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Abstract
Purpose In this article, we systematically examine the cur-
rent state of research of systems that focus on touchless
human–computer interaction in operating rooms and inter-
ventional radiology suites. We further discuss the drawbacks
of current solutions and underline promising technologies for
future development.
Methods A systematic literature search of scientific papers
that deal with touchless control of medical software in the
immediate environment of the operation room and interven-
tional radiology suite was performed. This includes methods
for touchless gesture interaction, voice control and eye track-
ing.
Results Fifty-five research papers were identified and ana-
lyzed in detail including 33 journal publications. Most of
the identified literature (62%) deals with the control of med-
ical image viewers. The others present interaction techniques
for laparoscopic assistance (13%), telerobotic assistance and
operating room control (9% each) as well as for robotic oper-
ating room assistance and intraoperative registration (3.5%
each). Only 8 systems (14.5%) were tested in a real clinical
environment, and 7 (12.7%) were not evaluated at all.
Conclusion In the last 10years, many advancements have
led to robust touchless interaction approaches.However, only
a few have been systematically evaluated in real operating
room settings. Further research is required to cope with cur-
rent limitations of touchless software interfaces in clinical
environments. The main challenges for future research are
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the improvement and evaluation of usability and intuitive-
ness of touchless human–computer interaction and the full
integration into productive systems as well as the reduction
of necessary interaction steps and further development of
hands-free interaction.
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Introduction

The key to successful medical interventions is immediate
access to the patient’s anatomical image data. Especially
during minimally invasive procedures, in contrast to open
surgery, physicians are not able to see their target, surround-
ing risk structures or their instruments inside the patient and
therefore rely heavily on recent medical images and 3Dmod-
els of the anatomy. Because of special working conditions in
the operating room (OR) and interventional radiology suite,
i.e., sterility, limited space and time pressure, physicians face
challenging human–computer interaction tasks. These tasks
include the control ofmedical image viewers, interactive reg-
istration of images and interaction with medical robots. In
clinical routine, sterile covers enable the direct use of inter-
action devices, e.g., joysticks, touchscreens or control panels.
In addition, foot pedals with little functionality are used to
control software directly, but the interaction with software
is still very often delegated to a nonsterile assistant using
speech or gesture commands [25].

However, indirect interaction might be inefficient and
error-prone. Technologies in the field of touchless human–
computer interaction, e.g., range cameras, voice control or
eye tracking, are promising. They present new ways of inter-
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action with medical software under sterile conditions. Bauer
et al. [5] already gave a first overview of touchless interac-
tion in sterile environments. Nevertheless, they focused on
body and hand gesture interaction and did not broaden the
scope to other promising modalities, such as voice recogni-
tion.Another synopsis of touchless interactionhas beengiven
by O’Hara et al. [51], who also concentrate on body gestures,
especially with the structured-light-basedMicrosoft Kinect 1
(Microsoft Corp., Redmond, WA, USA). They furthermore
mention voice control as a useful addition to gesture input.

With respect to the growing interest in the area of touchless
interaction in the OR we aim to give a broad and complete
systematic overview of existing approaches that deal with
the given interaction challenges in the classic and the hybrid
OR. We additionally discuss the main problems and future
trends in intraoperative touchless gesture interaction.

Methods

In the following, the literature search strategy and inclusion
criteria are described.

Search strategy

A systematic literature search for scientific papers was con-
ducted using the PubMed database. For this purpose the
preferred reporting items for systematic reviews and meta-
analyses (PRISMA) guidelines [42] were followed. Our
PubMed search term consisted of 8 MeSH terms and 34
title/abstract search terms and is provided as supplementary
material for this paper. Forward and backward search was
performed using PubMed and Google Scholar. Therefore,
similar, cited and citing papers of relevant literature from the
PubMed database meeting the inclusion criteria (see below)
were determined. Both literature search and reviewwere per-
formed by two reviewers independently.

Inclusion criteria

Relevant—in the sense of this literature review—are all sci-
entific papers inEnglish language that dealwith prototypes as
well as systems in productive use in the immediate environ-
ment of an OR which can be controlled partly or completely
touchless and serve as aids to successfully complete the inter-
vention. This includes voice recognition, body movement
gestures and eye tracking.

Not included in this review is literature investigating the
use of dictating software for radiological diagnosis as well
as systems helping in rehabilitation and training or teaching
(e.g., live streaming devices), since those approaches do not
have a direct impact on the outcome of an intervention.

Fig. 1 Overview of used touchless interaction methods and devices

Results

The aforementioned search strategy yielded 403 references
from the PubMed database of which 41 are relevant (see
section “Inclusion criteria”). The Google Scholar search
added 14 more papers of relevance for a total of 55 to be
considered in this review. Thirty-three of the papers were
published in peer-reviewed journals, and two are book chap-
ters. Overviews of the implementations and evaluations of
touchless gesture interaction systems for interventional use
are presented in the tables in the corresponding sections con-
taining a short description of the interaction type or device,
the technical approach, and, if given, evaluation results of
each paper.

Most of the authors describe methods for the touch-
less manipulation of medical image data (34 of 55). Other
objectives are laparoscopic assistance (7), telerobotic assis-
tance (5), OR control (5), robotic OR assistance (2) and
intraoperative registration (2). The most popular device for
touchless intraoperative gesture control is the Microsoft
Kinect 1 structured-light-based range camera (21). Other rel-
evant interaction devices or types in this review are stereo
cameras (12)—9 of which are the Leap Motion Controller
(LMC) (Leap Motion, Inc, San Francisco, CA, USA), body-
worn inertial sensors (6), RGB camera or webcam (5), voice
recognition (7), eye tracking (4), the Intel Realsense Creative
(Intel Corporation, Santa Clara, CA, USA) structured-light
camera (1) and a time-of-flight range camera (1). Fig-
ure 1 illustrates the connections between those devices and
methods listed in this review. Most (40) of the systems
described in the references have been evaluated under labo-
ratory conditions or single experiments. Eight systems were
tested in real interventions, and 7 research teams did not
evaluate their work or did not provide information about
it.

Two papers with the same content asWachs et al. [72] and
one paper similar to Jacob and Wachs [28] were excluded,
because those did not make a contribution to the research.
We decided to include the latest and most valuable of these
publications in this literature review.
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In the following, a synopsis of the relevant literature for
each category is given. The papers are categorized by their
objective in the OR, within which they are summarized
according to the used interaction device in chronological
order. Publications which provide new approaches or a sig-
nificant contribution to the research area are described in
greater detail than others.

Control of medical image viewers

A lot of fundamental research has been done on the inter-
action with the visualization of the patient’s anatomy (see
Table 1). A camera-based approach was followed by Wachs
et al. [72], who developed a vision-based hand gesture and
posture capture system to control a medical image viewer
with 7 gestures. During calibration, the hand is segmented
from a camera image by subtracting a detected moving blob
from the image background. The hand color is saved in a his-
togram as a look-up table and used as reference in the gesture
recognition process. The difference between two consecu-
tive frames is computed and serves as motion cue. Within a
defined interaction area the user can browse, zoom and rotate
medical images. The usability was evaluated based on inter-
views with one surgeon and a questionnaire. According to
this, the system is easy to use and has short training times at
a recognition rate of 96%. A similar system has been intro-
duced by Achacon et al. [1]. Their hand gesture-controlled
imageviewer usesHaar-like features and theAdaBoost learn-
ing algorithm to train gestures aswell as principal component
analysis and distance matching to later recognize them in the
camera image. The algorithm requires a clean background
to work. Five unambiguous gestures were mapped onto the
software functions. A 3-person experiment provided the find-
ings that the gesture recognition works better in a well-lit
(96–100% recognition rate) than in a dark environment (16–
96%). The false-positive rate is high (64–75% precision in
well-lit environment, 35–53% in dark environment).

A different technique to generate a depth map similar to
the Microsoft Kinect 1 is the time-of-flight TOF method.
Soutschek et al. [66] used such a TOF camera to define 5
hand gestures based on thresholds in the depthmap as well as
in the RGB image to interact with medical images. The user
study with 15 subjects revealed a 94% gesture classification
rate and real-time capability (10 FPS). The users assessed the
system to be intuitive, comfortable and with short response
times.

Major issues of camera-based gesture control are line of
sight and the fixed interaction area of the user. These prob-
lems can be avoided using inertial sensors worn on head,
wrist or body, which enable a position-independent inter-
action. Schwarz et al. [64] introduced a technique which
collects pose data from multiple body-worn inertial sensors
and classifies them as low-dimensional body gestures. Those

are previously learned by the software and parameterized.
This enables specialized and personalized gesture sets. A
usability study with 10 subjects revealed a good wearabil-
ity of the system and a 90% recognition rate. This system
was later extended by a voice-based and handheld switch
unlock method by Bigdelou et al. [6]. Eight different ges-
tures were defined and tested in a user study. The system does
not inhibit usual movements of the users and is responsive
and accurate. The handheld switch to unlock the interac-
tion is preferred over the voice trigger, possibly due to a
faster response time. Jalaliniya et al. [29] presented a sin-
gle wristband sensor and SensFloor capacitive floor sensors
(Future-ShapeGmbH,Höhenkirchen, Germany) with 12 dif-
ferent universally defined hand and foot gestures. While foot
gestures are for toggling and switching purpose, the handges-
tures are used to interact with medical images. Single output
artificial neural networks recognize the gestures in the sen-
sor data stream. A user study with 5 subjects resulted in 93%
recognitionprecision and98%recall. Theusers described the
system as precise, intuitive and responsive. An approachwith
a myo-electric armband (Myo armband, Thalmic Labs Inc.,
Kitchener, Ontario, Canada) was taken by Hettig et al. [22].
This armband has 8 surface electromyographic sensors that
sense electrical signals from the muscle contractions of the
forearm. Five gestures were mapped on four software func-
tions, and haptic vibration feedback was implemented. Two
user studies and one clinical test provided the knowledge that
the device is not robust enough for clinical use (recognition
rates 56–86%) and has a high false-positive recognition rate.

In 2010, the introduction of the Microsoft Kinect 1, an
inexpensive consumer market structured-light-based depth
sensor and RGB camera with a source development kit
(SDK) and user tracking and voice input capabilities, made
it possible to easily build touchless gesture and voice-
controlled interfaces. Kirmizibayrak [33] first presented a
comparison of a two-handed Kinect 1 3D rotation and target
localization (2D slicing) interface for medical images with
mouse control. A user study with 15 participants revealed
that the two-handed gesture control outperforms mouse
interaction in rotation tasks in terms of accuracy and task
completion time; mouse interaction is slower but more accu-
rate when localizing targets. Ebert et al. [14] introduced a
different medical image viewer control. Voice commands
and range camera input were mapped onto keyboard and
mouse events. The voice recognition is provided by the oper-
ating system. With vocal commands, the interaction modes
can be switched. The images are manipulated (window-
ing, scrolling, moving) by arm gestures. A comparison with
mouse interaction in a user study with 10 subjects resulted in
mouse interaction being 1.4 times faster than gesture inter-
action and an overall usability rating of 3.4 out of 5, 3.4 for
accuracy of the gesture control and 3 for accuracy of the voice
control. A very similar concept was presented in Suelze et al.
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Table 1 Touchless control of a medical image viewer, journal publications are marked with *

Technical approach Evaluation results

RGB camera

*Wachs et al. [72] Color motion cues 96% gesture accuracy, fast response, easy to use

Achacon et al. [1] Vision-based hand gesture detection 64–75% precision in well-lit environment

Time-of-flight camera

Soutschek et al. [66] Threshold-based hand gesture recognition, 5
gestures

94% recognition rate, 10 FPS

Intertial sensors

Schwarz et al. [64] Trained arm gestures Recognition rate >90%, good wearability

Bigdelou et al. [6] [64] + voice or switch unlock Handheld switch preferred over voice unlock

Jalaliniya et al. [29] Wristband + capacitive floor sensors Precision >93%, recall >98%

Hettig et al. [22] (Myo) gestures from myoelectric signals of the
forearm

Recognition rates 71–86%, high false-positive rate

Structured-light sensor (Kinect 1)

Kirmizibayrak et al. [33] Comparison of two-handed Kinect 1 interface with
mouse

Kinect 1 interface faster and more accurate in
rotation

*Ebert et al. [14] Gestures mapped onto mouse events 1.4 times faster than mouse interaction

*Ruppert et al. [60] Self-defined arm gestures –

Gallo [16] Comparison of Kinect 1 and trackball interaction Kinect 1 faster in ballistic phase, trackball more
precise

*Hötker et al. [24] 6 gestures and 6 voice commands 97% voice recognition, 88% gesture recognition

Riduwan et al. [58] Vision- and depth-map-based gesture detection –

*Strickland et al. [68] Hand gestures mapped on mouse events, user
feedback on 2nd display

Robust, reliable, especially in darker environment

Suelze et al. [69] 5 threshold-based gestures and voice commands –

*Tan et al. [70] Arm gestures based on skeletal data 69% of subjects would use the system

*Yusoff et al. [79] 4 arm and hand gestures based on skeletal data –

*Kocev et al. [34] Projector calibrated with Kinect 1, multi-touch
gestures on projection

Algorithm is real-time capable

*Chao et al. [10] Comparison of different gesture input devices Comparable accuracy, Kinect 1 significantly slower,
iPad has highest usability score

*Jacob and Wachs [28] Intent recognition via body orientation 99% accuracy

*Silva et al. [65] Own skeletal tracking implementation Visual feedback important, learning effect noted

*Nouei et al. [50] Hand and finger gestures + RFID role tracking Finger tracking preferred, direct, centralized access

*Wipfli et al. [77] Comparison of Kinect 1 interface, task delegation
and mouse

Mouse significantly faster than gesture control and
delegation, no significant difference in
effectiveness

Stereo camera

Kipshagen et al. [32] 2 webcams, computer vision hand recognition Position error less than 2 cm in 96% of cases

*Bizzotto et al. [7] (LMC) 3 gestures mapped on keyboard shortcuts No individual calibration, 5-min training time

*Ebert et al. [13] (LMC) 5 gestures, one- and two-handed Reliable with gloves, sensitive to smudges, short
delay

*Mauser and Burgert [37] (LMC) control of viewer and instruments, filtering
of unintentional gestures

75% recognition rate, high false-positive rate

*Rosa and Elizondo [59] (LMC) hand and finger gestures No technical errors, feasibility successfully tested

*Pauchot et al. [55] (LMC) gestures defined with GameWave App –

*Mewes et al. [41] (LMC) CT radiation shield used as display, 5
gestures

Intuitive gestures, 3D rotation gesture ambiguous

Saalfeld et al. [61] (LMC) comparison of improved gesture set of [41]
and touchscreen

Freehand gestures significantly slower than
touchscreen, except 3D rotation
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Table 1 continued

Technical approach Evaluation results

*Opromolla et al. [52] (LMC) custom gestures, focus on intuitiveness and
memorability

Learning effect visible, natural interaction, too slow
for real application, not robust enough

*Park et al. [53] (LMC) universal gesture mapper Recognition rate 77–100%, significantly faster than
mouse

Voice commands and range camera (Kinect 1)

Mentis et al. [39] Gestures for continuous functions, voice commands
as mode switch and trigger

Positive feedback from surgeon

[69]. Ruppert et al. [60] developed two solutions to interact
with hand or arm gestures with the software. Hand recogni-
tion is realized with a depth threshold and by post-processing
the noisy data. Then the center of gravity of the hand is calcu-
lated and used for cursor movement and mouse events. The
OpenNI1 framework and NiTE2 (Kinect 1 and skeletal data
tracking frameworks toworkwith the open source libfreenect
driver) are the basis for arm gesture interaction. The user can
move the mouse cursor with the right hand, while lifting the
left arm triggers click events. The authors did not provide
evaluation details.

The drawback of permanent user tracking and the result-
ing danger of triggering unintended actions was eliminated
by Jacob and Wachs [28] by determining the user’s intent
with the torso orientation, previously executed commands
and the time between subsequent commands. They created
a Kinect 1-based gesture set, which is only active if the
user is directed toward the display. A set of 10 gestures was
chosen and trained with 10 surgeons. The interaction was
evaluated in a user study with 20 subjects, which revealed
a gesture recognition accuracy of 98 and 99% intent recog-
nition. Gallo [16] compared the Kinect 1 interaction with
state-of-the-art trackball performance with a medical image
viewer. A gesture set was developed, and the task completion
time with 95 and 80% pose accuracy was measured in two
user studies. The author summarizes that the higher-degrees-
of-freedom gesture set of the Kinect 1 performs better than
trackball interaction method in the ballistic phase, i.e., 80%
pose accuracy and worse in the correction phase (90%).
Another comparison was drawn by Hötker et al. [24]. Six
voice commands and six hand gestures with the same func-
tions for medical image manipulation were implemented. A
user study with 10 subjects indicated that voice commands
(97%) are better recognized than the body gestures (88%)
with an overall false-positive rate of 30%. The Kinect 1, a
gyroscopic mouse and a tablet PCwere compared by Chao et
al. [10] in a study with 29 users. Five tasks had to be executed
with each device. The highest usability was measured for the

1 http://structure.io/openni.
2 http://www.openni.ru/files/nite/.

tablet (13.5 points), followed by the gyroscopic mouse (12.9
points) and the Kinect 1 (9.9 points). The task completion
time was highest for the Kinect 1 (157s) and lowest for the
tablet (41s). Only themeasurement error did not differ signif-
icantly between those devices at about 1 cm each. Riduwan
et al. [58] segment the user’s hand from the depth image
and use k-means clustering to find the hand pixels in the
RGB image. After finding the hand’s contourswith aGraham
scan and Moore-neighbor tracing, the fingertips are detected
by finding the convex hull. Finger gestures were defined,
but not evaluated. Strickland et al. [68] developed a mouse-
emulating gesture control as well. It includes visual feedback
on a second monitor and is tested in a study of six surgeries.
The system is claimed to be robust and reliable, but no data
were reported. Similar interaction concepts were introduced
by Tan et al. [70] andYusoff et al. [79]. Kocev et al. [34] com-
bined the range camera with a projector and calibrated it as
a spatial augmented reality system to interact with projected
information on a deformable surface. A touchscreen-inspired
multi-touch gesture set was implemented as well as con-
tactless fingertip interaction. The algorithm execution time
was evaluated and declared as real-time capable. Silva et
al. [65] developed an own skeletal tracking method similar
to OpenNI and NiTE. With this method, a gesture set was
developed and evaluated in a user study with 16 subjects and
10 tasks. OR information software compatible with health
level 7 (HL7) has been developed by Nouei et al. [50]. It
provides all available data about a patient in one application,
which can be controlled touchlessly by finger or hand ges-
tures using the depth and pixel data of the hand. Additionally,
radio-frequency identification (RFID) tags are used to deter-
mine the role of the current user. The evaluation was carried
out during 30 surgeries. The surgeons and assistants pointed
out the advantage of centralized, direct access to the patient
data. Wipfli et al. [77] compared a Kinect 1 gesture inter-
face with OR-typical interaction task delegation and mouse
interaction with medical data. After a study with 30 partici-
pants they concluded that mouse interaction is significantly
more efficient andhas significant higher user satisfaction than
gesture control and task delegation. However, there were no
significant differences in error rates.
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Adepthmap of the 3D space can also be obtained after cal-
ibrating two cameras as a stereo camera and calculating the
disparity between the two images.Kipshagen et al. [32] intro-
duced a medical image viewer that handles hand gestures
with a stereo camera. The hand segmentation takes place after
noise removal by segmenting the hand or glove colors, further
removing noise and closing gaps. Low-frequency Fourier
descriptors are used as unique feature vectors and compared
to a previously trained feature database. By measuring dis-
tances and time between the frames, a hand’s position offset
and therefore velocity and direction can be detected. A user
study with 15 subjects resulted in a position error of less
than 2 cm in 96% and less than 1 cm in 50% of the cases.
The processing is done in real time. A very similar functional
principle underlies the LMC,which is basically a stereo cam-
era with 3 infrared LEDs that illuminate the hand above to
be segmented more easily from the images. Bizzotto et al.
(2014) [7] first implemented an LMC-based gesture control
plugin for amedical image viewer. They used the freely avail-
able GameWave App to define their gestures and map them
to the software’s functions. A study with 8 users was con-
ducted, but no results or evaluation details were presented.
The same approach was followed by Pauchot et al. (2015)
[55] and compared the LMC with the Kinect 1 qualitatively.
The authors assert that the LMC has a reduced work space,
is less tiring, has greater precision and a much smaller cas-
ing. Ebert et al. [13] developed a two-handed gesture set
for browsing and manipulating medical images, but did not
evaluate their approach. However, the authors experienced a
small delay before the gesture recognition and sensitivity to
smudges on the device.

Mauser et al. (2014) [37] use the LMC to control medical
instruments as well as a medical image viewer. A difference
from other gesture sets is the lock and unlock gestures to
avoid unintended gestures, as it was already suggested in
[7]. No evaluation details were presented. Rosa et al. (2014)
[59] tested the feasibility of medical image viewer control
with the LMC during 11 dental surgeries. Hand gestures
were developed as well as two-finger gestures for scaling,
rotating, windowing, browsing images or measuring. The
feasibilitywas provenwithoutmajor technical errors.Mewes
et al. (2015) [41] integrated a touchlessly controlled dis-
play into the radiation shield of a computed tomography
(CT) angiography intervention room. The user interacts with
2D images and 3D planning models via hand gestures with
the LMC. The gesture set was designed to be intuitive and
metaphoric. The user study with 12 subjects showed robust-
ness problems with the 3D rotation, although all gestures
were rated intuitive and self-descriptive. Saalfeld et al. [61]
improved the gesture set of Mewes et al. (2015) [41] (espe-
cially the 3D rotation) and compared it to state-of-the-art
touchscreen interaction. In a study with 10 subjects the task
duration and intuitiveness of the gesture set formedical image

manipulation were measured. The interaction with the LMC
is significantly slower, except for 3D rotation, which leads
to the conclusion that high-dimensional gestures are better
for more complex interaction tasks. Additionally, the touch-
screen interaction was described as more intuitive, which is
partly ascribed to the more frequent use of touchscreens on
smartphones and tablets. A two-handed gesture set with a
similar focus was developed by Opromolla et al. [52]. The
evaluation with 10 users led to the conclusion that the LMC
is too slow, not robust and not flexible enough for use in the
OR.An advantage is the natural interactionwith the software.
Park et al. [53] developed a universal LMC gesture mapper
to work with arbitrary medical image viewers. Either two-
handed gestures or one-handed gestures with a foot-pedal
form the user interface. This is achieved by mapping hand
gestures onmouse events. The system ismodular and battery-
powered to providemaximumflexibility. The evaluationwith
one surgeon resulted, unlike other publications, in the LMC
being significantly faster than mouse interaction, which the
authors explain with the possibility of concurrent zoom and
rotation. However, the gesture recognition rate ranged from
77–100%, with a false-positive rate of 52% of the double
click gesture.

Despite the high focus on body gestures in this subject,
touchless interaction is not only possible through hand and
arm movements, but also with voice recognition systems.
Mentis et al. [39] partly integrated voice commands in their
Kinect 1-based interaction and use them as function trigger
or mode switch. Hand gestures can be used for continuous
functions like browsing through a set of images. A surgeon
examined the system qualitatively and found it useful for use
in a clinical environment. However, no evaluation data were
given.

Laparoscopic assistance

During laparoscopic interventions, the physician often needs
an assistant to control the laparoscopic camera, the light or the
insufflator. Interhuman communication in theOR lacks preci-
sion and requiresmuch experience as a team. To eliminate the
possible complications which an indirect control implies, El-
Shallaly et al. [15] evaluated a commercial voice recognition
interface. Via voice commands, the light can be activated, the
camera is set up and white balanced and the insufflator can
be controlled. After treating 100 patients with and without
the system, the authors drew the conclusion that significantly
less time needs to be spent for switching components on and
off compared to manual control. Nevertheless, the authors
underline that the absolute gain in efficiency is only about
1 min in total per operation. The same commercial system
was evaluated by Salama and Schwaitzberg [63]. They inves-
tigated the availability of the system in comparison with an
assistant. As a result, the nurse was not immediately ready
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Table 2 Touchless control of laparoscopic and endoscopic devices, journal publications are marked with *

Technical approach Evaluation results

Voice commands

*El-Shallaly et al. [15] Comparison of routine laparoscopic intervention
with voice command-assisted light, camera and
insufflator control

Significantly shorter equipment setup time

*Salama and Schwaitzberg [63] Voice-activated control of light, camera
and insufflator

Instant control of equipment, nurse is not present at
77% of times commands were given

*Nathan et al. [46] Voice control of endoscope holding and automatic
positioning robot

Procedure not significantly longer, no second
surgeon needed

RGB camera

*Nishikawa et al. [49] Face motion control of endoscopic camera Accurate, natural, more efficient than voice control

Wachs et al. [73] Threshold-based head movement control of
endoscopic camera

Slower than with keyboard, easier to learn

Yoshida et al. [78] Switch multiple image streams with number of
fingertips

5-s delay, reliable

Inertial sensors

Reilink et al. [57] Head movements control gastroscope Less space needed as with assistant, slight drift
occurs

to execute commands in 77% of the times voice commands
were given to the voice control system. This implicates that
voice commands can make a laparoscopic intervention more
productive. Not only laparoscopic but also endoscopic proce-
dures can benefit from voice recognition assistance. Nathan
et al. [46] presented a robotic scope holder which is used to
position an endoscope and controlled by the physician’s spo-
ken distinct commands. The system was evaluated with 10
cadaver heads. There is no significant increase in time to set
up the endoscope or software. The major advantages are that
the system does not misinterpret commands, like a second
surgeon or assistant would, due to the direct interaction and
that the robot is not affected by fatigue.

A laparoscopic camera can be controlled with head move-
ments as well as with spoken commands. Nishikawa et al.
[49] first developed a camera-based head movement control
for this scenario. The user is monitored via an RGB camera,
and head movements are interpreted as gestures and mapped
on the laparoscopic camera actions tilt, pan, insert and retract.
According to the laboratory experiments with three users the
system is highly accurate and not misguiding. An in vivo
experiment with a pig revealed signs of fatigue in the user’s
neck. Wachs et al. [73] implemented a similar solution. If
the head angle is above a defined threshold, the camera turns
to the desired direction. A simulated surgery with 4 users
revealed that face orientation control is slower than keyboard
control, but easier to learn. A drawback is the absence of a
lock gesture or command, which makes unintended actions
possible. Yoshida et al. [78] successfully tested their finger-
based head-mounted display (HMD) view interaction during
a laparoscopic intervention. The user is presented multiple
views on the HMD, i.e., a video stream from the laparo-

scopic camera, medical image data and a video stream from
the head-mounted camera. The number of the user’s finger-
tips in front of the camera controls the viewports.

Reilink et al. [57] followed a similar approach as [49]
and [73], but with body-worn inertial sensors on the head
to track the physician’s movements. A monitor can be used
as display as well as a HMD. Three algorithms were imple-
mented: position dependent, velocity dependent and hybrid
movement control. The physician resets the initial position
with a foot pedal. Fifteen subjects tested a two-directional
gastroscope steering and preferred the velocity-dependent
approach and the HMD. No delay between head and cam-
era motion was noted. A disadvantage is that no information
about the tip orientation is given, and thus, the users do not
know which further movements are possible.

See Table 2 for a short summary.

Telerobotic assistance

Telerobotic surgery enables surgeons to conduct more pre-
cise and less invasive operations than conventional methods
do. Nevertheless, the control consoles are complex and diffi-
cult to handle. To facilitate the telerobotic control, Mylonas
et al. [45] developed an eye-tracking-assisted method to gen-
erate haptic constraints for the robot’s movements based on
the physician’s gaze point (see Table 3). These constraints
are experienced as haptic feedback with 6 degrees of free-
dom. The force opposed to the surgeon’smovement is related
to the distance between the eyes’ fixation point and the sur-
gical instrument and the underlying force profile (high, 1:1
scaling and linear spring force profile). This way, unwanted
movements of the robot can be avoided. Ten subjects tested
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Table 3 Touchless telerobotic assistance, journal publications are marked with *

Technical approach Evaluation results

Eye tracking

Mylonas et al. [45] Gaze-point-generated haptic constraints
using motor channeling

Improvement of task performance and accuracy,
hands are not overpowered

Stoyanov et al. [67] Gaze-based optimization of ablation path during
robotic surgery

2.2-mm error, jitter-free 3D path

Visentini-Scarzanella et al. [71] Gaze-contingent dense 3D reconstruction of
structure surface in ROI

3.5-mm reconstruction error, decreased
computational complexity

Clancy et al. [11] Eye-tracker-based telerobot camera autofocus with
liquid lens

Faster than manual mechanical focus, real-time
capable

Structured-light sensor (Kinect 1)

*Wen et al. [75] Hand gesture-controlled robotic surgery system
with augmented reality visualization on patient

Less than 2-mm needle insertion error

the eye tracking and motor channeling and 6 additional sub-
jects used it with a commercial telerobot. The linear spring
force profile performed best. The hands of the users were not
overpowered and no pre- or intraoperative registration was
necessary. A similar system was used to optimize ablation
paths on the surface of heart tissue with nonparametric clus-
tering by Stoyanov et al. [67]. The surgeon’s fixation points
are determined by measuring the corneal reflection from a
fixed infrared light source in relation to the center of the
pupil. An user study with 8 subjects was conducted with a
heart phantom model. The 3D path error was 2.2mm; the
path itself was jitter-free. Visentini-Scarzanella et al. [71]
used this binocular eye tracking to localize the physician’s
region of interest (ROI) on deformable tissue, which enables
a semidense stereo surface reconstruction with reduced com-
putational complexity and better resolution of the desired
area. A decent 3D reconstruction is mandatory for dynamic
active constraints, motion stabilization and image guidance.
The authors tested the method on a silicon heart phantom
with 15 fiducials. CT-generated 2D images and the heart
were temporarily and spatially aligned. The static reconstruc-
tion of smooth featureless areas showed a maximum error of
3.5mm, and the real-time dynamic motion recovery error
was 2.9±2.3mm. The difference between an eye-tracker-
based autofocus and built-in foot-pedal-based mechanical
focus was investigated by Clancy et al. [11]. A liquid lens
at the end of the commercial telerobot endoscope was used
to automatically focus the area the surgeon is fixating with
the eyes. The evaluation with 17 subjects revealed that the
eye-tracking autofocusmethod is not only faster but also feels
more comfortable and natural to the users. The liquid lense
response time was∼ 30ms. One advantage over mechanical
autofocus is that no moving parts are used, which implies a
longer durability.

Another interaction method to control a robot is hand
gesture-based with a range camera. Wen et al. [75] use a

Kinect 1 to recognize the physicians’ hand gestures, which
control a surgical robot to insert a needle into the operation
field as well as a projected augmented reality needle guid-
ance on the patient. Two modes of operation are possible:
manual and semiautomatic generation of ablation paths. The
automatically generated trajectory can be revised directly
on the patient with the RFA planning models. The context
can be selected with the palm; gestures are described by 90-
dimensional feature descriptors. Twenty-two insertion tests
were conducted to measure the accuracy of the whole sys-
tem. The needle insertion error in a static scenario was less
than 2mm.

Robotic assistance

A different use of robots from actually operating on the
patients is the assistance in the OR (Table 4). Li et al. [35]
introduced a robotic scrub nurse,which handsmedical instru-
ments over to the physician after being instructed by hand
gesture commands. A Microsoft Kinect 1 range camera is
used to detect 5 different finger poseswhich represent a single
instrument each, which will then be delivered to the surgeon.
Usability tests with 4 subjects revealed a 97% gesture recog-
nition rate, 160-ms gesture recognition time and 5- to 6-s
total interaction time including 2-s instrument delivery to a
fixed spot. The delivery precision is 25mm. Users rate the
system moderately easy to use, remember and learn, moder-
ately comfortable and safe. The robot delivery is 0.83s slower
than human delivery.

Hartmann and Schlaefer [20] use a gesture-controlled
robot to reposition the operating room light spot. An unlock
gesture is used to activate the robot. After that, either the
center of the palm or the center point between both hands is
followed. Eighteen users were involved in the evaluation. A
fixed track was to be followed by the light. Only one-handed
interaction was tested for precision and speed. The system is
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Table 4 Touchless control of robotic OR assistance, journal publications are marked with *

Technical approach Evaluation results

Voice commands and range camera (Kinect 1)

*Li et al. [35] Robotic scrub nurse, controlled with 5 gestures
and voice commands, hands over instruments

5- to 6-s total delivery time, 0.83 s slower than
human, 25-mm delivery precision

Structured-light sensor (Kinect 1)

*Hartmann and Schlaefer [20] Arm gesture control of OR lights Direction-dependent error in hand tracking,
effective, unlock gesture is robust

Table 5 Touchless intraoperative registration, journal publications are marked with *

Technical approach Evaluation results

Inertial sensors

Herniczek et al. [21] Orientation sensor under sterile gloves, point
placement for guidance in ultrasound

(US)-guided nephrostomy

100% recognition rate for back, reset and select
gesture, 92% for next gesture

Structured-light sensor (Kinect 1)

*Gong et al. [17] Initial 2D–3D positioning for X-ray image and 3D
volume registration, gestures based on skeletal and
depth data of hands

Sufficiently accurate

robust, reliable, and the unlock gesture is suitable for clinical
use.

Intraoperative registration

In addition to simple medical viewers, modern navigation
systems also provide the possibility to plan needle insertion
paths or register anatomical images from different imag-
ing modalities. Herniczek et al. [21] investigated the use of
body-worn inertial sensors on the hand under a sterile glove
to place points for needle insertion guidance on ultrasound
snapshots touchlessly. Four gestures were trained. No eval-
uation details were presented. The authors claim a gesture
recognition rate of 100% for all but one gesture (92%).

Gong et al. [17] introduced an interactive 2D/3D reg-
istration method with a depth-camera-based hand gesture
interaction. The user realizes an initial alignment of a 3D
model to X-ray images with two gestures. The gestures are
processed via the skeletal and depth data. A cursor is posi-
tioned directly via hand movements. Three users tested the
system. The positioning error was 8.3±5mm in 140±70s
positioning time.

Refer to Table 5 for a brief overview.

OR control

Sometimes the physician does want to control not only a spe-
cific navigation support or instrument touchlessly, but also
other arbitrary software in the OR. To facilitate this, Graet-
zel et al. [18] developed a system based on a stereo camera

to control any OR software contactlessly with hand gestures.
The gestures are performed in a 50×50×50cm workspace
and tracked and processed at 25Hz.With this system, the user
can move the mouse cursor and trigger mouse click events.
The authors conducted a user study in the laboratory with
16 participants and a mock-up user interface. Click gestures
were robust, and rapid gestures were not reliably detected.
The pointer often jittered and hand-eye coordination prob-
lems occured. Another test during an intervention showed
that the physicians preferred the hold-and-click gesture over
pushing the hand forward. Grange et al. [19] extended this
solution. The physician is permanently monitored by the
stereo and an RGB camera to infer context information. This
information can be used to automate the adaption of equip-
ment settings. The whole process is workflow-step-aware.
The authors did not evaluate their extension.

In many crisis situations the clinical staff in the OR have
to use both hands to ascertain the patient’s health. Therefore,
Alapetite [2] developed a voice recognition-based anesthesia
record system for the intraoperative use that allows anes-
thetists to control liquid flow and log events with spoken
commands from a fixed dictionary. This was generated from
medications that have been used in the hospital in the previ-
ous 2years. However, the language is natural. The command
recognition starts after an unlocking keyword and automati-
cally stops after a fixed period. Free text input is also possible.
Six anesthesia teams participated in the evaluation in two
sessions each. Conventional keyboard and touchscreen input
was compared to voice recognition interaction. The study
provided the findings that mental workload is decreased by
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Table 6 Touchless OR control and logging, journal publications are marked with *

Technical approach Evaluation results

Stereo camera

*Graetzel et al. [18] Universal one-handed interaction with OR
software; mouse mapper

Clicking reliable, scaling imprecise, rapid gestures
not robust, pointer jitters

Grange et al. [19] [18] extended by automatic intention detection;
semantic description of gestures

–

Voice commands

*Alapetite [2] Voice recognition-based anesthesia record in crisis
situations

Less mental workload, good addition to conservative
input

*Perrakis et al. [56] Comparison of 2 voice recognition systems
included in commercial integrated ORs

SIOS better performing than OR1, no significant
recognition errors due to speaker’s accent

Structured-light sensor (intel realsense)

*Meng et al. [38] Multi-display control with head-worn RGBD
sensor; finger tracking

Good usability, response must be improved, not
suitable for 3D rotation of medical data

natural language interaction. In order to do that, the authors
introduced the “average queue of events” metric as a men-
tal workload indicator. Perrakis et al. [56] compared the
voice recognition software of two integrated OR environ-
ments (Siemens Integrated OR System SIOS and Karl Storz
OR1) in a user studywith 74 subjects. The evaluation covered
the adjustment of OR light, increasing gas pressure, switch-
ing on the video controller and the control of the endolight
source. As a result, no significant difference in the number
of repeated commands due to different accents has shown.
However, the SIOSvoice recognition performed significantly
better than that of the OR1. The authors conclude that the
SIOS is more reliable, but all actions are performed faster
manually than with voice control.

Meng et al. [38] not only developed another gesture to
mouse event mapper, but also present a system to connect
the multi-user interaction to all software on the different
displays in the OR. The user wears a structured-light sen-
sor on the head and points with one finger to the direction
where the mouse cursor shall be moved to. The RGBD sen-
sor detects the finger and the corresponding display, which is
calibratedwith 2Dmarkers. The sensor data are processed on
a wearable computer-connected wireless to different mobile
devices. Those are plugged into the different computers and
control the cursor on each display. A user study with 7 par-
ticipants was conducted in a simulated OR environment and
revealed good usability. However, the system’s response to
the users’ movements must be improved.

The aforementioned publications are summarized in
Table 6.

Commercial state of the art

Some of the approaches that have been described before
have already arrived in commercial products. The company

Therapixel3 developed a medical image viewer software
called Fluid which can be controlled by a depth sensor that
recognizes hand gestures. The GUI of the client software
is particularly designed for touchless interaction. Differ-
ent clients are connected to a central server which caches
DICOMdata, builds 3D reconstructions and serves as aPACS
gateway.Another commercial solution is distributed byGest-
sure.4 The product emerged from the system presented by
Strickland et al. [68]. A Kinect 1 is used to map arm gestures
ontomouse actions, i.e., a USBmouse is emulated and can be
used for every (OR) software. A different approach was fol-
lowed by TedCas.5 The company developed a connectivity
box for medical applications called TedCube which takes a
number of different gestural control sensors as input indepen-
dent of the operating system and maps movements of hands,
arms or eyes to keyboard ormouse commands. They also pro-
vide a LMC-based interface to control the mobile DICOM
viewer TedSIGN. NZTech6 introduced an projection-based
augmented reality interface to interact touchlessly with med-
ical image data. The system consists of a ceiling-mounted
projector-camera unit and an optional self-developed hand
gesture sensor integrated in a table. A user interface with
control elements for a medical image viewer software is pro-
jectedonto an arbitrary surface in the sterile area.Byhovering
the hand over the projected buttons or by executing circle and
pointing gestures above the sensor the physician can trig-
ger the desired actions directly and sterilely. The SCOPIS
GmbH7 provides touchless hand gesture control of a surgi-
cal navigation system based on a LMC. The user can interact

3 http://www.therapixel.com/.
4 http://www.gestsure.com/.
5 http://www.tedcas.com/.
6 http://www.nztech.ca/.
7 http://www.scopis.com/.
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withmedical images and 3D visualizations via amouse emu-
lation or gesture interface.

Discussion

This literature reviewpresents the first broad overviewof sys-
tems providing touchless software interaction for sterile and
direct intraoperative or interventional use. The list of publica-
tions contains various technical approaches for a diverse set
of objectives. While most of the papers deal with touchless
control of medical image viewers and laparoscopic devices,
there are also publications regarding robotic and telerobotic
assistance or general OR control.

Before 2013 there was a great diversity in approaching a
natural user interface in the medical domain with RGB cam-
eras, stereo cameras, one time-of-flight camera, body-worn
inertial sensors or voice recognition, but only 22 papers were
published by this time (see Fig. 2). This is an average of
2.2 publications per year. The release of the consumer-grade
console and PC gaming range camera Microsoft Kinect 1 in
2010 and the Kinect SDK in 2012 obviously had a big impact
on the human–computer interaction community. With this
depth sensor, it was made easy to create touchless interfaces
at affordable price. This is reflected by the relatively high
number of 21 publications and one commercial product intro-
ducing touchless interfaces with theKinect 1 since 2013. The
market introduction of the LMC had a similar effect, leading
to 10 publications and two companies adopting the device
since 2014. Between 2014 and 2015 10.3 papers were pub-
lished in average per year. Compared to the years before, a
rising trend in the number of publications and thus in interest
in the research area can be seen.

The high number of publications introducing very similar
approaches in touchless medical image viewer gesture con-
trol shows that in the future the research community does
not have to produce yet another gesture interface for med-
ical image interaction in a special application. Instead, it has

Fig. 2 Number of publications dealing with touchless interaction in
the OR per year, number 2016 as of June

to be put more effort in improving and evaluating usability
and intuitiveness. Especially in the medical domain, it is cru-
cial to design user interfaces that help the physicians to be
more effective and thus shorten treatment duration. Never-
theless, only a few touchless interaction systems have been
evaluated properly in this respect: 8 groups tested their sys-
tems in a real clinical setting; 7 did not provide evaluation
details at all. The remaining 40 systems have been exam-
ined in the laboratory, but often with too few participants
(fewer than ten), which can skew the results. For example,
Nathan et al. [46] and Hötker et al. [24] gained better voice
recognition rates under laboratory conditions than Alapetite
[2] or Perrakis et al. [56] in a real OR environment. Hence,
the research community needs to rethink its user interface
evaluation methods to eventually enable the integration of
touchless interaction capabilities into the OR. Hettig et al.
[22], Saalfeld et al. [61], Nouei et al. [50], Opromolla et al.
[52], Meng et al. [38] or Wipfli et al. [77] are examples of
appropriate usability testing, since they follow awell-defined
study concept, use standardized usability questionnaires and
provide qualitative and quantitative data as proof. However,
those usability studies always have to be reviewed critically,
since the tested implementation and study setup might not
be the best solution possible. Therefore, it is not possible to
draw a conclusion about the applicability of an interaction
device based on a single implementation.

Further research also needs to be done in the aspect of
hardware specialization and optimization. Most of the sys-
tems in the literature are built with commercial products like
the Microsoft Kinect 1 or the LMC, which are general pur-
pose hardware designed for games and home use with, in
case of the Kinect 1, a large working space but very low
resolution of the imprecise depth data. Custom-built, high-
class, use-case-dependent devices could bring advantages for
the robustness as well as for the usability. Additionally, it is
promising to usemultimodal interaction to fulfill the require-
ments of the clinical application. As proposed in Mentis et
al. [39], voice commands could be used as trigger functions
such as input unlocking or as functionality switch, and hand
or body gestures may be used for continuous manipulation of
parameters. If the user needs to interact with multiple appli-
cations on different displays, new gaze tracking approaches
as in Meng et al. [38] can help to switch between them.

As proposed by Grange et al. [19] and Jacob and Wachs
[28], clear software restrictions should be implemented to
prevent unintended input. For the purpose of better under-
standing the intention of the interacting person, sensor fusion
of all instruments and interaction modalities in the OR and
interventional radiology suite will be of interest. Therefore,
it must be possible to gather all the information in one place.
The OR.NET8 project aims at providing a signal bus and

8 http://www.ornet.org/?lang=en.
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software protocol for the safe interconnection of instruments
in clinical environments. Together with standardized work-
flows for medical procedures [26,27], much of the manual
physician–computer interaction can be replaced by auto-
mated presentation of relevant information in the respective
workflow step. This way physicians can concentrate on the
actual intervention by reducing the necessary interactionwith
software.

Another crucial condition for increasing the usability
when using touchless input devices is feedback for the user.
Compared to mouse, keyboard and touchscreen interaction
there is no haptic feedback (except in Mylonas et al. [45]).
Thus, as stated by Silva et al. [65], visual or even auditory
feedback [30,54,74] is important to prevent confusion but
often not provided.

Many of the technical solutions presented in the field of
intraoperative gesture interaction are prototypes emulating
mouse interaction which are set on top of existing medical
software. Although there exist good approaches for integrat-
ing touchless interaction better into the existing software
via mobile devices [38], one has to get past the 2D WIMP
paradigm to enable real natural user interfaces [76]. Theman-
ufacturers of medical software will have to redesign their
user interfaces, considering menus and action triggers, so
that users can benefit from 3D interaction devices.

Although most of the groups present very sophisticated
and robust methods to control a medical image viewer,
telerobotic systems or other intraoperative assistance (with
recognition rates mostly >90%), it has to be noted that in the
medical domain an almost always correct recognition of input
commands is mandatory to decrease the risk for the patient
and the workload of the clinical staff. Future research should
therefore focus on further increasing robustness and accuracy
of touchless control. In the past years, dozens of sophisticated
and easy-to-usemachine learning frameworks have emerged,
e.g., Theano,9 Tensorflow10 or the Stanford CoreNLP Nat-
ural Language Processing Toolkit [36]. Those toolkits enable
developers to train and classify voice commands or gestures
[47,48], given that training data are available, and to reach
much better recognition rates than with conventional meth-
ods even in the noisy or cluttered environment [12,23,43]
of an OR or interventional radiology suite. Natural language
processing is constantly improving. Chan et al. (2016) [9]
presented a neural network that learns to transcribe speech
utterances to characters at a word error rate of 14.1% with-
out a dictionary or language model. Before, as Cambria and
White (2014) [8] pointed out, a large knowledge base was
needed to match existing vocabulary and recorded voice.
Speech recognition with large vocabulary knowledge works
at a word error rate of 8% [62]. With improved semantic

9 http://deeplearning.net/software/theano/.
10 https://www.tensorflow.org/.

information acquisition [3], and with the promising advan-
tages of neural network integrated circuits [40], it will be
possible for computers to understand humans offline without
the need for large data centers that are only available through
internet connections.

Considering new interaction hardware approaches, a dis-
ruptive element in interactive medical software will be the
augmented reality HMDs Meta 2 (Meta Company, Portola
Valley, CA, USA) or Microsoft Hololens.11 They provide
lightweight augmented reality glasses, which can be used to
display relevant information or images spatially aligned with
the patient, and, in case of the Hololens, eye tracking, gesture
and state-of-the-art speech recognition capabilities to interact
with them. Such devices have the potential to bring together
all information in one place, similar to presenting mobile
augmented reality solutions [4,31,44], and additionally give
the opportunity to interact with all relevant data naturally via
sophisticated speech recognition (as mentioned before) and
touchless gestures. The affordable pricewillmake prototypes
pop up in the medical domain, as the Kinect 1 and the LMC
did.

With those technologies around the corner and if the
research community adapts its efforts in increasing the
usability, it will be possible for physicians to interact with
medical software context-aware, workflow-step-dependent
and finally hands-free.
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