP, the current timestamp and
the index of the current message were recorded. The render-
ing process was considered in the tests by performing the
tests one time with rendering and one time without. How-
ever, in both cases the messages are received, converted and

8 See http://ptpd.sourceforge.net/.

Server Client

1 5 632 4

Re
ad

 in
pu

ts
St

ar
t c

on
ve

rs
io

n

Pu
ll

fr
om

 b
uff

er
Se

nd
 m

es
sa

ge

Re
ce

iv
e

m
es

sa
ge

Pu
sh

 in
to

 b
uff

er

Pu
ll

fr
om

 b
uff

er
St

ar
t c

on
ve

rs
io

n

Co
nv

er
sio

n
fin

ish
ed

St
ar

t r
en

de
rin

g

Co
nv

er
sio

n
fin

ish
ed

Pu
sh

 in
to

 b
uff

er

Main
thread

Sending
thread

Receiving
thread

Main
thread

Fig. 5 Measurement points used for the performance analysis

processed in the pipeline. There is noMP inside the rendering
since it normally runs slower than the processing. For certain
processes, it might be necessary to run with high frame rates
(e.g. 500Hz), whereas the rendering is limited by the refresh
rate of the monitor (typically 60Hz). For this analysis, the
rendering was set to 30Hz.

Experiment 1: transmission of tracking data

We transmitted 10,000 messages containing tracking data
in 16 channels with four frame rates of 128, 256, 512 and
1000Hz. The tracking data were previously generated and
read from file. During this experiment, the rendering was
turned off since it is application specific. In the easiest case,
every channel could be rendered as a single point. However,
on a modern computer this would not have an influence on
the test results.

Experiment 2: transmission of image data

We simulated an US stream by transmitting 1000 greyscale
image messages with an US typical resolution of 640 × 480
with varying frame rates of 16, 32, 64, 128, 256 and 512Hz.
The images were taken from a standard USB webcam. All
measurements were taken two times, with rendering enabled
and with rendering disabled.

Experiment 3: transmission of HD image data

We transmitted 1000 greyscale image messages with a full
HD resolution of 1920× 1080 with frame rates of 16, 32, 64
and 128Hz. All measurements were taken two times, with
rendering enabled and with rendering disabled.

Results

The first part of this section depicts usage scenarios that
become available with the MITK-OpenIGTLink module.
The secondpart shows the results of the tests described above.

123

http://ptpd.sourceforge.net/

Int J CARS (2017) 12:351–361 357

Windows, Linux or Mac OS

Ultrasound
Scanner

Image

MITK

OpenIGTLink

Visualiza�on

PLUS

OpenIGTLink

Image Parameters

Fig. 6 An example for a cross-toolkit application. Both toolkits run
on the same platform. PLUS communicates with the US scanner, per-
forms its algorithms and sends the result to MITKwhere it is visualized
subsequently

Usage scenarios

The integration of the OpenIGTLink protocol into MITK
allows several interoperability usage scenarios. They range
from intra-toolkit communication on the same computer to
intra-toolkit communication on different platforms and com-
munication with medical devices and robotic systems.

Interfacing with other toolkits

Through MITK-OpenIGTLink, MITK can now be easily
connected with other toolkits to exchange data and other
information. We illustrate this by interfacing MITK to two
common open-source toolkits in the medical domain, PLUS
and 3D Slicer. Both scenarios were tested on Linux andWin-
dows and worked well with our implementation.

A usage scenario of interfacing between PLUS andMITK
is depicted in Fig. 6. This can e.g. be used to acquire data from
an US scanner and make use of the algorithmic functionality
of PLUS such as volume reconstruction, or spatial and tem-
poral calibration. The acquired and processed data can be
recorded and streamed over the network via OpenIGTLink
to be used within MITK [14].

Furthermore, the new OpenIGTLink module allows col-
laboration with other end-user GUI applications, such as 3D
Slicer. Hence, research groups can easily exchange and share
data and results directly from their favourite frameworks.
3D Slicer, for example, could benefit from the range imag-
ing module of MITK (MITK-TOF, [25]) or from research in
progress that is not yet available as open source but provided
as binaries.

Figure 7 shows this usage scenario. 3D Slicer contains
a plugin called OpenIGTLink Remote that allows query-
ing data and sending commands to a remote OpenIGTLink
device. In this case, MITK reacts to the request and answers
if the data is available. Moreover, MITK could be config-
ured to run without a GUI just responding to the requests of
another end-user GUI application.

Windows, Linux or Mac OS
Response

3D Slicer

OpenIGTLink

Visualization

MITK

OpenIGTLink
Request

Functionality

Fig. 7 An example of a collaboration between two toolkits in which
MITK is used by another end-user GUI application

Windows (x86) Linux Worksta�on (x64)

Tracking
Device

Parameters
MITK

OpenIGTLink

Visualiza�on

MITK

OpenIGTLink

Tracking
Data

Tracking
Data Parameters

Fig. 8 An example of a cross-platform device integration. The visual-
ization runs on a windows workstation with 64-bit architecture, while
the tracking device is connected to a MSWindows PC with ×86 archi-
tecture due to missing drivers for 64bits

Cross-platform communication

The use case depicted in Fig. 8 allows communication
between systems/applications that are bound to run on dif-
ferent platforms (e.g. Windows and Linux) and/or on a
different instruction set architecture of the CPU (×86 or
×64). With MITK-OpenIGTLink, it is now possible to e.g.
interface with proprietary applications that are only available
for one specific platform and instruction set without having
to port the application code to this (often outdated) system
architecture. An example could be a tracking device only
accessible on a certain system configuration. In this case,
a simple console application that streams the tracking data
through OpenIGTLink would be enough. We tested this by
streaming tracking data received from a tracking device that
only runs on a Windows PC to an application running on
Linux.

Interfacing with clinical devices and robotic systems

Recently, the first clinical devices that support OpenIGTLink
natively, e.g. the Brainlab navigation system, were intro-
duced. By using this interface, these clinical devices can be
integrated in a faster way. Moreover, OpenIGTLink is often
used in robotic applications [1–3,29] which makes the inte-
gration of robotics much easier. Another common use case
is the data retrieval from an MRI or CT scanner as described
in [27]. Figure 9 shows such a set-up.

123

358 Int J CARS (2017) 12:351–361

Workstation
Parameters

Clinical Device or
Robotic System

OpenIGTLink

MITK

OpenIGTLink
Data

Fig. 9 Interfacing with clinical devices or robotic systems

Generation Buffer Network Buffer Conversion Total

La
te

nc
y

in
 m

ill
is

ec
on

ds

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 10 Experiment 1: latency in transmission of tracking data. 10,000
messages with tracking data of 16 channels were sent at 1000Hz. The
average total latency was 2.81ms

Performance analysis

In the following sections, the results of the performance
tests are shown for the tracking data transfer (Sect. 3.2.1),
the image transfer (Sect. 3.2.2) and the HD image transfer
(Sect. 3.2.3). For each of those individual evaluations, the
results are presented in two ways. First, a boxplot diagram
is given showing the latency produced by the components
of the pipeline. Since these values do not change essentially
from one test run to another, only one diagram per experi-
ment is shown. Each test run uses a different frame rate and
calculates the mean values for transmitting 10,000 tracking
or 1000 image messages. The central marks of a boxplot
indicate the median, the edges of the box are the 25th and
75th percentiles, the whiskers extend to the most extreme
data points not considered outliers, and outliers are plotted
individually as crosses. Second, a table showing the average,
median,minimal andmaximal values of the test runs is given.

Tracking data transfer

Figure 10 shows a boxplot diagram of Experiment 1. The
first boxplot shows the time required for data generation.
The second and fourth boxplots show the time a message lies
in a buffer. As explained above, this is not processing time

Table 1 Measurement result for tracking datawith different frame rates
and 10,000 recorded messages

Frame rate
(Hz)

Average (ms) Median (ms) Min (ms) Max
(ms)

128 7.00 8.38 1.89 10.65

256 3.13 3.08 1.95 6.19

512 2.90 2.84 1.64 4.81

1000 2.81 2.76 1.48 4.65

Generation Buffer Network Buffer Conversion Total

La
te

nc
y

in
 m

ill
is

ec
on

ds

0

2

4

6

8

10

12

14

Fig. 11 Experiment 2: latency in transmission of image data (640 ×
480pixel). 1000 messages were sent at 128Hz with disabled rendering.
The data transmission is the most time-consuming step

but idle time and has a major influence on the total result.
The third boxplot is the time the message is sent from one
socket to the next one. The fifth one is the time necessary to
convert the incoming OpenIGTLink message into an MITK
data type, and the sixth boxplot shows the total latency from
generation till conversion.

As shown in Fig. 10, the two buffers produce the highest
latencies in the pipeline. The higher the frame rate, the lower
the buffer idle time and, thus, the lower the total latency.
This behaviour is given in Table 1. The average latencies,
depending on the frame rate, lie between 2.81 and 7ms.

Image transfer

Figure 11 shows the result for Experiment 2 in which image
data with a fixed resolution of 640 × 480 pixel were sent
over the network. Compared to Experiment 1, the major part
of the latency is not produced by the buffers but by the net-
work itself. The average latency, depending on the frame
rate and if rendering is enabled, lies between 10.5 and 21ms
(see Tables 2 and 3). Until 128Hz the rendering only causes
minor latencies. However, for higher frame rates it causes a
significant increase in latency of almost 100%.

123

Int J CARS (2017) 12:351–361 359

Table 2 Measurement result for image data with different frame rates
and 1000 recorded messages (rendering disabled)

Frame rate
(Hz)

Average (ms) Median (ms) Min (ms) Max
(ms)

16 13.77 13.75 12.44 15.20

32 13.01 13.00 11.57 14.96

64 12.57 12.58 10.65 14.42

128 11.55 11.54 9.66 13.79

256 10.55 10.31 8.54 23.01

512 11.20 10.52 8.36 25.43

Table 3 Measurement result for image data with different frame rates
and 1000 recorded messages (rendering enabled)

Frame rate
(Hz)

Average (ms) Median (ms) Min (ms) Max
(ms)

16 14.17 14.11 11.12 18.68

32 13.66 13.57 10.69 19.09

64 12.60 12.61 8.99 17.80

128 12.64 12.48 9.56 20.57

256 18.36 18.84 8.87 30.86

512 21.71 14.28 8.47 53.44

Generation Buffer Network Buffer Conversion Total

La
te

nc
y

in
 m

ill
is

ec
on

ds

0

10

20

30

40

50

60

70

Fig. 12 Experiment 3: latency in transmission of HD image data. 1000
messages were sent at 128Hz with disabled rendering. The data trans-
mission is by far the most time-consuming step

HD image transfer

Figure 12 shows the latencies for Experiment 3 in which
HD greyscale image data with a fixed resolution of 1920 ×
1080 pixel were sent over the network. Due to the increased
message size, the major part of the latency is produced in
the network itself. The average latency, depending on the
frame rate, lies between 65 and 69.5ms (see Table 4). Unlike

Table 4 Measurement result for HD image data with different frame
rates and 1000 recorded messages

Frame rate
(Hz)

Average (ms) Median (ms) Min (ms) Max
(ms)

16 69.45 69.57 60.75 74.72

32 60.86 60.86 51.07 71.13

64 68.90 68.96 50.29 84.47

128 65.09 64.99 55.21 75.95

the results in Experiment 2, these results are only slightly
influenced by the rendering.

Discussion

The experiments were carried out under Linux utilizing the
PTPd implementation. Due to a missing open-source alter-
native onMSWindows andmissing hardware for OSX, tests
were not performed on these platforms.

The missing implementation of an asynchronous connect
and receive method in OpenIGTLink v2.0 makes it neces-
sary to have individual threads for polling the socket. On
the one hand, putting the threads to sleep for 1ms is nec-
essary to reduce the CPU usage. On the other hand, it also
reduces the upper frame rate limit to 1000Hz. If there were
to be an asynchronous receive available in future versions
of OpenIGTLink, these threads would not be necessary any-
more.

Tokuda et al. [29] state that the frame rate of tracking
devices is in the range of 40–375Hz and the one for robotic
applications in the order of kHz. The experiments show that
tracking data can be sentwithmore than 1000Hz.The highest
measurable frame rate in our test set-up, 1000Hz, resulted
in a latency of 2.81ms on average. In contrast, the lowest
measured frame rate was 128Hz and resulted in a latency of
7ms. According to Teather et al., an NDI Polaris tracking
system has a latency of approximately 75ms [28]. Wu and
Taylor state that electromagnetic tracking systems have an
even higher latency [31]. Considering these tracking laten-
cies, an additional latency of 7ms is acceptable.

The fact that the latency is decreasing with increasing
frame rates is due to the implemented buffers that cause a
big part of the total latency. This means that the faster the
buffers are polled, the lower the latency will be. Therefore,
the latency can be decreased by running the “consuming”
pipeline with a higher frame rate than the transmission, e.g.
the transmission runs with 128Hz and the pipeline with
512Hz. Another way to improve this behaviour could be to
couple the message reception with the pipeline by triggering
the pipeline update once a message is received.

According to [29], around 32Hz are sufficient for real-
timeUS imaging.Our implementationmeasures up to 512Hz

123

360 Int J CARS (2017) 12:351–361

with enabled rendering and a median latency of 14ms. HD
greyscale images were processed with 128Hz and a latency
of 66ms. Theoretically, HD RGB images could be sent with
up to 43Hz (128/3 ≈ 43) which is still more than the rec-
ommended 32Hz. Therefore, the presented implementation
is able to cover most applications utilizing image messages.

Enabling the rendering of transmitted images only showed
differences in Experiment 2 but not in Experiment 3. In
Experiment 2, US image data were transmitted with up to
512Hz and a difference occurred for frame rates higher than
128Hz. In Experiment 3, HD image data were transmitted
with up to 128Hz.Weassume that thePCs are able to transmit
and process images up to 128Hz, independent of the image
size, but that they are partly overloaded for higher frame
rates. This is based on the fact that the increase in processing
time does not correlate with the increase in image size when
comparing US with HD images. In MITK, the handling of
US and HD images is exactly the same and mainly manage-
ment, the part that has to differentiate between the image
sizes for rendering purposes is running on the GPU and does
not influence the measurement.

A direct comparison between the presented results and the
previously published experiments in [4,29] cannot be made
since they concentrated on the network performance and their
OpenIGTLink implementation. The presented analysis, on
the contrary, covers the whole pipeline, from the data con-
version in MITK to the rendering of the data in the other
MITK instance. [4] and [29] state for a tracking data transfer
with 128Hz a latency of around 0.3ms, respectively, 0.36ms,
whereas the presented results show a latency of 7ms. [4] and
[29] measure the time from creating an OpenIGTLink mes-
sage at the sender host until the end of the deserialization
at the receiver host. These measurements are very interest-
ing concerning the OpenIGTLink interface but do not give
information about the performance of an application. They
do not include visualization nor management of messages.
In the presented tests, we measure the application-specific
latency: we generate real data (as MITK data types), convert
it into messages, send them and vice versa on the receiving
side. Moreover, we implemented buffers to easily integrate
OpenIGTLink into the pipelined structure of MITK. The
most time-consuming component in the tests by [4] and [29]
is the networking. In our 128Hz tracking data test, we had an
average network latency of 0.19ms. Creation, serialization
and deserialization can be considered as less time-consuming
as the networking which means that our implementation per-
forms similarly to [4] and [29].

For image data transfers with frame rates higher than
512Hz, the network load was so high that the PTP syn-
chronization packages arrived delayed. In this scenario, two
separate network connectionsmight be necessary, one for the
data and one for the synchronization.

The usage scenarios show that MITK can communicate
with other toolkits such as 3D Slicer or PLUS. These toolk-
its can also run on different platforms, e.g. Linux ×64 and
Window ×32.

Conclusion

In this paper, we presented a new software module which
enables OpenIGTLink support in MITK. We carried out
performance tests anddescribed newusage scenarios.MITK-
OpenIGTLink was released as open source together with the
MITK toolkit release 2016-03. The newmodule enables real-
time communication of different types of CAI data, such as
tracking data, US data and HD greyscale image data which
was demonstrated by the performance analysis. MITK can
now be combinedwith other toolkits in a plug-and-playman-
ner which was shown for 3D Slicer and PLUS. Tutorials and
manuals on how to useMITK-OpenIGTLink were published
together with the release.

Acknowledgements The authors would like to acknowledge support
from the European Union through the ERC starting Grant COM-
BIOSCOPY under the New Horizon Framework Programme Grant
Agreement ERC-2015-StG-37960.

Compliance with ethical standards

Conflict of interest The authors declare that there are no known con-
flicts of interest associated with this publication.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Informed consent This articles does not contain patient data.

References

1. Arata J, Kenmotsu H, Takagi M, Hori T, Miyagi T, Fujimoto H,
Kajita Y,Hayashi Y, Chinzei K,HashizumeM (2013) Surgical bed-
side master console for neurosurgical robotic system. Int J Comput
Assist Radiol Surg 8(1):75–86

2. Arata J, Kozuka H, KimHW, Takesue N, Vladimirov B, Sakaguchi
M, Tokuda J, Hata N, Chinzei K, Fujimoto H (2010) Open core
control software for surgical robots. Int J Comput Assist Radiol
Surg 5(3):211–220

3. Arata J, Tada Y, Kozuka H, Wada T, Saito Y, Ikedo N, Hayashi Y,
Fujii M, Kajita Y, Mizuno M,Wakabayashi T, Yoshida J, Fujimoto
H (2011) Neurosurgical robotic system for brain tumor removal.
Int J Comput Assist Radiol Surg 6(3):375–385

4. Clarkson MJ, Zombori G, Thompson S, Totz J, Song Y, Espak
M, Johnsen S, Hawkes D, Ourselin S (2014) The NifTK software
platform for image-guided interventions: platform overview and
NiftyLink messaging. Int J Comput Assist Radiol Surg 10(3):301–
316

5. Cleary K, Peters TM (2010) Image-guided interventions: tech-
nology review and clinical applications. Annu Rev Biomed Eng
12(1):119–142

123

Int J CARS (2017) 12:351–361 361

6. Correll K, Barendt N, Branicky M (2005) Design considerations
for software only implementations of the IEEE 1588 precision time
protocol. In: Conference on IEEE, vol 1588, pp 10–12

7. Egger J, Tokuda J, Chauvin L, Freisleben B, Nimsky C, Kapur T,
Wells W (2012) Integration of the OpenIGTLink network protocol
for image-guided therapy with the medical platformMeVisLab. Int
J Med Robot Comput Assist Surg 8(3):282–290

8. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin
JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J,
Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an
image computing platform for the quantitative imaging network.
Magn Reson Imaging 30(9):1323–1341

9. Franz AM, Seitel A, Servatius M, Zollner C, Gergel I, Wegner
I, Neuhaus J, Zelzer S, Nolden M, Gaa J, Mercea P, Yung K,
Sommer CM, Radeleff BA, Schlemmer HP, Kauczor HU, Meinzer
HP,Maier-Hein L (2012) Simplified development of image-guided
therapy software with MITK-IGT. In: Proceedings of SPIE, med-
ical imaging2012: image-guidedprocedures, robotic interventions,
and modeling, vol 8316

10. Ibanez L, Schroeder W, Ng L, Cates J (2005) The ITK software
guide. The ITK software guide 804

11. Ince DC, Hatton L, Graham-Cumming J (2012) The case for open
computer programs. Nature 482:485–488

12. Kang HJ, Stolka PJ, Boctor E (2011) OpenIGTLinkMUSiiC
: a standard communications protocol for advanced ultrasound
research. MIDAS J 1–12

13. Kilgus T, Heim E, Haase S, Prüfer S, Müller M, Seitel A,
Fangerau M, Wiebe T, Iszatt J, Schlemmer HP, Hornegger J, Yen
K, Maier-Hein L (2015) Mobile markerless augmented reality and
its application in forensic medicine. Int J Comput Assist Radiol
Surg 5(1):573–586

14. LassoA,Heffter T, RankinA, Pinter C,Ungi T, FichtingerG (2014)
PLUS: open-source toolkit for ultrasound-guided intervention sys-
tems. IEEE Trans Biomed Eng 61:1–11

15. Maier-Hein L, Tekbas A, Seitel A, Pianka F, Muller SA, Satzl S,
Schawo S, Radeleff B, Tetzlaff R, Franz AM, Muller-Stich BP,
Wolf I, Kauczor HU, Schmied BM, Meinzer HP (2008) In vivo
accuracy assessment of a needle-based navigation system for CT-
guided radiofrequency ablation of the liver. Med Phys 35(12):5385

16. März K, Franz AM, Seitel A, Winterstein A, Bendl R, Zelzer S,
NoldenM,Meinzer HP,Maier-Hein L (2014)MITK-US: real-time
ultrasound support within MITK. Int J Comput Assist Radiol Surg
9(3):411–420

17. März K, Franz AM, Seitel A, Winterstein A, Hafezi M, Saffari
A, Bendl R, Stieltjes B, Meinzer HP, Mehrabi A, Maier-Hein L
(2014) Interventional real-time ultrasound imaging with an inte-
grated electromagnetic field generator. Int J Comput Assist Radiol
Surg 9(5):759–768

18. McCormick M, Liu X, Jomier J, Marion C, Ibanez L (2014) ITK:
enabling reproducible research and open science. Front Neuroinf
8(February):13

19. Müller M, Rassweiler MC, Klein J, Seitel A, Gondan M,
Baumhauer M, Teber D, Rassweiler JJ, Meinzer HP, Maier-Hein
L (2013) Mobile augmented reality for computer-assisted per-
cutaneous nephrolithotomy. Int J Comput Assist Radiol Surg
8(4):663–675

20. Neuhaus J, Wegner I, Käst J, Baumhauer M, Seitel A, Gergel
I, Nolden M, Maleike D, Wolf I, Meinzer H (2009) MITK-IGT:
eine navigationskomponente für das medical imaging interaction
toolkit. Bildverarb die Med 2009:454–458

21. Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM,
MaleikeD, FangerauM,BaumhauerM,Maier-Hein L,Maier-Hein
KH, Meinzer HP, Wolf I (2013) The medical imaging interaction
toolkit: challenges and advances: 10 years of open-source devel-
opment. Int J Comput Assist Radiol Surg 8(4):607–620

22. Ordas S, Yaniv Z, Cheng P, Tokuda J, Liu H, Hata N, Cleary K
(2009) Interfacing proprietary hardware with the image-guided
surgery toolkit (IGSTK): a case for the OpenIGTLink protocol.
In: proceedings of SPIE, vol 7264, pp 72640F–72640F–7

23. Pieper S, Halle M, Kikinis R (2004) 3D Slicer. In: 2004 2nd IEEE
international symposium on biomedical imaging: nano to macro
(IEEE Cat No. 04EX821)

24. Seitel A, Bellemann N, Hafezi M, Franz AM, Servatius M, Saffari
A, Kilgus T, Schlemmer HP, Mehrabi A, Radeleff BA, Maier-Hein
L (2015) Towards markerless navigation for percutaneous needle
insertions. Int J Comput Assist Radiol Surg 11:107–117

25. Seitel A, YungK,Mersmann S, Kilgus T, Groch A, Dos Santos TR,
Franz AM, Nolden M, Meinzer HP, Maier-Hein L (2012) MITK-
ToF-range data within MITK. Int J Comput Assist Radiol Surg
7(1):87–96

26. Stolka PJ, Kang Hj, Boctor E (2010) The MUSiiC toolkit: mod-
ular real-time toolkit for advanced ultrasound research. MIDAS J
Comput Assist Interv 1–11

27. Su H, Shang W, Member S, Cole G, Li G, Member S, Harrington
K, Camilo A, Tokuda J, Tempany CM, Hata N, Fischer GS (2014)
Piezoelectrically actuated robotic system for MRI-guided prostate
percutaneous therapy. IEEE/ASME Trans Mech 1:1–13

28. Teather RJ, Pavlovych A, Stuerzlinger W, MacKenzie IS (2009)
Effects of tracking technology, latency, and spatial jitter on object
movement. In: Proceedings of 3DUI— IEEE symposium on 3D
user interfaces 2009, pp 43–50

29. Tokuda J, Fischer GS, Papademetris X, Yaniv Z, Ibanez L, Cheng
P, Liu H, Blevins J, Arata J, Golby AJ, Kapur T, Pieper S, Bur-
dette EC, Fichtinger G, Tempany CM, Hata N, Alexandra J, Kapur
T, Pieper S, Burdette EC, Fichtinger G, Clare M, Hata N (2009)
OpenIGTLink: an open network protocol for image-guided therapy
environment. Int J Med Robot Comput Assist Surg 5(4):423–434

30. Wolf I, Vetter M, Wegner I, Nolden M, Bottger T, Hastenteufel M,
Schobinger M, Kunert T, Meinzer HP (2004) The medical imag-
ing interaction toolkit (MITK) a toolkit facilitating the creation
of interactive software by extending VTK and ITK. Med Imaging
2004:16–27

31. Wu X, Taylor RH (2003) A framework for calibration of elec-
tromagnetic surgical navigation systems. In: Proceedings 2003
IEEE/RSJ international conference on intelligent robots and sys-
tems (IROS 2003), vol 1, pp 547–552

123

	MITK-OpenIGTLink for combining open-source toolkits in real-time computer-assisted interventions
	Abstract
	Introduction
	Methods
	Requirements
	Architecture
	OpenIGTLink SDK
	Network layer
	Processing layer
	Application layer

	Performance analysis
	Experiment 1: transmission of tracking data
	Experiment 2: transmission of image data
	Experiment 3: transmission of HD image data

	Results
	Usage scenarios
	Interfacing with other toolkits
	Cross-platform communication
	Interfacing with clinical devices and robotic systems

	Performance analysis
	Tracking data transfer
	Image transfer
	HD image transfer

	Discussion
	Conclusion
	Acknowledgements
	References

