
Int J CARS (2017) 12:205–221
DOI 10.1007/s11548-016-1481-5

ORIGINAL ARTICLE

Automated liver segmentation from a postmortem CT scan based
on a statistical shape model

Atsushi Saito1 · Seiji Yamamoto2 · Shigeru Nawano3 · Akinobu Shimizu1

Received: 12 April 2016 / Accepted: 31 August 2016 / Published online: 22 September 2016
© CARS 2016

Abstract
Purpose Automated liver segmentation from a postmortem
computed tomography (PMCT) volume is a challenging
problem owing to the large deformation and intensity
changes caused by severe pathology and/or postmortem
changes. This paper addresses this problem by a novel seg-
mentation algorithm using a statistical shape model (SSM)
for a postmortem liver.
Methods The location and shape parameters of a liver
are directly estimated from a given volume by the pro-
posed SSM-guided expectation–maximization (EM) algo-
rithm without any spatial standardization that might fail
owing to the large deformation and intensity changes. The
estimated location and shape parameters are then used as a
constraint of the subsequent fine segmentation process based
on graph cuts. Algorithms with eight different SSMs were
trained using 144 in vivo and 32 postmortem livers, and the
segmentation algorithm was tested on 32 postmortem livers
in a twofold cross validation manner. The segmentation per-
formance is measured by the Jaccard index (JI) between the
segmentation result and the true liver label.
Results The average JI of the segmentation result with the
best SSM was 0.8501, which was better compared with the
results obtained using conventional SSMs and the results of
the previous postmortem liver segmentationwith statistically
significant difference.
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Conclusions We proposed an algorithm for automated liver
segmentation from a PMCT volume, in which an SSM-
guided EM algorithm estimated the location and shape
parameters of a liver in a givenvolumeaccurately.Wedemon-
strated the effectiveness of the proposed algorithm using
actual postmortem CT volumes.
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Introduction

Autopsy imaging (Ai) is a new concept of postmortem imag-
ing that has been developed in Japan. It enhances the classic
autopsy by enabling more reliable results to be obtained
[1]. According to [2], it is estimated that more than 20,000
postmortem computed tomography (PMCT) procedures are
performed in Japan each year. However, a state-of-the-art CT
scanner outputs over a thousand slice images per cadaver,
which places a heavy burden on radiologists. In addition,
it is difficult to interpret a PMCT scan correctly owing to
postmortem changes. Therefore, a computer-aided diagnosis
(CAD) system is required to assist radiologists. The auto-
matic segmentation of abdominal organs from CT or PMCT
scans has been a challenging task in CAD owing to the lower
signal-to-noise ratio as well as their higher variability in
terms of shape and location. Though many researchers have
developed abdominal organ segmentation algorithms using
various approaches during the last two decades, no study
has focused on the automated segmentation of PMCT scans
except for our preliminary study [3]. In general, the auto-
mated segmentation of PMCT scans is much harder than that
of in vivo ones; however, it is useful to review studies related
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Fig. 1 Example of in vivo and
postmortem CT images: a an
example of in vivo CT, b an
example of PMCT with severe
pathology, postmortem changes,
and artifacts and c an example
of PMCT with postmortem
changes. The red line shows the
contour of the true liver

(a) (b) (c)

to automated liver segmentation from in vivo CT scans. We
introduce several segmentation algorithms based on the tech-
niques used in, for example, machine learning, atlas, and
statistical shape model (SSM), following which we discuss
the difficulties faced in the segmentation of PMCT volumes.

Machine learning is a general approach for image segmen-
tation. Liver segmentation methods using different machine
learning techniques such as support vector machine, neural
network, and fuzzy rules are reviewed in [4]. However, these
approaches depend on local intensity features and suffer from
the lack of prior knowledge of the shape, which is useful to
prevent unnatural segmentation results. Thus, it is difficult to
segment a postmortem liver because of low contrast between
the lung and the liver (cf. Fig. 1b).

An atlas-based method is another general segmentation
framework. Park et al. [5] and Shimizu et al. [6] proposed
abdominal organ segmentation algorithms using a combina-
tion of a probabilistic atlas (PA) and a maximum a posteriori
(MAP) approach formulti-organ segmentation, including the
liver. In recent years, multi-atlas methods have become a
popular approach. These methods propagate segmentation
labels by warping manually segmented labels using a trans-
formation by a nonlinear registration technique. Chu et al.
[7] and Wolz et al. [8] adopted a hierarchical approach for
robust registration and applied their algorithms to abdominal
organ segmentation, including the liver, kidneys, pancreas,
and spleen. Umetsu et al. [9] and Tong et al. [10] respectively
proposed slab- and patch-based segmentation algorithms to
cope with large inter-subject variability.

SSM is a commonly used tool for abdominal organ
segmentation. An SSM-based liver segmentation algorithm
proposed by Kainmüller et al. [11] achieved the best perfor-
mance in the Grand Challenge workshop [12]. Many SSM
construction methods have been developed, as shown in a
comprehensive review byHeimann andMeinzer [13], among
which the point distribution model (PDM) [14] is the most
popular approach.The level set distributionmodel (LSMD) is
also a popular SSM, as reviewed by Cremers et al. [15] with
applications to segmentation. In the segmentation process,
most algorithms require searching for the optimal shape from
the SSM that best describes the target liver shape, which is
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Fig. 2 An example of the coronal slice of the PMCT shown in Fig. 1c
with a PA generated from an SSM trained from in vivo datasets and b
MAP-based segmentation result using the resulting posterior probabil-
ity obtained using a PA-guided EM algorithm. The red contour shows
the true boundary of the liver. Owing to postmortem changes (e.g., res-
piratory arrest), the shape and location of the postmortem liver cannot
be explained by conventional SSM

used as a shape prior for subsequent refinement processes
such as free form deformation [11] and graph cuts [16].
To obtain better shape priors, several authors employed a
conditional model. Tomoshige et al. [17] developed a liver
segmentation algorithm based on relaxed conditional SSM
by considering the uncertainties of the conditions. Okada et
al. [18] improved the multi-organ segmentation performance
using an SSM conditioned by other previously segmented
structures. Instead of using a single shape prior, Linguraru et
al. [19] introduced shape constraints using Parzen shapewin-
dows and performed graph cuts to segment the liver, spleen,
and kidneys.

Whenwe apply the conventional segmentation algorithms
of an in vivo liver to PMCT, the segmentation fails owing to
the large variation in the location of liver (see Fig. 2). Thus,
the location of the liver must be standardized to the same
extent as that of the in vivo liver. However, it is difficult to
achieve good performance in spatial standardization [6,18]
because of the much smaller contrast between the lung and
the liver as well as the larger variation in the location of
the postmortem liver (see Fig. 1b, c). When a standardiza-
tion process fails, the parameter estimation process, such as
a PA-guided expectation–maximization (EM) algorithm [6],
will provide inaccurate parameters, resulting in poor perfor-
mance.
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To overcome the difficulties faced in the spatial standard-
ization of the postmortem liver, a dynamic PA was proposed
in [3], where the location of the PAof the liver generated from
SSM is updated dynamically using the previous segmenta-
tion result. This method consists of three steps: (i) rough
segmentation based on MAP principle [6] and (ii) SSM-
based patient-specific shape estimation followed by (iii) fine
segmentation based on graph cuts using the patient-specific
shape as a shape constraint. However, the previous segmen-
tationmethod has some limitations. First, it always used a PA
generated from SSM with a Gaussian distribution centered
at the mean. Such a PA might not be able to well describe an
irregular shape. Second, the location of the PA was updated
based on a heuristic rule, and it was not clear what objec-
tive function was optimized during the MAP segmentation.
Moreover, the convergence of the algorithm is not guaranteed
theoretically.

In this study, we developed a novel segmentation algo-
rithm that is superior to that reported previously [3] with
respect to the following viewpoints.

1. To cope with the higher variability of the organ in terms
of location and shape, the proposed algorithm searches
for not only the shape but also the location parameters of
a given liver fromwhich patient-specific PA is generated.

2. The location and shape parameters are optimized based
on the proposedSSM-guidedEMalgorithm instead of the
conventional heuristicmanner. This optimization process
is theoretically guaranteed to converge.

3. The proposed algorithm achieved an average Jaccard
index (JI) of 0.8501 in the experiment using 32 PMCT
volumes, which was superior to that of the previous
PMCT liver segmentation method [3].

The remainder of this paper is organized as follows. In
“SSM for postmortem liver” section, we briefly introduce
the method to construct SSMs for a postmortem liver, as
described in [20]. “Liver segmentation with an SSM” sec-
tion describes the proposed segmentation algorithm based
on SSMs. “Experiments” Section 4 presents the experimen-
tal setup and results. Finally, “Discussions” section presents
the discussions.

SSM for postmortem liver

Level set distribution model (LSDM)

In this study, we employ an LSDM [21] that does not
require correspondence between shapes. Before construct-
ing an SSM, the spatial standardization of the training liver
label volumewas carried out so that they have the same image
size, resolution, as well as gravity points among the training
cases. Thus, our model explains only the variation in shapes.

Sub-section “Extension of LSDM and generation of patient-
specific PA” introduces the extension of our LSDM to explain
the location.

Let us denoteΩ = {
r1, . . . , rN

} ⊂ R
3 as a set of position

vectors of the center of voxels on a 3D rectangular lattice in
an image, where N = Nx ×Ny ×Nz is the number of voxels.
We define each training shape as a set of voxels inside the
boundary in an image space 2Ω . A training shape X ∈ 2Ω is
represented as a zero-sublevel set of a function φ : Ω → R,
which is referred to as a level set function, as follows:

X = {r ∈ Ω|φ(r) < 0} (1)

The level set function is defined by a signed Euclidean dis-
tance function:

φ(r) =
{

−dist(r, X�) if r ∈ X

dist(r, X) if r ∈ X� . (2)

where dist(r, R) = mins∈R ‖r − s‖2 is the distance from an
end point of a vector r to the region R.

The input to the training algorithm of LSDM is a set
of N -dimensional vectors of the level-set function ϕ =
[φ(r1), . . . , φ(rN )]� ∈ R

N . We introduce a function F :
X �→ ϕ. Given a set of M training shapes {X j }Mj=1 ⊂ 2Ω ,

vector ϕ j = F(X j ) is computed for each shape, and the
data matrix Φ = [ϕ1, . . . ,ϕM ] is generated. We employed
weighted PCA for statistical analysis, in which PCA is
applied on the weighted data matrix Φ ′ = WΦ [22]. The
weight matrix W = diag(w(r1), . . . , w(rN )) is computed
by

w(r) = 1

M

M∑

j=1

1

1 + exp (γ
∣
∣φ j (r)

∣
∣)

(3)

with γ determined empirically. Finally, PCA yields the fol-
lowing parametrization of the level set function:

φα(r) = μ(r) +
d∑

j=1

u j (r)α j (4)

where μ(r) is an average and u j (r) is the j th principal com-
ponent of the level set functions. α = [α1, . . . , αd ]� is a
coefficient vector, where d (<M) is the number of principal
components.

SSM based on synthesis-based learning

In our previous study [20], we trained three conventional
SSMs from a postmortem (dead) liver label datasetD ⊂ 2Ω ,
an in vivo (living) liver label datasetL ⊂ 2Ω , and a combina-
tion of the two datasetsD∪L, which are referred to as SSMD ,
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SSML , and SSMD+L , respectively, in this paper. In addition,
five SSMs were proposed by combining D with an artifi-
cial liver label dataset D̃ synthesized via geometrical and/or
statistical transformations of the living liver label dataset L.

Statistical transformation

The statistical transformations were carried out in the eigen-
shape space constructed using the PCA of the level set
functions of liver labels such that the distribution of the liv-
ing liver labels was identical to that of the dead liver labels
by translating and/or rotating the coordinate system of the
eigenshape space. We denote D̃T = TT (L) as the translation
transformation of the dataset L, and it is defined as follows:

TT (L) = {F−1(F(X) − μL + μD)|X ∈ L}. (5)

where μX = 1
|X |

∑
X∈X F(X) denotes the average vector

over X ∈ {L,D}.
The translation with rotation transformation from L to D

is formulated as follows:

TT R(L) = {F−1(UDU†
L(F(X) − μL) + μD)|X ∈ L} (6)

where (·)† is the pseudo-inverse operator. UX (X ∈ {L,D})
is a matrix that consists of the first t principal components
of the feature vectors of {F(X)}X∈X , where t is set as
min(|L| , |D|) − 1.

Geometrical transformation

The geometrical transformation aligns liver labels using an
affine transformation that represents the changes from a liv-
ing liver to a dead one:

TA(L) = {AL(X)|X ∈ L} (7)

whereAL(X) is an affine transformation of the shape X ∈ L:

AL(X) = {ML(r − g) + g|r ∈ X}. (8)

Because all training shapes are aligned such that they have
the same centroid g, we ensure that the transformation is
constant for g. The optimal affine matrix ML is obtained by
minimizing the average symmetric surface distance between
the mean shapes F−1(μD) and F−1(μL).

SSMs to be compared

In this study, we compared the segmentation performance
among algorithms with eight different SSMs in terms of
which SSM is the most suitable for PMCT volume seg-
mentation. Three of them are the conventional SSMs learnt

only from the original dataset—D, L, and {D ∪ L}; we
refer to these as SSMD , SSML , and SSMD+L , respectively.
The remaining five SSMs are learnt from the synthesized
label dataset combined with the original dataset D. By using
the three types of transformations TT (·), TT R(·), and TA(·),
we synthesized five artificial postmortem datasets: D̃T =
TT (L), D̃T R = TT R(L), D̃A = TA(L), D̃AT = TT ◦ TA(L),
and D̃AT R = TT R ◦ TA(L). The SSMs constructed from
{D∪D̃T }, {D∪D̃T R}, {D∪D̃A}, {D∪D̃AT }, and {D∪D̃AT R}
are called SSMD+T , SSMD+T R , SSMD+A, SSMD+AT , and
SSMD+AT R , respectively.

Liver segmentation with an SSM

Figure 3a shows the flow of the conventional liver segmen-
tation algorithm for PMCT [3]. After the preprocessing,
including the rescaling and cropping of an input image aswell
as body cavity segmentation, liver segmentation is carried out
by three steps. The first step is a rough segmentation based
on the MAP principle, where the posterior probability is cal-
culated with a PA whose center is t and the likelihood whose
intensity distribution parameter (Θ) of a given CT volume
is estimated by the PA-guided EM algorithm [6]. Parame-
ter Θ is initialized using training data, and t is initialized as
t(0), which is calculated from the body cavity segmentation
(see “Experimental setup” section). After the estimation of
Θ , MAP segmentation is carried out and the gravity point of
the segmented liver g is calculated. If the distance between
the gravity point g and the current estimation t is larger than
the threshold T , t is replaced by g and the algorithm returns
to the EM algorithm. If not, a patient-specific shape esti-
mation is performed using MAP segmentation. This process
finds the shape closest to the MAP segmentation from the
SSM, in which the shape parameter α is optimized in terms
of the surface distance between the segmentation result and a
shape from theSSM.Thefinal step is fine segmentation based
on graph cuts using the obtained patient-specific shape as a
shape constraint.

Unlike the previous algorithm, our EM algorithm opti-
mizes the location and shape parameter of the SSM simul-
taneously; we call this algorithm the SSM-guided EM algo-
rithm in this study. Because the SSM-guided EM algorithm
yields parameters that well estimate the location and shape
of a target liver, a further patient-specific shape estimation
step is not required. Figure 3b shows the proposed algorithm,
with enhancements that differ from those of the conventional
method [3] being indicated by the red dotted box. After the
preprocessing, the proposed method performed parameter
estimation of the location and shape of a given liver in an
input volume by the proposed SSM-guided EM algorithm.
The parameters are used to generate a patient-specific PA as
well as patient-specific shape used in the subsequent process,
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Fig. 3 Difference between the
flow of a conventional [3] and b
proposed segmentation
methods. The differences are
indicated in red

Estimate Θ using
PA-guided EM

MAP segmentation

| t − g | < T

Segmentation result

Target image

t ← g

Generate average PA

No

Yes

Estimate Θ, t and α using
SSM-guided EM

Target image

SSM SSM

(a) (b)

Initialize Θ, t Initialize Θ, t and α

Estimate shape parameter α

Graph cuts with
location and shape prior

Segmentation result

Graph cuts with
location and shape prior

Preprocessing Preprocessing

namely, the refinement process based on graph cuts [16] with
the location and shape priors. The posterior probability cal-
culated using the patient-specific PA as well as the estimated
shape are used in the objective function to be minimized.

SSM-guided EM algorithm

Extension of LSDM and generation of patient-specific PA

To estimate the location of a liver using the proposed algo-
rithm, we extend the formulation of LSDM in Eq. (4) as
follows so that it can translate its position with vector t =
[tx , ty, tz] ∈ Z

3.

φα(r − t) = μ(r − t) +
d∑

j=1

u j (r − t)α j (9)

We use LSDM for generating the shape label volume as
well as the PA.The shape label volume is defined as S(α, t) ∈
{0, 1}N , whose value at i th voxel is

Si (α, t) = H
(
φα(r i − t)

)
(10)

where H(·) is a Heaviside function. Because the level set
function that we modeled can be interpreted as a LogOdds
maps [23], the PA A(α, t) ∈ [0, 1]N is naturally defined
using a sigmoid function:

Ai (α, t)=ςa(φα(r i − t))= 1

1+exp
(
a · φα(r i − t)

) (11)

where ςa(v) = 1
1+exp (av)

is a sigmoid function with constant
parameter a > 0.

Probabilistic model for SSM-guided EM algorithm

First, we introduce a general notation of the probabilistic
model for the image segmentation considered in this study.
Let y = (y1, . . . , yN ) be a set of N observations, where
yi ∈ R denotes a CT value at the i th voxel. We assume that
the value yi is generated from one of the K probability dis-
tributions indexed by class label xi ∈ {1, . . . , K }. Assuming
that each observation yi is modeled as iid based on a spatially
varying finite mixture model (SVMM) [24], the joint density
function of y can be formulated as

p(y|Θ,Ψ ) =
N∏

i=1

K∑

k=1

p(yi |xi = k,Θ)p(xi = k|Ψ ) (12)

where Θ and Ψ , explained in detail later, are the model
parameters to be estimated from the given observation y by
maximizing the following log-likelihood function:

	(Θ,Ψ |y) = ln p(y|Θ,Ψ )

=
N∑

i=1

ln
K∑

k=1

p(yi |xi = k,Θ)p(xi = k|Ψ ). (13)

Once the maximum likelihood estimator (Θ̂, Ψ̂ ) is obtained,
class labeling x̂ = (x̂1, . . . , x̂N ) can be calculated by follow-
ing the MAP rule:
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x̂i = arg max
xi

p(xi |yi , Θ̂, Ψ̂ )

= arg max
xi

p(yi |xi , Θ̂)p(xi |Ψ̂ ). (14)

Equation (14) is derived by assuming that Θ and Ψ are inde-
pendent of each other. We assume that xi = 1 is the class of
the liver and that xi �= 1 shows those of the other organs or
tissues.

The observation model of yi is assumed to be

p(yi = y|xi = k,Θ) = N (yi ; θk)

= 1

σk
√
2π

exp

{

− (y − μk)
2

2σ 2
k

}

.

(15)

which is the Gaussian distribution of the kth class with mean
and standard deviation of (μk, σk) ∈ Θ .

p(xi = k|Ψ ) = πk(r i ;Ψ ) shows the mixture ratio, that
is, the probability that the i th voxel belongs to the kth class.
Unlike the original SVMM [24], in which the mixture ratio
is assigned to each voxel independently, our mixture ratio
is defined by a patient-specific PA generated from the SSM
with parameter Ψ = {α, t} as follows:

p(xi = k|Ψ ) = πk(r i ;Ψ )

=
{
Ai (α, t) if k = 1
1

K−1 (1 − Ai (α, t)) if k ∈ {2, . . . , K }
(16)

Here, we assume that k = 1 indicates the class of the liver.
Eq. (16) satisfies the necessary condition for the mixture
ratio:

∑K
k=1 πk(r i ;Ψ ) = 1 and 0 ≤ πk(r i ;Ψ ) ≤ 1.

Finally, our mixture model is formulated as follows:

p(y|Θ,Ψ ) =
N∏

i=1

K∑

k=1

πk(r i ;Ψ )N (yi ; θk). (17)

Parameter estimation using SSM-guided EM algorithm

Because the log likelihood of Eq. (13) cannot be maximized
directly, we employ an EM algorithm. The parameters of the
Gaussians Θ = {(μk, σk); k = 1, . . . , K } and Ψ = {α, t}
are given by maximizing the expected value of the log like-
lihood function of the complete data:

Q
(
Θ,Ψ

∣
∣Θ ′, Ψ ′)

= Ex|y,Θ ′,Ψ ′ [ln p(x, y;Θ,Ψ )] (18)

=
N∑

i=1

K∑

k=1

p(xi = k|yi ,Θ ′, Ψ ′) ln p(xi = k, yi |Θ,Ψ ).

(19)

The EM algorithm needs the conditional distribution to be
calculated based on current parameters {Θ ′, Ψ ′} (E-step):

zik ← p(xi = k|yi ,Θ ′, Ψ ′) = N (yi ; θ ′
k)πk(r i ;Ψ ′)

∑K
k=1 N (yi ; θ ′

k)πk(r i ;Ψ ′)
.

(20)

Furthermore, the following log-likelihood corresponding to
the complete data (M-step) needs to be maximized:

Q
(
Θ,Ψ

∣
∣Θ ′, Ψ ′)

=
N∑

i=1

K∑

k=1

zik

{
lnN (yi ; θk) + ln πk(r i ;Ψ )

}
. (21)

At the E-step, instead of updating all the parameters Θ ,
Ψ =(α, t), we update one of them and fix other parameters to
the previous ones. When Ψ is fixed to Ψ ′, the maximization
ofEq. (21) in terms ofΘ is known to have an explicit solution,
and thus, θ ′

k = (μ′
k, σ

′
k) can be updated as follows:

μ′
k ←

∑N
i=1 z

i
k yi∑N

i=1 z
i
k

(22)

σ ′
k
2 ←

∑N
i=1 z

i
k(yi − μ′

k)
2

∑N
i=1 z

i
k

(23)

The maximization of Eq. (21) with respect to α or t under
fixed Θ , however, is difficult because of the non-convexity
of the function. Therefore, we increase Eq. (21) based on a
gradient descent algorithm with adaptive step size instead of
maximizing it, which is generally referred to as the gener-
alized EM algorithm and is also guaranteed to converge as
with the original EM algorithm [25]:

t ′ ← t ′+ηt∇ f (t ′) where f (t)=Q
(
Θ ′,α′, t

∣
∣Θ ′,α′, t ′

)

(24)

α′ ←α′+ηα∇g(α′) where g(α)=Q
(
Θ ′,α, t ′

∣
∣Θ ′,α′, t ′

)

(25)

Here, ηt and ηα are the step size selected adaptively from
predefined sets Ht and Hα so that f (t) and f (α) attain the
maximum value, respectively. The computation of the gra-
dients ∇ f (t ′) and ∇g(α′) are given in “Appendix”. Figure
4 shows the pseudocode of the SSM-guided EM algorithm.
Each iteration consists of three EM procedures. At the first
M-step, Θ ′ is updated by Eqs. (22) and (23). The second
and third M-steps are used for updating t ′ and α′ based on
Eqs. (24) and (25), respectively. The algorithm is terminated
when the improvement of the likelihood is smaller than a rel-
ative bound ε · |	(Θ(n), Ψ (n)|y)| or the number of iterations
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Fig. 4 Pseudocode of the
SSM-guided EM algorithm

reaches n = Nmax. We used ε = 10−6 and Nmax = 30 in
this study.

Fine segmentation with graph cuts

By using the estimated parameters {Θ̂, α̂, t̂}, fine segmen-
tation is performed based on graph cuts [16], which is an
efficient optimization method for the binary labeling prob-
lem using the s-t min-cut algorithm. Let B = {0, 1} denote
a set of binary labels, where 0 and 1 correspond to the
background and foreground, respectively. Given a CT image
I = (I1, . . . , IN ), the graph cut algorithm optimizes the
binary labeling L = (L1, . . . , LN ) ∈ BN so that the follow-
ing function is minimized.

E(L) = λ
∑

i∈V
E region
i (Li )

+
∑

(i, j)∈E

{
cEboundary

i j + (1 − c)E shape
i j

}
· δLi �=L j

(26)

where V and E are a set of all voxels and all neighboring
voxel pairs, respectively. c ∈ [0, 1] and λ > 0 are constant
parameters. Function δLi �=L j is defined as

δLi �=L j =
{
1 if Li �= L j

0 if Li = L j
. (27)

The first term E region
i (Li ) is a regional term derived from

the posterior probability with parameters estimated by the
proposed EM algorithm described in the previous section:

E region
i (Li )

=
{∑

k∈{2,3,4} p(xi = k|yi = Ii ; Θ̂, Ψ̂ ) if Li = 1
p(xi = 1|yi = Ii ; Θ̂, Ψ̂ ) if Li = 0

(28)

The second term Eboundary
i j is the boundary term

Eboundary
i j = exp

{
− (I j − Ii )2

2σ 2

}
· 1
∥
∥r j − r i

∥
∥ (29)

where σ > 0 is a constant parameter. The third therm E shape
i j

is the shape term that plays similar role in [26]:

E shape
i j =

√√
√
√1

2

(

1 − φPSS(r j ) − φPSS(r i )
∥
∥r j − r i

∥
∥

)

(30)

where φPSS(r) denotes the signed distance function of the
estimated patient-specific shape S(α̂, t̂). An example of the
gradient of the signed distance function ∇φPSS(r) is shown
in Fig. 5.

Experiments

Dataset

We collected 144 in vivo and 32 postmortem CT volumes
acquired from different patients or cadavers. The image size
was 512 × 512 × (154–3201), with voxel sizes of (0.546–
1.091) × (0.546–1.091) × (0.5–1.25) mm. The z-slice of the
postmortemCT volume ranges from above the shoulder level
to below the upper thigh.

For everyCTvolume, the true liver label volumewasman-
ually delineated by experts. Similar to the previous study [3],
we evaluated the performance of the proposed segmentation
algorithm between the eight SSMs in a twofold cross vali-
dation manner. We randomly split the 144 in vivo and the 32
postmortem dataset in half, that is, 72/72 and 16/16 cases,
respectively. 72 in vivo and 16 postmortem cases were used
to train the SSM. The SSM construction was performed in a
reduced domain, (170×170×170 [voxels]; 2.0 [mm/voxel]
isotropic). The performance of the segmentation was tested
using the remaining 16 postmortem cases. The process of
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Fig. 5 An example of the a
input CT image, b posterior
probability of liver, and c
gradient of the signed distance
function of the estimated shape
prior

0.001
0.01
0.1
0.5
0.9
0.99
0.999

(a) (b) (c)

training and testing was repeated after changing the role of
the two datasets.

Preprocessings

Before executing the algorithm, the slice size of the input CT
volume was standardized to be 256 × 256, and the size of
the voxel was converted to obtain an isotropic voxel using
trilinear interpolations. In the following process, a volume is
assumed to have isotropic voxels.

Bounding slice estimation

The input volume is automatically cropped between the
shoulder level (z = z0) and upper thigh (z = z1). Figure
6 illustrates how to estimate z0 and z1. First, the bone region
is roughly segmentedwith threshold 100 [H.U.], and then, the
number of voxels segmented as bone is accumulated along
the y-axis (anterior-to-posterior direction). By automatically
thresholding the accumulated value, the x-z image of the
bone is generated as shown in the top row of Fig. 6, where
thresholding value is fixed to 5 in a whole experiment.

Then, for each z-coordinate on the 2D bone image,
doutside(z) and d inside(z) are calculated. doutside(z′) is the
maximum distance between two bone pixels along the line
z = z′. d inside(z′) is the distance between the first bone pixels
found by searching toward opposite directions from the mid-
dle x-coordinate along the line z = z′. Finally, z0 is found as
the first slice for which doutside(z) is greater than d0 = 270
mm (middle row of Fig. 6), and z1 is found as the last slice
for which d inside(z) is smaller than d1 = 460 mm (bottom
row of Fig. 6).

Extraction of body cavity

We then extract the body cavity region that is used as a region
of interest (ROI) in the segmentation process as well as for
estimating the initial location parameter t(0). Figure 7 shows
an example of the body cavity segmentation process. Let us
denote Ωbody and Ωbone (Ωbody ⊂ Ω , Ωbone ⊂ Ω , and
Ωbody �= Ωbone) as sets of voxels of the body trunk and
bone extracted by the thresholding-based algorithm, respec-

tively; furthermore, we denote Γ body as an external surface
of the body trunk Ωbody. The body cavity region is calcu-
lated from Ωbody, Ωbone, and Γ body shown in Fig. 7b as
described below. First, for each surface voxel s ∈ Γ body,
we estimate the distance from s to the body cavity based
on the distance between the rib and the body surface as
follows:

r(s) = ∥
∥nΩbone(s) − nΓ body(nΩbone(s))

∥
∥ + C (31)

where nR(s) = arg mint∈R‖s − t‖ is the nearest voxel from
s in a set R, andC is a constant value introduced to reduce the
estimation error. We employed C = 2 voxels decided exper-
imentally. Figure 8 illustrates the calculation of Eq. (31), and
Fig. 7c shows an example of r(s). Subsequently, we extract
the body cavity based on the following equation:

ΩBodyCavity

=
{
s ∈ Ωbody

∣
∣‖s − nΓ body(s)‖ − r(nΓ body(s)) > 0

}
.

(32)

An example that satisfies the equation is shown in Fig. 7d.
Equations (31) and (32) can be calculated efficiently using
Euclidean distance transformation [27] and Voronoi diagram
construction [28]. Finally, we refine the body cavity seg-
mentation result by applying erosion with a ball structuring
element of a radius of 10 voxels, extraction of the largest con-
nected component with 26-connectivity, followed by dilation
with a radius of 10 voxels (cf. Fig. 7f).

Experimental setup

The number of principal components d was chosen for each
SSM independently so that the cumulative contribution ratio
was equal to 0.95, which is the same setting as that in [20].
We used the parameter for weighted PCA, γ = 0.25, which
is also the same value as that employed in [20]. The para-
meter of the sigmoid function a used to generate PA (Eq.
(11)) was optimized so that the conventional model SSMD

shows the highest performance (JI) in theMAPsegmentation.
We compared the segmentation performance between three
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Fig. 6 Example of the
estimation of the bounding
slices z0 and z1 based on the
bone segmentation projected
onto the coronal plane
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Fig. 7 Example of the body
cavity segmentation: a an input
image, b Ωbody, Ωbone, and
Γ body, c r(s) for s ∈ Γ body, d
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conventional SSMs {SSMD , SSML , SSMD+L} and five pro-
posed SSMs {SSMD+T , SSMD+T R , SSMD+A, SSMD+AT ,
SSMD+AT R}.

The number of classes of the mixture model was K = 4,
which represents the liver, heart, kidneys, and other organs or

tissues. The initial parameterΘ(0) was learnt from in vivo CT
volumes instead of using a postmortem dataset because no
true label of the heart and kidneys in PMCT is available
at present. The initial estimate of the shape parameter is
set as α(0) = [0, . . . , 0]�. The initial translation parameter
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Fig. 8 Illustration of the calculation of Eq. (31). For each voxel s in
Γ body, its nearest bone voxel nΩbone (s) and its nearest body surface
voxel nΓ body (nΩbone (s)) are calculated
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Fig. 9 Estimation of the gravity center of the liver, that is, initial
estimate of the translation parameter t(0) = [t (0)x , t (0)y , t (0)z ]� (left z-

coordinate, right x- and y-coordinates). t (0)z is calculated by the interior
division of the z-level between shoulder z = z0 and upper thigh z = z1
with the division ratio sz : (1− sz). (t

(0)
x , t (0)y ) is calculated by dividing

the x and y range of the bounding box of the body cavity at slice t (0)z
with the division ratio sx : (1 − sx ) and sy : (1 − sy). The parameters
sx , sy and sz are learnt from the training PMCT dataset

t(0) = [t (0)x , t (0)y , t (0)z ]� is defined based on the surrounding
anatomical structures, as shown in Fig. 9.

We performed graph cut segmentation for the test cases
with all the possible combinations of parameters under
λ ∈ [0.06, 0.10, . . . , 0.18], σ ∈ [4, 5, . . . , 12], and c ∈
[0.5, 0.6, . . . , 0.9]. Finally, we chose the best parameter
combination for each SSM independently based on the aver-
age JI.

Results

We evaluated the performance of MAP segmentation and
the graph-cut-based refinement based on JI. Note that MAP
segmentation was not actually performed in the proposed
segmentation. However, to evaluate the accuracy of posterior
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Fig. 10 JI between true liver and the MAP segmentation. The numer-
als above the box plots show average JIs, where the highest value is
indicated in red. Statistical difference between the best SSMD+A and
all other SSMs are displayed (∗p < 0.05)
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Fig. 11 JI between true liver and the graph cut refinement result. The
numerals above the box plots show average JIs, where the highest value
is indicated in red. Statistical differences between the best SSMD+A

and all other SSMs are displayed (∗p < 0.05)

probability estimation, we temporarily evaluated the perfor-
mance of MAP segmentation. We executed the proposed
algorithm with unoptimized MATLAB code on the Intel®
Xeon® CPU E5-2687W. The algorithm took about 30 s for
preprocessing, 14min for the SSM-guidedEMalgorithm and
1min for graph-cut-based refinement per a case on average.

Figure 10 compares the JIs of the proposedMAP segmen-
tation result between eight SSMs. We found that SSMD+A

showed the highest performance on average. To see the differ-
ence of JIs between SSMs, Friedman test, a non-parametric
equivalent to the one-way ANOVA, was performed with the
Nemenyi test [29] as post hoc test. The null hypothesis is that
there are no difference between methods in terms of mean
rank of JI. The Friedman test rejected the null hypothesiswith
p < 0.05. The result of post hoc test is displayed above the
box plots in Fig. 10 between SSMD+A and all other SSMs.
TheMAP segmentation performance of SSMD+A was found
to be statistically different from that of all conventional SSMs
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JI: 0.856 JI: 0.879

Fig. 12 Graph cut segmentation results for the PMCT cases shown in
Fig. 1: a result for the PMCT case shown in Fig. 1b and b result for the
PMCT case shown in Fig. 1c. The yellow contour shows the segmented
liver region and the red line shows the contour of the true liver

{SSMD ,SSML ,SSMD+L} and two synthesis-based SSMs
{SSMD+T R , SSMD+AT R}. On the other hand, statistically
significant difference was not observed between SSMD+A

and {SSMD+T , SSMD+AT }.
Figure 11 shows the performance of the graph-cut-based

refinement result. Statistical test was applied with the same
way in Fig. 10. The SSMD+A showed the highest perfor-
mance (JI: 0.8516) and was statistically different from other
SSMs except for {SSMD+T , SSMD+AT }, which was consis-

tent with the performance of MAP segmentation. To enable
comparison with other studies, we evaluated Dice similarity
index (DSI) and average symmetric surface distance (ASSD)
[12] of the method with SSMD+A, which were 0.9145 and
2.928mm, respectively.

Figure 12 shows the graph cut segmentation result for
the two PMCT cases shown in Fig. 1 using the proposed
algorithmwith SSMD+A. Although they have a considerable
amount of postmortem change, the JIs of 0.856 and 0.879 are
higher than the average of 0.8516.

Figure 13 shows typical results of theMAP segmentation,
location and shape estimation, and graph cut segmentation
using conventional SSMs (i.e., {SSMD , SSML , SSMD+L})
and the best SSMD+A. Compared to the conventional SSMs,
SSMD+A showed better results in the MAP segmentation
and shape estimation. As a result, SSMD+A achieved the
best performance in the graph cut segmentation result.

Discussions

In the following sections, we discuss the segmentation per-
formance from different aspects, namely, comparison of
results with eight SSMs, effectiveness of location and shape
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Fig. 13 Typical example of the MAP segmentation (top row), location and shape estimation (middle row), and graph cut result (bottom row)
compared between conventional models {SSMD , SSML , SSMD+L} and the best SSMD+A
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Fig. 14 Comparison of eight SSMs using JI between the true label
and the estimated shape label S(α̂, t̂) optimized by the proposed EM
algorithm, which was used to define the shape term (Eq. (30)) in the
subsequent graph cut segmentation. The numerals above the box plots
show the average JIs, where the highest value was indicated in red.
Friedman test was applied with a post hoc test, i.e., Nemenyi test, and
the statistical differences between the best SSMD+A and all the other
SSMs are displayed (∗p < 0.05)

estimation, and comparison with the previous segmentation
algorithm [3].

Comparison of results with eight SSMs

First, we would like to discuss the difference in the segmen-
tation performance among eight SSMs. The experimental
results for the test cases indicate that SSMD+A showed the
best MAP segmentation as well as graph cut refinement with
no significant difference with {SSMD+T , SSMD+AT }. The
success of the MAP and graph cut segmentation depends
on the accuracy in location and shape parameter estimation,
which can be quantified by the JI between the true label and
the estimated shape label S(α̂, t̂) by the proposed EM algo-
rithm, as shown in Fig. 14. The results in this figure are

consistentwith those shown inFig. 10, namely, that SSMD+A

showed the highest performance among the eight SSMs and
that {SSMD+T , SSMD+A, SSMD+AT } are the best SSMs
with no significant differences. We also evaluated the corre-
lation between the JIs of the estimated shape label S(α̂, t̂) by
the best model SSMD+A and those of MAP segmentation.
Figure 15 shows the correlation as well as the correlation
with graph cut segmentation, in which positive correlations
were observed for both MAP and graph cut segmentation.
Pearson’s linear correlation coefficients were R2 = 0.9560
and R2 = 0.9263 (p < 0.01; H0, no correlation). From
the above facts, we concluded that {SSMD+T , SSMD+A,
SSMD+AT } provided better shape and location priors, and
these priors boosted the performance of MAP and graph cut
segmentation.

We supposed that high performance in shape estimation
could be derived from the high performance of SSM that
was evaluated in our previous study [20]. In that paper, we
reported that the best SSM with respect to the performance
of SSM (i.e., generalization and specificity) was SSMD+T ,
and there was no significant difference between SSMD+T

and SSMD+AT . In general, an SSM with higher generaliza-
tion/specificity is expected to lead to higher performance in
segmentation. For example, because SSML with lower gen-
eralization and specificity cannot describe the postmortem
liver shape properly, it failed in segmentation, as shown in
Fig. 13. In contrast, SSMD+A that has higher performance
in describing a postmortem liver shape achieved the best
segmentation result. Therefore, we concluded that the suc-
cess of the segmentation with {SSMD+T , SSMD+AT } can
be accounted for by the high performance of the SSMs.
Although SSMD+A was inferior to these SSMs in terms of
both model performance indices, the segmentation perfor-
mance was statistically comparable to those with the SSMs.
One possible reason for the high segmentation performance
of SSMD+A may be its highest generalization [20].

Fig. 15 Relationship between
“performance of location and
shape estimation” versus those
of a “MAP segmentation” and b
“graph cut segmentation”
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Fig. 16 Comparison between the proposed segmentation result using
SSMD+A and that without estimated parameters α and t . The numerals
shown above the box plots are the average JIs

Effectiveness of location and shape estimation

In this subsection,we discuss the effectiveness of the location
and shape parameters (α, t) estimated via the proposed EM
algorithm. To prove the impact, we compared the proposed
segmentation results to those without estimated location and
shape parameters. In the method without the estimated para-

meters, we fixed the parameters to initial values, that is,
α(0) = [0, . . . , 0]� and t(0) = [t (0)x , t (0)y , t (0)z ]�, except for
the GMM parameter of the intensity distribution Θ , which
is theoretically equal to a conventional EM algorithm for
GMM. For this comparison, the parameters for graph cuts
were optimized on the training dataset for each method
independently over the search rangewementioned in “Exper-
imental setup” section. Figure 16 shows the result for the
SSMD+A, in which the proposed method outperformed the
method without location and shape parameter estimation of
α and t in terms of the performance of the estimated shape
label, MAP segmentation, as well as graph cut segmentation.
According to the typical result shown in Fig. 17, the pro-
posed method successfully estimated the location as well as
the shape of the liver, resulting in more patient-specific prior
probability and higher performance in MAP and graph cut
segmentation. In contrast, the conventional algorithm with-
out parameter estimation failed in segmentation because of
large displacement of the liver from the average location.
From the above results, we concluded that the estimation
of α and t using the proposed EM algorithm improved the
segmentation performance.

It is also useful to evaluate the log-likelihood function
of Eq. (13) for all test cases and the relationship with esti-
mated shape label S(α̂, t̂) as well as MAP segmentation so
as to determine whether the algorithm works well. Figure
18 shows the number of iterations in the proposed EM algo-
rithm versus the log likelihood (Eq. (13)), transitions of JIs
of the shape label S(α̂, t̂), and MAP segmentation. We con-
firmed from Fig. 18a that the log likelihood monotonically

Fig. 17 Typical result of the
proposed method using
SSMD+A with (left column) and
without estimated parameters α

and t (right column). The upper
row shows the isocontours of the
prior probability, or PA,
generated from SSMD+A, and
the bottom row represents the
MAP segmentation using the
prior probability

JI: 0.827 JI: 0.145

(a) (b)

(c) (d)
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Fig. 18 Number of iterations
versus a log likelihood (Eq.
(13)) divided by number of
voxels in a given test volume, b
JIs of estimated shape labels,
and c JIs of MAP segmentation,
where the thin lines shows the
plot for 32 test cases and the
bold line with the marker
indicates the average at each
iteration
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increased with the number of iterations, which was expected
as mentioned in “Liver segmentation with an SSM” section.
In addition, it was found from Figs. 18b, c that the perfor-
mance of the patient-specific shape and MAP segmentation
for most cases increased as the likelihood increased. Fig-
ure 19 shows the extent of improvement, in which a smaller
initial shape was enlarged to be closer to the true bound-
ary with increasing number of iterations. The JI for this case
changed from0.4964 to 0.8549.Because the JIs ofmost cases
converged at around the iteration step n = 15, we set the
maximum number of iterations as Nmax = 30 in our study.

Comparison with the previous segmentation algorithm
[3]

In this subsection, we compared the proposed segmentation
resultswith the previous results. Figure 20 shows the relation-

ship of performance between the proposed algorithm with
SSMD+A and the previous one based on the atlas-guided
EM algorithm with dynamic PA [3]. The comparison was
conducted with the same test dataset (32 PMCT volumes)
and the same SSM (SSMD+A). Red crosses above the diago-
nal dotted lines are the cases whose JIs are higher than those
of the conventional algorithm. For example,we found that the
proposed algorithm showed higher performance in the graph
cut segmentation for 26 out of 32 cases. TheWilcoxon signed
rank test between the proposed and conventional algorithms
was carried out for all cases, and we confirmed the statistical
differences from the previous method.

Limitations

Finally, we would like to discuss the limitations of the
proposed algorithm. Figure 21 shows the worst-case perfor-

123



Int J CARS (2017) 12:205–221 219

n = 1 (initial) n = 3 n = 5 n = 10 n = 30 (final)

Fig. 19 Isocontour of PA and MAP segmentation (yellow) for different number of iterations n = 1, 3, 5, 10, 30

Fig. 20 Conventional method
[3] versus proposed method
using SSMD+A in terms of the
performance of a MAP
segmentation, b location and
shape estimation and c graph cut
segmentation
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Fig. 21 Failure case by the
proposed algorithm using
SSMD+A: a input image, b
MAP segmentation and c graph
cut segmentation results. The
red line shows the true contour
of the liver

(a) (b) (c)

JI: 0.366 JI: 0.385

mance both in MAP and graph cut segmentation using the
proposed method with SSMD+A. The lower performance in
MAP segmentation was caused by failure in shape and loca-
tion as well as GMM parameter estimation, which resulted
in an inaccurate graph cut segmentation result. The major
reasons behind the failure are listed below.

– The SSM could not describe the atypical shape shown in
Fig. 21. We measured the generalization of the case by
the projection of the true shape label shown in Fig. 21 to
the eigenshape space of SSMD+A and back-projection.
The JI between the true label and the label after back-
projection was 0.414, which is much smaller compared
with the generalization or the average JI over all cases
(0.837) reported in [20].Consequently,we concluded that
the difficulties faced in describing the shape of the case
resulted in the failure of parameter estimation.

– The solution by the proposed EM algorithmmay be stuck
in a local minimum. We measured the Mahalanobis dis-
tance between the shape shown in Fig. 21 and the average
shape of SSMD+A (=initial values α(0) = [0, . . . , 0]�

of the proposed EM algorithm) in the level set space and
found that the distance 12.70 was the largest among the
32 test cases. Generally speaking, larger Mahalanobis
distance from the initial values can increase the risk of
being trapped in local minima.

– The intensity model, or a mixture of Gaussian distribu-
tions, were trained from in vivo CT volumes because of
the lack of labels of surrounding organs in a postmortem
body. The trained parameters of the distribution might
not explain the intensity changes caused by artifacts from
arms, severe pathologies, as well as postmortem changes.

Conclusions

We presented an SSM-guided EM algorithm for automated
liver segmentation from a PMCT volume. The proposed EM
algorithm estimates not only the parameters of the intensity
distribution model but also the location and shape parame-
ters of a liver from a given PMCT volume simultaneously.
This type of algorithm is particularly useful in PMCT vol-
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ume segmentation without spatial standardization because
of the large variation in location and shape owing to severe
pathology and/or postmortem changes. In addition, from
a theoretical viewpoint, the advantage relative to the con-
ventional segmentation algorithm for PMCT [3] is that the
proposedEMalgorithmmaximizes an objective function that
is guaranteed to converge. We validated the performance of
the proposed segmentation algorithm using 144 in vivo and
32 postmortem CT images. The algorithm with SSMD+A

found to be statistically comparable to that with {SSMD+T ,
SSMD+AT } and was significantly better compared to the
conventional SSMs {SSMD , SSML , SSMD+L} in terms of
segmentation accuracy. The proposed EM algorithm pro-
videdbetter priors in location and shape than the conventional
EM algorithm for GMM that estimates the intensity distrib-
ution parameters only.

In order to copewith intensity changes caused by artifacts,
diseases, as well as postmortem changes, we plan to develop
a statistical model of the intensity changes of the postmortem
CT images, such as in [30]. Furthermore, we will improve
the performance of the SSM by using the relaxed conditional
SSM [17] that was reported to be beneficial, especially for
atypical liver shapes. To solve the local minimum problem,
we also plan to develop global and simultaneous optimiza-
tion of the shape and location priors as well as segmentation
labels, inspired by [31].
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Appendix: Calculation of the gradient ∇ f (t ′) and
∇g(α′)

Because of the difficulties faced in the analytical computation
of the derivative of φ with respect to t , the gradient ∇ f (t ′)
is obtained by difference approximation.

∇ f (t ′) = 1

δ

⎡

⎣
f (t ′ + Δx ) − f (t ′)
f (t ′ + Δy) − f (t ′)
f (t ′ + Δz) − f (t ′)

⎤

⎦ (33)

where Δx = [δ, 0, 0]�, Δy = [0, δ, 0]�, and Δz =
[0, 0, δ]� with δ = 1 voxel. The partial derivative of g(α) =
Q

(
Θ ′,α, t ′

∣
∣Θ ′,α′, t ′

)
in terms of α j used in Eq. (25) is

derived as follows:

∂

∂α j
g(α)

=
N∑

i=1

K∑

k=1

zik

{

���������
∂

∂α j
ln pi (yi |xi = k,Θ ′) + ∂

∂α j
ln pi (xi = k|α, t ′)

}

(34)

=
N∑

i=1

K∑

k=1

{
zik

∂

∂α j
ln pi (xi = k|α, t ′)

}
(35)

=
N∑

i=1

{

zi1
∂

∂α j
ln pi (xi = 1|α, t ′) +

K∑

k=2

zik
∂

∂α j
ln pi (xi = k|α, t ′)

}

(36)

=
N∑

i=1

{

zi1
∂

∂α j
ln Ai (α, t) +

K∑

k=2

zik
∂

∂α j
ln

1 − Ai (α, t)
K − 1

}

(37)

=
N∑

i=1

{

zi1
∂

∂α j
ln Ai (α, t)

+
K∑

k=2

zik

{
∂

∂α j
ln {1 − Ai (α, t)} −������∂

∂α j
ln (K − 1)

}}

(38)

=
N∑

i=1

{

zi1(Ai (α, t) − 1)au j (r i − t)

+
K∑

k=2

zik Ai (α, t)au j (r i − t)

}

(39)

= a ·
N∑

i=1

{
K∑

k=1

zik Ai (α, t) − zi1

}

u j (r i − t). (40)

In Eq. (39), we used the fact that, for an arbitrary function
h(v), the following equation holds for the derivative of the
logarithm of the sigmoid function ln ςa(h(v)):

∂

∂v
ln ςa(h(v)) = {ςa(h(v)) − 1} · a · h′(v), (41)

and for the derivative of ln{1 − ςa(h(v))}:
∂

∂v
ln {1 − ςa(h(v))} = ςa(h(v)) · a · h′(v). (42)

References

1. Ezawa H, Yoneyama R, Kandatsu S, Yoshikawa K, Tsujii H,
Harigaya K (2003) Introduction of autopsy imaging redefines the
concept of autopsy: 37 cases of clinical experience. Pathol Int
53(12):865–873. doi:10.1046/j.1440-1827.2003.01573.x

123

http://dx.doi.org/10.1046/j.1440-1827.2003.01573.x


Int J CARS (2017) 12:205–221 221

2. OkudaT, Shiotani S, SakamotoN,KobayashiT (2013)Background
and current status of postmortem imaging in Japan: short history of
“autopsy imaging (Ai)”. Forensic Sci Int 225(1):3–8. doi:10.1016/
j.forsciint.2012.03.010

3. Saito A, ShimizuA,WatanabeH, Yamamoto S, KobatakeH (2013)
Automated liver segmentation fromaCTvolume of a cadaver using
a statistical shape model. Int J Comput Assist Radiol Surg 8(Suppl
1):S48–S49. doi:10.1007/s11548-013-0850-6

4. Punia R, Singh S (2013) Review on machine learning techniques
for automatic segmentation of liver images. Int J Adv Res Comput
Sci Softw Eng 3(4):666–670

5. Park H, Bland PH,Meyer CR (2003) Construction of an abdominal
probabilistic atlas and its application in segmentation. IEEE Trans
Med Imaging 22(4):483–492. doi:10.1109/TMI.2003.809139

6. Shimizu A, Ohno R, Ikegami T, Kobatake H, Nawano S, Smutek D
(2007) Segmentation ofmultiple organs in non-contrast 3D abdom-
inal CT images. Int J Comput Assist Radiol Surg 2(3–4):135–142.
doi:10.1007/s11548-007-0135-z

7. Chu C, Oda M, Kitasaka T, Misawa K, Fujiwara M, Hayashi
Y, Nimura Y, Rueckert D, Mori K (2013) Multi-organ seg-
mentation based on spatially-divided probabilistic atlas from
3D abdominal CT images. In: Medical image computing and
computer-assisted intervention. Springer, pp 165–172. doi:10.
1007/978-3-642-40763-5_21

8. WolzR, ChuC,MisawaK, FujiwaraM,MoriK, Rueckert D (2013)
Automated abdominal multi-organ segmentation with subject-
specific atlas generation. IEEE Trans Med Imaging 32(9):1723–
1730. doi:10.1109/TMI.2013.2265805

9. Umetsu S, Shimizu A,Watanabe H, Kobatake H, Nawano S (2014)
An automated segmentation algorithm for CT volumes of livers
with atypical shapes and large pathological lesions. IEICE Trans
Inf Syst 97(4):951–963. doi:10.1587/transinf.E97.D.951

10. Tong T, Wolz R, Wang Z, Gao Q, Misawa K, Fujiwara M, Mori
K, Hajnal JV, Rueckert D (2015) Discriminative dictionary learn-
ing for abdominal multi-organ segmentation. Med Image Anal
23(1):92–104. doi:10.1016/j.media.2015.04.015

11. Kainmüller D, Lange T, Lamecker H (2007) Shape constrained
automatic segmentation of the liver based on a heuristic intensity
model. In: Proceedings of MICCAIWorkshop 3D segmentation in
the clinic: a grand challenge, pp 109–116

12. Heimann T, van Ginneken B, Styner MA, Arzhaeva Y, Aurich V,
Bauer C, Beck A, Becker C, Beichel R, Bekes G, Bello F, Bin-
nig G, Bischof H, Bornik A, Cashman PMM, Chi Y, Cordova
A, Dawant BM, Fidrich M, Furst JD, Furukawa D, Grenacher L,
Hornegger J, Kainmller D, Kitney RI, Kobatake H, Lamecker H,
Lange T, Lee J, Lennon B, Li R, Li S, Meinzer HP, Nemeth G,
Raicu DS, RauAM, van Rikxoort EM, RoussonM, Rusko L, Saddi
KA, Schmidt G, Seghers D, Shimizu A, Slagmolen P, Sorantin E,
Soza G, Susomboon R,Waite JM,Wimmer A,Wolf I (2009) Com-
parison and evaluation of methods for liver segmentation from CT
datasets. IEEETransMed Imaging 28(8):1251–1265. doi:10.1109/
TMI.2009.2013851

13. Heimann T, Meinzer HP (2009) Statistical shape models for
3D medical image segmentation: a review. Med Image Anal
13(4):543–563. doi:10.1016/j.media.2009.05.004

14. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape
models-their training and application. Comput Vis Image Underst
61(1):38–59. doi:10.1006/cviu.1995.1004

15. Cremers D, Rousson M, Deriche R (2007) A review of statistical
approaches to level set segmentation: integrating color, texture,
motion and shape. Int J Comput Vis 72(2):195–215. doi:10.1007/
s11263-006-8711-1

16. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy
minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell
23(11):1222–1239. doi:10.1109/34.969114

17. Tomoshige S, Oost E, ShimizuA,WatanabeH,Nawano S (2014) A
conditional statistical shape model with integrated error estimation
of the conditions; application to liver segmentation in non-contrast
CT images. Med Image Anal 18(1):130–143. doi:10.1016/j.media.
2013.10.003

18. OkadaT,LinguraruMG,HoriM,SummersRM,TomiyamaN,Sato
Y (2015) Abdominal multi-organ segmentation from CT images
using conditional shape-location and unsupervised intensity priors.
Med Image Anal 26(1):1–18. doi:10.1016/j.media.2015.06.009

19. Linguraru MG, Pura JA, Pamulapati V, Summers RM (2012) Sta-
tistical 4D graphs for multi-organ abdominal segmentation from
multiphase CT. Med Image Anal 16(4):904–914. doi:10.1016/j.
media.2012.02.001

20. Saito A, Shimizu A, Watanabe H, Yamamoto S, Nawano S,
Kobatake H (2014) Statistical shape model of a liver for autopsy
imaging. Int J Comput Assist Radiol Surg 9(2):269–281. doi:10.
1007/s11548-013-0923-6

21. Cremers D (2006) Dynamical statistical shape priors for level set-
based tracking. IEEE Trans Pattern Anal Mach Intell 28(8):1262–
1273. doi:10.1109/TPAMI.2006.161

22. Uchida Y, Shimizu A, Kobatake H, Nawano S, Shinozaki K (2010)
A comparative study of statistical shape models of the pancreas.
Int J Comput Assist Radiol Surg 5(Suppl 1):S385–S387. doi:10.
1007/s11548-010-0469-9

23. Pohl KM, Fisher J, Bouix S, Shenton M, McCarley RW, Grimson
WEL, Kikinis R, Wells WM (2007) Using the logarithm of odds
to define a vector space on probabilistic atlases. Med Image Anal
11(5):465–477. doi:10.1016/j.media.2007.06.003

24. Sanjay-Gopal S, Hebert T (1998) Bayesian pixel classification
using spatially variant finite mixtures and the generalized EM algo-
rithm. IEEE Trans Image Process 7(7):1014–1028. doi:10.1109/
83.701161

25. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood
from incomplete data via the EM algorithm. J R Stat Soc Ser B
(methodol). doi:10.2307/2984875

26. Shimizu A, Nakagomi K, Narihira T, Kobatake H, Nawano S,
Shinozaki K, Ishizu K, Togashi K (2010) Automated segmenta-
tion of 3D CT images based on statistical atlas and graph cuts.
In: Medical computer vision. Recognition techniques and appli-
cations in medical imaging. Springer, pp 214–223. doi:10.1007/
978-3-642-18421-5_21

27. Saito T, Toriwaki JI (1994) New algorithms for euclidean dis-
tance transformation of an n-dimensional digitized picture with
applications. Pattern Recognit 27(11):1551–1565. doi:10.1016/
0031-3203(94)90133-3

28. Maurer CR Jr, Qi R, Raghavan V (2003) A linear time algo-
rithm for computing exact euclidean distance transforms of binary
images in arbitrary dimensions. IEEE Trans Pattern Anal Mach
Intell 25(2):265–270. doi:10.1109/TPAMI.2003.1177156

29. Demšar J (2006) Statistical comparisons of classifiers overmultiple
data. J Mach Learn Res 7:1–30

30. Hasegawa I, Shimizu A, Saito A, Püschel K, Suzuki H, Vogel
H, Heinemann A (2016) Evaluation of post-mortem lateral
cerebral ventricle changes using sequential scans during post-
mortem computed tomography. Int J Legal Med. doi:10.1007/
s00414-016-1327-2

31. Saito A, Nawano S, Shimizu A (2016) Joint optimization of seg-
mentation and shape prior from level-set-based statistical shape
model, and its application to the automated segmentation of abdom-
inal organs.Med ImageAnal 28:46–65. doi:10.1016/j.media.2015.
11.003

123

http://dx.doi.org/10.1016/j.forsciint.2012.03.010
http://dx.doi.org/10.1016/j.forsciint.2012.03.010
http://dx.doi.org/10.1007/s11548-013-0850-6
http://dx.doi.org/10.1109/TMI.2003.809139
http://dx.doi.org/10.1007/s11548-007-0135-z
http://dx.doi.org/10.1007/978-3-642-40763-5_21
http://dx.doi.org/10.1007/978-3-642-40763-5_21
http://dx.doi.org/10.1109/TMI.2013.2265805
http://dx.doi.org/10.1587/transinf.E97.D.951
http://dx.doi.org/10.1016/j.media.2015.04.015
http://dx.doi.org/10.1109/TMI.2009.2013851
http://dx.doi.org/10.1109/TMI.2009.2013851
http://dx.doi.org/10.1016/j.media.2009.05.004
http://dx.doi.org/10.1006/cviu.1995.1004
http://dx.doi.org/10.1007/s11263-006-8711-1
http://dx.doi.org/10.1007/s11263-006-8711-1
http://dx.doi.org/10.1109/34.969114
http://dx.doi.org/10.1016/j.media.2013.10.003
http://dx.doi.org/10.1016/j.media.2013.10.003
http://dx.doi.org/10.1016/j.media.2015.06.009
http://dx.doi.org/10.1016/j.media.2012.02.001
http://dx.doi.org/10.1016/j.media.2012.02.001
http://dx.doi.org/10.1007/s11548-013-0923-6
http://dx.doi.org/10.1007/s11548-013-0923-6
http://dx.doi.org/10.1109/TPAMI.2006.161
http://dx.doi.org/10.1007/s11548-010-0469-9
http://dx.doi.org/10.1007/s11548-010-0469-9
http://dx.doi.org/10.1016/j.media.2007.06.003
http://dx.doi.org/10.1109/83.701161
http://dx.doi.org/10.1109/83.701161
http://dx.doi.org/10.2307/2984875
http://dx.doi.org/10.1007/978-3-642-18421-5_21
http://dx.doi.org/10.1007/978-3-642-18421-5_21
http://dx.doi.org/10.1016/0031-3203(94)90133-3
http://dx.doi.org/10.1016/0031-3203(94)90133-3
http://dx.doi.org/10.1109/TPAMI.2003.1177156
http://dx.doi.org/10.1007/s00414-016-1327-2
http://dx.doi.org/10.1007/s00414-016-1327-2
http://dx.doi.org/10.1016/j.media.2015.11.003
http://dx.doi.org/10.1016/j.media.2015.11.003

	Automated liver segmentation from a postmortem CT scan based on a statistical shape model
	Abstract
	Introduction
	SSM for postmortem liver
	Level set distribution model (LSDM)
	SSM based on synthesis-based learning
	Statistical transformation
	Geometrical transformation
	SSMs to be compared


	Liver segmentation with an SSM
	SSM-guided EM algorithm
	Extension of LSDM and generation of patient-specific PA
	Probabilistic model for SSM-guided EM algorithm
	Parameter estimation using SSM-guided EM algorithm

	Fine segmentation with graph cuts

	Experiments
	Dataset
	Preprocessings
	Bounding slice estimation
	Extraction of body cavity

	Experimental setup
	Results

	Discussions
	Comparison of results with eight SSMs
	Effectiveness of location and shape estimation
	Comparison with the previous segmentation algorithm 
	Limitations

	Conclusions
	Acknowledgements
	Appendix: Calculation of the gradient f(t') and g(α')
	References




