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Abstract
Purpose Accurate segmentation of the mandibular canal in
cone beamCTdata is a prerequisite for implant surgical plan-
ning. In this article, a new segmentation method based on the
combination of anatomical and statistical information is pre-
sented to segment mandibular canal in CBCT scans.
Methods Generally, embedding shape information in seg-
mentation models is challenging. The proposed approach
consists of three main steps as follows: At first, a method
based on low-rank decomposition is proposed for preprocess-
ing. Then, a conditional statistical shapemodel is trained, and
mandibular bone is segmentedwith high accuracy. In the final
stage, fast marching with a new speed function is utilized to
find the optimal path between mandibular and mental fora-
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men. Fast marching tries to find the darkest tunnel close to
the initial segmentation of the canal, which was obtained
with conditional SSM model. In this regard, localization of
mandibular canal is performed more accurately.
Results The method is applied to the identification of
mandibular canal in 120 sets of CBCT images. Conditional
statistical model is evaluated by calculating the compactness
capacity, specificity and generalization ability measures. The
capability of the proposed model is evaluated in the seg-
mentation of mandibular bone and canal. The framework is
effective in noisy scans and is able to detect canal in cases
with mild bone resorption.
Conclusion Quantitative analysis of the results shows that
the method performed better than two other recent methods
in the literature. Experimental results demonstrate that the
proposed framework is effective and canbe used in computer-
guided dental implant surgery.

Keywords Cone beam computed tomography · Implant
surgery ·Mandibular canal · Segmentation · Statistical shape
models

Introduction

Cone beamcomputed tomography (CBCT) is an increasingly
applied imaging acquisition for dental surgical planning [1]
due to the lower hardware cost and accessibility compared
to conventional CT. The first step in the planning of implant
surgery is accurate segmentation of mandibular canal which
results in safetymargin around the facial nerves.These nerves
give sensation to the lower lip, tongue and teeth, and if they
become damaged, the recovery time would be about 3 to
6months [2]. Localization of the canal is usually performed
manually by a radiologist; however, manual segmentation
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becomes tedious and time-consumingdue to the large amount
of data to be analyzed.

Early researches in automated canal segmentation were
performed on CT images. Stein et al. [3] proposed a method
based on Dijkstra’s algorithm and limited Dijkstra’s search
to multiple erosions and dilations to trace inside the bone.
Hanssen et al. [4] improved Stein’s method by replacing
Dijkstra’s algorithm with fast marching which leads to more
accurate distance results. In [5], firstly the mandible was
segmented by thresholding. Then, the mandibular canal
was roughly segmented using image gradients and a binary
mask-based line trackingmethodwas utilized for canal local-
ization. Rueda et al. [6] proposed a framework based on 2D
active appearance models and semi-automatic landmarking
to extract mandibular canal, bone and nerve. An adaptive
region growing method was employed in [7], in which ini-
tial seed point inside the canal should be chosen by the
user. In the recent years, some researchers attempted to seg-
ment mandibular canal in CBCT images. Localization of the
mandibular canal in CBCT data is highly challenging due
to the lower dose and higher noise-to-signal ratio in CBCT
images comparing to conventional CT [8]. A framework
based on active shape model (ASM) and Dijkstra’s algo-
rithm was introduced in [9]. The results were promising;
however, canal path near the ending point was not detected
precisely. Fuzzy-connectedness approachwas utilized in [10]
which leads to accurate segmentation of jaw tissues includ-
ing canal. The main disadvantage of fuzzy connectedness is
that it is computationally inefficient and slow. A combina-
tion of 3D panoramic volume rendering algorithm and fast
marching was employed in [11] to extract the whole region
of the mandibular canal. The performance is highly depen-
dent on the utilized texture features to enhance the mental
foramens. The potential of active shape model (ASM) and
active appearance model (AAM) was evaluated in [12] for
automatic segmentation. It was reported that the accuracy of
automatic segmentation of the mandibular canal by AAM
and ASM methods is inadequate for use in clinical practice.

In the recent years, statistical shape models were success-
fully applied in many medical image segmentation tasks.
Improving the accuracy of statistical shape models in seg-
mentation tasks is still an open problem in medical image
analysis. Various researches are performed to find corre-
sponding points accurately [13].Moreover, some researchers
tried to replace principal component analysis with other
dimension reduction methodologies [14]. In the last decade,
many researchers utilized active shape models for automatic
segmentation of the mandibular canal [9,12]. However, they
failed to achieve the accuracy high enough for safe implant
surgery in CBCT images [12]. The mean interobserver vari-
ability of 1mm is possible in clinical practice [15] and
the largest error occurs in the anterior loop region due to
the incomplete bony wall in combination with the unpre-

dictable recurrent course. Identification and segmentation
of mandibular canal are challenging due to several reasons.
First, due to the large variation in shape and texture between
mandibles of patients, building a robust statistical shape
model is highly challenging. Second, multiple teeth loss
results in severe bone resorption and the shape of mandible
changes drastically in these patients. Third, due to the lower
contrast of CBCT images compared to conventional CT,
automatic segmentation is more challenging. Hence, design-
ing an effective image enhancement and filtering method is
essential for CBCT images.

In this article, a framework based on statistical shapemod-
els is developed for automatic segmentation of mandibular
canal and it is applied to a dataset of CBCT images. In
the proposed framework, firstly a new preprocessing algo-
rithm based on low-rank decomposition is utilized. Then,
a combination of statistical shape model and fast marching
is employed for mandibular bone and canal segmentation.
The rest of this paper is organized as follows. In “Material
and methods” section, we introduce the proposed framework
for automatic segmentation which consists of preprocessing,
spatial normalization, conditional statistical shape modeling
and fast marching. Then, the “Experimental results” section
is reported. “Discussion and conclusion” sections are pre-
sented, respectively.

Material and methods

In this section, we introduce the proposed framework for
automated segmentation of mandibular canal. Shape and
position of mandibular canal, mandibular foramen and men-
tal foramen are illustrated in Fig. 1. In CBCT images,
mandibular canals often have missing edges. Moreover, the
intensity of the canal is similar to the surrounding cancellous
bone. Thus, it is essential to include a priori shape infor-
mation in the model. This can be achieved using improved
statistical shape models. Overview of the proposed method
for mandibular canal segmentation is illustrated in Fig. 2.

Mandibular canal

Mandibular
foramen 

Mental foramen 

Fig. 1 Shape and position of mandibular canal with respect to
mandibular bone
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statistical shape 
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Lateral DRR of 
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Fig. 2 Overview of the proposed method for mandibular canal segmentation. Mandibular and mental foramen (condition points in conditional
SSM) are depicted using red cross signs

Dataset

For the research presented in this paper, we collected 120 sets
of CBCT images from two dedicated dental imaging cen-
ters in Tehran and Guilan provinces, Iran. In both centers,
Sirona Galileos Compact 3D Cone Beam X-Ray Machine
was used to acquire the high-resolution structural images.
Acquisition parameters of the relevant sequences were as
follows: field of view (FOV) = 12 × 15 × 15 cm3, effec-
tive dosage <29μSv (21 mAs, 85 kV) and isotropic voxel
size=0.3mm. The study involved 120 subjects with a mean
age of 49.7±25.2 years. There were 68 males (56.66%) and
52 females (43.33%). All patients were referred to dental
imaging centers to acquire CBCT images for implant sur-
gical planning. Three-dimensional model of each subject is
built from a set of 512 axial cross-sectional slices.

Image enhancement using multi-scale low-rank
decomposition

CBCT images often suffer from low contrast and image
enhancement techniques can improve the contrast of these
images. We have utilized a combination of multi-scale
modeling and low-rank matrix decomposition in [16] for
image enhancement. This methodwas previously utilized for
illumination normalization in face recognition application.
Convex formulation is employed to solve the decomposition
efficiently so that themulti-scale image components are inco-
herent. It is assumed that the 2D image matrix X with height
and width of M and N , respectively, can be decomposed into
different scales. In the other words, we assume that we are
given a multi-scale partition {Qi }Li=1 of an M × N matrix, in

which each block in Qi is an order magnitude larger than the
blocks in Qi−1. In other to transformbetween datamatrix and
block matrices, a block reshape operator RA(Y ) is defined to
extract a block A from the matrix Y and then it is reshaped
into an mi × ni matrix. Given an M × N input matrix X
and the corresponding multi-scale partition, the following
multi-scale low-rank modeling is proposed in [16]:

X =
L∑

i=1

Yi , Yi =
∑

A∈Qi

RT
A(UASAV

T
A ), (1)

where UA, SA and VA form singular value decomposition
(SVD) of RA(Yi ). Given the data matrix X , the goal is to
recover {Yi }Li=1 from X . This can be achieved using con-
vex programming, and multi-scale low-rank decomposition
problem is formulated as follows:

min imize
Y1,...,YL

L∑

i=1

λi ‖Yi‖(i),

subject to X =
L∑

i=1

Yi (2)

where ‖.‖(i) is the block-wise nuclear norm for the i-th scale
as ‖.‖(i) = ∑

A∈Qi
‖RA(.)‖nuc. RA(Y ) is a block reshape

operator which extracts a blockmatrix A from the full matrix
X . This notation is considered to easily transform between
the data matrix and the block matrices. Nuclear norm is the
sum of the singular values of a matrix. The main character-
istic of nuclear norm is that it is the tightest convex lower
approximation to the rank function. The results of filter-
ing with different scale numbers are illustrated in Fig. 3.
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(a) (b)

(d)(c)

(e) (f)

Fig. 3 An example of the multi-scale low-rank decomposition. a Original noisy image. b The result of median filtering, c the result of diffusion
filtering with optimized scheme. d–f Filtering result of the proposed method based on low-rank decomposition with different scales: 4, 8 and 16

Quantitative evaluation of filtering using different metrics is
illustrated inTable 1. Furthermore, conventionalmedianfilter
is included in this table. PSNR1 values of different scales are
approximately the same. In addition to PSNR, Root Mean
Square Error (RMSE) [17] and Structural Similarity index
(SSIM) [18] are quantitative measures which are utilized to
choose the best result. PSNR and RMSE are slightly biased
toward over smoothed results, i.e. an algorithm which fil-
ters not only the noise but also a part of the textures will
get a good score. Structural similarity index [18] is a qual-

1 Peak Signal-to-Noise Ratio.

ity reconstruction metric that considers the similarity of the
edges (high-frequency content) between the denoised image
and the ground truth. To get a good SSIM score, the filter-
ing method should remove the noise and preserve the edges
and textures of the objects. Considering these criteria, the
second scale gives the best result. Hence, it is the ideal fil-
ter for this application. The main advantage of this method
is that irregular patterns are prohibited due to the low-rank
decomposition. Hence, instead of global smoothing, local
processing is done. The proposed filtering technique gives
the best enhancement in uniform regions, while the edges are
preserved.
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Table 1 Quantitative comparison of different low-rank decomposition
scales for CBCT enhancement

Type of filter PSNR RMSE Mean SSIM
index

Scale 1 70.0339 0.0806 0.9991

Scale 2 72.4519 0.0610 0.9995

Scale 3 70.8149 0.0737 0.9993

Median 26.5813 11.9998 0.5780

Diffusion filtering using
optimized scheme [20]

26.9649 11.4814 0.7603

Building statistical shape model

Statistical shape models (SSM) are established as a robust
tool for 3D segmentation of medical images. The process of
building SSM can be divided into two phases: learning and
segmentation phase. Block diagram of the steps performed in
this paper for building and testing SSM is depicted in Fig. 4.
Mandibles differ in size and shape; hence, normalization pre-
processing step is essential for studying the shape. For this
purpose, we build a reference mandible surface, firstly. The
mandible segmentations are converted to triangulated surface
using marching cubes [19]. Mandible shapes are defined by
vectors containing the coordinates of a set of landmark points
which correspond to differentmandible instances and that are
typically located on the boundaries of the mandible. To con-
struct the reference shape, the average shape of 84 training
mandibles is calculated from corresponding surface meshes.
The shape correspondences between the individual and aver-
age mandible shape is determined using pair-wise surface
registration which is performed by nonrigid registration [20].

In the registration process, we use free-form deformation
as the transformation model, the sum of squared difference
as the similarity metric and the gradient descent algorithm
for optimization. The point positions are optimized to mini-
mize the model variance and obtain the most compact shape
model. Training mandibles are transferred to the reference
mandible space using the obtained transformation functions.
Conditional statistical shape model [21] is utilized to embed
the information about the position of the mandibular and
mental foramen which are the starting and ending points
of mandibular canal. This would avoid treating all regions
of shape equally. At first, learning phase is explained. In
order to model relations between shapes, let Y and Z be the
shape ofmandible and the combined shape of themandibular
and mental foramen. The conditional distribution of shape Y
given a known shape Z = Z0 is formulated using Gaussian
conditional density as following:

P(Y |Z = Z0) = N (μY |Z0,�Y |Z0 ), (3)

with

μY |Z0 = μY + �Y Z�−1
Z Z (Z0 − μZ ),

�Y |Z0 = �YY − �Y Z�−1
Z Z�ZY . (4)

where�i j is the joint covariance, andμY andμZ are themean
shapes of Y and Z in the training set. �YY , �Y Z , �ZY , �Z Z

are the joint covariance matrix defined as follows:

� =
[

�YY �Y Z

�ZY �Z Z

]
=

[
cov(Y,Y ) cov(Y, Z)

cov(Z ,Y ) cov(Z , Z)

]
(5)

Fig. 4 Block diagram of the
steps performed for building and
testing conditional SSM

Constructing the reference 
mandible shape by averaging 
corresponding surface meshes

Finding the correspondence 
between each training instance and 

average mandible shape using 
pair-wise surface registration

Estimating the conditional 
distribution of mandibular bone 

shape given combined shape of the 
mandibular and mental foramen

Automatic localization of the 
mandible coordinate system

Initial rough segmentation of the 
mandibular bone region by 

thresholding

Fitting SSM to the point cloud using 
Levenberg-Marquardt algorithm

Refinement of mandibular canal 
using fast marching algorithm

Learning phase Segmentation phase
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Ridge regression is employed to calculate �−1
Z Z , i.e. is

replaced by (�Z Z + γ I )−1. The average shape and model
deformation of conventional SSM are constant with sub-
jects, whereas in conditional SSM, the average shape fits
the patient-specific shape and the model deformation is
restricted. The segmentation phase includes the following
steps:

1. Automatic localization of the mandible coordinate sys-
tem

2. Initial rough segmentation of the mandibular bone region
by thresholding

3. Fitting SSM using Levenberg–Marquardt algorithm
4. Refinement of mandibular canal using fast marching

which will be explained in the upcoming section.

Step (1) is performed by a previously reported method
[22] which consists of spatial normalization, localization of
anatomical landmarks using the statistical landmark model
and refinement of the anatomical coordinate using the aver-
age surface image. In step (2), thresholding is performed and
the largest connected component is extracted. The thresh-
old value is automatically learned from the crossvalidation
within the training dataset. The threshold value of 210 gives
the lowest surface distance in this task. The procedure of
fitting SSM to a point cloud is done using Levenberg–
Marquardt algorithm through the following cost function as
in [23]:

b̂ = argmin
b

⎛

⎝ 1

NE

∑

x∈E
D(x, S(b))

+ 1

Nq

∑

x∈S(b)

D(x, E) + λ

M
‖b‖2

⎞

⎠ , (6)

where b is the shape parameter vector, S(b) is the shape
instance defined by parameter b, and E is a cloud of edge
points. NE , Nq , D and M are the number of edge points,
the number of vertices in S(b), the distance metric and the
number of modes, respectively. The first two terms repre-
sent fitness between a shape instance and the detected edge
points, and the last term represents a penalty to avoid a shape
go far from themean.Due to the importance of detecting edge
points correctly, we proposed a filtering method in “Image
enhancement using multi-scale low-rank decomposition”
section. In Eq. (6), we use the same notation, D(x, A) for
two similar distance metrics: point-to-surface mesh distance
and point-to-point cloud distance. Both metrics measure the
shortest distance between x and A as follows:

D(x, A) = inf
{
‖x − p‖2 |p ∈ A

}
. (7)

If the argument A is a surface mesh such as the first term
in Eq. (6), p ∈ A indicates any point on the surface mesh
including every point on a triangle consisting of connected
three vertices. If A is a point cloud such as the second term
in Eq. (6), p ∈ A simply indicates a point in the point cloud.

Hence, embedding the information about the shape of the
mandibular and mental foramen leads to more flexibility in
modeling shape variations. In summary, the conditional SSM
is fitted to the boundary edge points of the roughly seg-
mentedmandible using simple thresholding ofCBCT images
to obtain initial parameter settings for subsequent segmen-
tation procedures. Edge detection is done based on intensity
profile analysis, and the perpendicular direction at each sur-
face point is estimated in each iteration.

Fast marching

Early researchers utilized Dijkstra’s algorithm for finding the
shortest path on the graph of mandible [3,9], however since
the boundary of mandibular bone is not always present or
visible in CBCT datasets, Dijkstra’s algorithm often short-
cuts outside the mandibular canal. Fast marching is more
recent approach for optimal path problem which gives more
accurate distance results for image volumes. Fast march-
ing [24,25] is an efficient iterative algorithm for numerical
approximation of fronts propagating in R

nspace. A propa-
gating front is defined as a closed hypersurface, each point
of which moves with speed function F in the direction of
the surface normal. Suppose that S(t) ⊂ R

n is the propagat-
ing interface in R

n space. The evolution of the front can be
modeled using Eikonal equation:

|∇T | = 1

F
, (8)

where T is the arrival time function, and F is the speed func-
tion. In fast marching, one of the most critical parameters
is speed function. Since the canal has a low intensity, we
consider a speed function in which the speed is inversely
related to the intensity. Thus, the shortest path between men-
tal and mandibular foramen will be mandibular canal. The
segmented bone surface from the previous stage is utilized
to select the background region, and we set all those pixels
to a high pixel value. The curved pixel length is calculated
which is equal to the length of the canal (Lcanal). Then, we
warp the local neighborhood of the canal to a small volume
IL of dimensions 4mm × 4mm × Lcanal. In this regard, the
curved canal will be a straight line in IL . After these steps,
uniformly distributed normal planes along the channel are
estimated and the local neighborhood of the canal is warped
to a small volume. The intensities of the warped volume, Iw
are converted to a speed map F as follows:
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F = e(Iw∗Hg) + e−‖∇ Iw‖, (9)

where Iw and Hg are the warped volume and Gaussian ker-
nel with σ = 1.5, respectively. The first speed term involves
the smoothed intensity by Gaussian kernel, while the sec-
ond speed term involves the local gradient. The source and
sink are considered as mental and mandibular foramen. Fast
marching is performed using speed map F , and the shortest
path is detected using Runge–Kutta algorithm [26]. Then, the
shortest path is warped back to the original volume.

Experimental results

The proposed algorithm is implemented on MATLAB 8.1
environment [27] and C++ platform [28] (MS Visual Stu-
dio 2013), a personal computer with a P4 (3GHz) processor
and 8GB memory. Image enhancement algorithm which is
explained in “Image enhancement using multi-scale low-
rank decomposition” section is built in MATLAB and the
filtered images are fed into the C++ program for building
SSM. Estimated time for segmenting each dataset with 512
slices by our algorithm is less than 5min. We asked two
radiologists with at least 10 years of experience for manual
segmentation which is used as ground truth. For manual seg-
mentation, an expert should spend at least 1h to segment 512
slices. The dataset is divided into training and test sets. We
have considered 70% of the data for training and the rest for
testing, which is considered as a common rule of thumb in
machine learning [29,30]. Splitting the dataset into the train-
ing and testing set is performed randomly. Furthermore, the
ground truth segmentation of mandibular canal is provided
by two radiologists for each case in the dataset.

The first step is preprocessing which is performed using
low-rank decomposition with different scales. We compared
the filtering result using the proposed methodology with
conventional median filter and diffusion filtering previously
proposed by Kroon for CBCT images [31]. Decomposition
using different scales such as 4, 8 and 16 are illustrated in
Fig. 3. The best performance is achieved using the block size
of 8. By comparing the area identified by a red bounding
box in each subfigure, it can be observed that some details
are lost in diffusion filtering. However, these details are pre-
served in low-rank decomposition. Quantitative comparison
of different filtering methods is reported in Table 1. After
preprocessing, conditional SSM is trained using 84 train-
ing sets of CBCT images. The standard measures such as
compactness capacity, generalization ability and specificity
are employed to compare conditional SSM model and con-
ventional SSM model by Cootes et al. [32]. The evaluation
metrics are explained thoroughly in “Appendix A.” Figure 5
shows the reconstruction error for conditional and conven-
tional SSM as a function of the number of variation modes.

Fig. 5 Comparison of generalization ability in conventional SSM and
conditional SSM. X-axis and Y-axis represent the number of shape
modes and generalization ability, respectively. Black and red curves
correspond to conditional SSM and conventional SSM

For a constant number of modes, the reconstruction error is
higher for conventional SSM. The generalization ability of
conditional SSM is better than conventional SSM. The speci-
ficity and compactness for conditional and conventional SSM
distributions are illustrated in Fig. 6. As it is evident from
this figure, the error made by specificity measure is lower for
conditional SSM.C(Conditional_SSM) is slightly larger than
C(Conventional_SSM), but considering the error for eachM,
we can say that these two methods offer similar compactness
level or conditional SSM is a bit worse than conventional
SSM.

Figure 7 visualizes sample results of mandible segmen-
tation obtained using the combination of conditional SSM
and fast marching. Figure 8 shows accuracy levels and box
plots for mandible segmentation results obtained using our
method and two other automaticmethods in [9,12] according
to the ASSD and Dice criteria for all test dataset. Moreover,
Table 2 summarizes themean, standard deviation andmedian
values of the presented results in Fig. 8. The distance values
between manual and automatic segmented mandibular canal
(for both right and left nerve) are reported in Table 3. From
the quantitative results, it can be concluded that our method
can segment mandibular canal with a good level of accuracy
and perform better than the methods previously proposed in
[9,12].

Discussion

As we mentioned earlier, segmentation of mandibular canal
is a challenging and time-consuming task. The goal of this
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Fig. 6 Comparison of specificity and compactness in conventional SSM and conditional SSM. X-axis represents the number of shape modes.
Black and red curves in each plot indicate conditional SSM and conventional SSM, respectively

Fig. 7 Illustrative segmentation results of mandible and mandibular
canal. a Original CBCT image. b The red and blue contours corre-
spond to the segmentation result by conditional SSM and conventional

SSM, respectively. The yellow contour is ground- truth segmentation
performed by radiologist

Fig. 8 Evaluation results for
segmentation accuracy of
mandibular bone. Left box plots
of Dice’s coefficient and right
average symmetric surface
distance (ASSD) for conditional
SSM, Kroon’s method in [9] and
Kainmueller’s method in [12]

Table 2 Metric results for
mandibular bone segmentation
with significant differences at p
value <0.01

Method Dice’s coefficient ASSD (mm)

Mean±SD Median Mean±SD Median

Conditional SSM 0.9138±0.0206 0.9190 0.7071±0.0863 0.7003

Kroon’s method in [9] 0.8461±0.0373 0.8548 0.81068±0.2159 0.7899

Kainmueller’s method in [12] 0.8348±0.0384 0.8355 0.9083±0.1974 0.9094

research was to propose a framework based on statistical
shape model for automatic segmentation of the canal. To this
aim, we first developed a filtering approach based on low-

rank decomposition for CBCT images. The high accuracy
of this preprocessing step is essential for fitting SSM using
Levenberg–Marquardt algorithm since the accuracy of fit-
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Table 3 The distance between manual and automatic segmented
mandibular canal using fast marching shortest path optimization for
a subset of test dataset

Dataset Right Left

Mean±SD Median Mean±SD Median

#1 0.73±0.09 0.72 0.65±0.23 0.74

#2 0.84±0.12 0.86 0.76±0.10 0.75

#3 0.69±0.17 0.67 0.67±0.12 0.69

#4 0.78±0.15 0.80 0.86±0.07 0.83

#5 0.65±0.10 0.66 0.75±0.08 0.75

#6 0.86±0.06 0.84 0.88±0.09 0.89

#7 0.82±0.12 0.79 0.80±0.11 0.79

#8 0.76±0.08 0.75 0.69±0.15 0.70

#9 0.89±0.15 0.90 0.84±0.05 0.85

#10 0.67±0.14 0.68 0.66±0.12 0.67

#12 0.75±0.09 0.74 0.78±0.10 0.78

#13 0.85±0.05 0.86 0.72±0.09 0.70

#14 0.66±0.10 0.68 0.65±0.15 0.66

#15 0.80±0.14 0.82 0.82±0.08 0.82

#16 0.75±0.06 0.73 0.79±0.06 0.80

ting is dependent on the efficiency of edge points. Then, we
segmented mandible in a patient dataset and then considered
it as the input information for the canal localization pro-
cedure. Fast marching tries to find the darkest tunnel close
to the initial segmentation of the canal found, which was
obtained by conditional SSM model. Quantitative evalua-

tion of the conditional statistical model was performed by
compactness capacity, specificity and generalization ability
measures. The overall performance of conditional SSM is
superior to conventional SSM based on Figs. 5 and 6. More-
over, a combination of conditional SSM and fast marching
was utilized for automatic detection of mandibular canal.
Although the error ofmanymethods is inadequate, especially
near the canal ending and starting point, adding condition
points’ information led to higher accuracy of the method.
Figure 9 represents the efficiency of our method in a noisy
environment.

In order to compare our proposed methodology with the
previous works, we implemented Kainmueller and Kroon’s
methods [9,12] on our dataset. Kroon utilized statistical
shape models to localize mandibular canal. In order to
enhance CBCT images, he proposed coherence diffusion
filtering. There are various schemes such as optimized,
standard and nonnegative for solving discretized diffusion
filtering equation. The performance of diffusion filtering in
various schemes was previously evaluated in [33] and opti-
mized scheme outperformed other schemes in terms of SSIM
index. In this article, a new filtering method based on multi-
scale low-rank decomposition is proposed. Quantitative
comparison of diffusion filtering and the proposed method
based on low-rank decomposition is reported in Table 1.
In Kainmueller’s paper, active shape model was constructed
using 106 datasets and canal segmentation is performed by
a Dijkstra’s algorithm based optimization. It was reported
that the right nerve and the left nerve could be detected with

Fig. 9 Illustrative result of
automatic canal detection using
digitally reconstructed
radiographs (DRRs) in a sample
subject. a Posterior DRR of left
half, b lateral DRR of left half.
c, d Posterior and lateral DRR
with canal overlaid
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Table 4 Average symmetric surface distance (ASSD) for mandibular
canal segmentation with significant differences at p value <0.01

Method Right Left
Mean±SD Mean±SD

The proposed method 0.84±0.18 0.79±0.22

Kroon’s method in [9] 1.65±0.25 1.58±0.36

Kainmueller’s method in [12] 1.1±0.52 1.25±0.73

Table 5 Average mean curve distances to the respective gold standard
nerve in mandibular canal segmentation

Method Right Left
Mean±SD Mean±SD

The proposed method 0.82±0.25 0.92±0.15

Kroon’s method in [9] 1.54±0.32 1.63±0.27

Kainmueller’s method in [12] 1.02±0.52 1.35±0.84

an average error of 1.0 and 1.20 mm, respectively. Kroon
failed in achieving the desired accuracy for clinical practice.
Comparative results for mandibular bone segmentation are
reported in Table 2. Based on Dice’s coefficient and ASSD
(mm), it can be concluded that the proposed method out-
performs Kainmueller and Kroon’s approaches. Moreover,
comparative metric results for canal detection are summa-
rized in Table 4. The average mean curve distance to the
respective gold standard was utilized as the evaluation met-
ric in Kainmueller’s paper. Comparative performance of the
methods based on this metric is reported in Table 5. Hence,
it can be concluded that the proposed methodology has
higher generalization ability, as well as robustness to unusual
mandible shapes.

In the previous methods proposed for canal detection, the
error in the mandibular and mental foramen region is more
than 1 mm which is not sufficient in the clinical practice. In
Fig. 10, the Euclidian distance error between the mandibular
canal annotation from the proposed method and expert anno-
tation is illustrated. As it can be seen, the mean error in the
nerve entry and exit points is less than 1 mm and standard
deviation is small. This is one of the main advantages of the
proposed method in this article.

Figure 11 is related to the low accuracy level of our
method due to the severe bone resorption. In some cases,
such as bone loss resulting from missing teeth or cases with
impacted tooth, there are large variations in mandible shape.
Themost common cause of bone loss is tooth loss, especially
multiple teeth. When multiple teeth in an area are missing
for a long term, facial drooping will occur. One possible
way to improve the accuracy in these cases is increasing
the number of condition points. However, in this regard, the
accuracy of selecting condition points will affect the whole
process.

The main challenging part of building statistical shape
models is finding corresponding points. Various methods
can be utilized to perform this step such as spherical har-
monic basis functions [34] and minimum description length
(MDL) [35]. However, these methods are mainly suitable for
closed surface objects or manual initialization by anatomical
landmarks is essential [13].When the 3D shapes are not topo-
logically equivalent to a sphere, the accuracy of registration
methods will decrease significantly. The shape of mandible
does not resemble a sphere, and mapping to a sphere is not
accurate. Furthermore, this shape is not a closed surface since
the right and left mandibular canals are removed from the
mandible. In the future work, we will attempt to seek and
develop more efficient methods to find the corresponding

Fig. 10 Mandibular canal localization accuracy. Subfigures a and b show the Euclidian distance error of the right mandibular canal and the left
mandibular canal, respectively

123



Int J CARS (2017) 12:581–593 591

(a) (b)

(c)                                     (d)

Fig. 11 Illustrative result of a case with severe bone resorption and
impacted tooth. a Posterior DRR of left half, b lateral DRR of left half.
c, d Posterior and lateral DRRwith canal overlaid. Yellow region shows
the correct path of mandibular canal

points. We are aiming to utilize the potential of Lie groups
and Lie Algebras theory [36] in this research.

Conclusion

Accurate localization of mandibular canal is essential in den-
tal implant surgery. The main challenges are large variation
in shapes and texture between mandibles, the high level of
noise and low contrast in CBCT images and small dimension
of the canal. Many researchers attempted to utilize statistical
shape models for automatic segmentation of the mandibu-
lar canal. However, the accuracy of automatic segmentation
is inadequate for use in clinical practice. In this article,
we presented an accurate and effective framework which is
able to segment mandibular canal automatically in CBCT
images. From the methodological viewpoint, a particular
aspect which differentiates the proposed method from exist-
ing methods is the combination of anatomical and statistical
information including mental and mandibular foramen posi-
tion. The proposed framework based on conditional SSMand
fastmarching leads tomore accurate detection of the canal. A
priori information about shape makes the mandibular canal
segmentation more robust. Based on the quantitative results,
we can conclude that the proposed segmentation framework

outperforms two other methods in the literature. Due to the
variability between the shape ofmandibular bone inmale and
female subjects, future work could be addressed to employ
different statistical shape models for male and female sub-
jects and investigate the efficiency of our method for difficult
datasets with severe bone resorption.
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Appendix A: Performance evaluation metrics

To investigate the statistical behavior of conditional SSM,
we utilize compactness, specificity and generalization mea-
sures. Compactness is an estimation of parameters required
to generate a valid instance of the modeled object [37]. The
compactness of the shape model is calculated as the cumu-
lated variance for the first i = 1, . . . , M modes:

C(τ ) =
∑τ

i=1 λi∑M
i=1 λi

× 100, (10)

where C(τ ) and λi are the compactness capacity and i-th
largest eigenvalue, respectively. Generalization of a model
measures the ability to represent unseen instances of the
object class modeled [37], and it is defined as follows:

G(τ ) = 1

Ns

Ns∑

k=1

‖rk(τ ) − tk‖, (11)

where Ns is the number of training data, tk is the training
sample that is eliminated in leave-one-out procedure, and rk
is the reconstructed shape using τ parameters. The specificity
of a shape model is described as how much it can represent
valid instances of the modeled class of object [37] and it is
formulated as following:

S(τ) = 1

Nr

Nr∑

k=1

min
k

∥∥sk(τ) − t ′k
∥∥ , (12)

where sk(τ) is an arbitrary sample constructed by τ parame-
ters, Nr is the number of data, and t ′k is the closest sample
in training datasets to sk(τ). Leave-one-out crossvalidation
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[38] is employed to compare the segmented mandible bone
with the gold standard. To create the gold standard dataset,
each mandible and the mandibular canal was manually seg-
mented by two radiologists in a slice-by-slice fashion. In
order to compare the automatic segmentation results with the
gold standard, two criteria are employed: (1) Dice’s coeffi-
cient [39] and (2) average symmetric surface distance [40].
Dice’s coefficient measures the overlap between the auto-
matic segmentation result and reference manual annotations.
This similarity measure is defined as following:

D(A, M) = 2 |A ∩ M|
|A| + |M | , (13)

where A and M are segmentation results obtained by auto-
matic segmentation and gold standard, respectively. This
criterion is one of the most well-known methods in evalu-
ating different segmentation methods.

Average symmetric surface distance (ASSD) [40] is
defined as the space between two segmentations A and M
in millimeters. If we assume that SA and SM are surface vox-
els of A andM , the Euclidean distance for each surface voxel
of SA to the closest surface voxel of SM is calculated. To pre-
serve symmetry, the same process is applied for the surface
voxels of SM to SA. Therefore, ASSD is expressed as the
average of all stored distances as follows:

ASSD(A, M) = 1

|SA| + |SM |

×
⎛

⎝
∑

sA∈SA
d(sA, SM )+

∑

sM∈SM
d(sM , SA)

⎞

⎠ ,

(14)

d(v, S) = min
s∈S ‖v − s‖ , (15)

whered is the shortest distanceof voxelv to surface S,‖.‖ and
|.| represent vector normandnumber of vertices, respectively.
ASSD provides a volumetric-based evaluation criterion for
the assessment of segmentation result.
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