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Abstract
Purpose In both structural and functional MRI, there is a
need for accurate and reliable automatic segmentation of
brain regions. Inconsistent segmentation reduces sensitiv-
ity and may bias results in clinical studies. The current
study compares the performance of publicly available seg-
mentation tools and their impact on diffusion quantification,
emphasizing the importance of using recently developed seg-
mentation algorithms and imaging techniques.
Methods Four publicly available, automatic segmentation
methods (volBrain, FSL, FreeSurfer and SPM) are compared
to manual segmentation of the thalamus and hippocampus
imagedwith a recently proposed T1-weightedMRI sequence
(MP2RAGE). We evaluate morphometric accuracy on 22
healthy subjects and impact on diffusivity measurements
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obtained from aligned diffusion-weighted images on a subset
of 10 subjects.
Results Compared to manual segmentation, the highest
Dice similarity index of the thalamus is obtained with vol-
Brain using a local library (M = 0.913, SD = 0.014)
followed by volBrain using an external library (M = 0.868,
SD = 0.024), FSL (M = 0.806, SD = 0.034), FreeSurfer
(M = 0.798, SD = 0.049) and SPM (M = 0.787,
SD = 0.031). The same order is found for hippocampus
with volBrain local (M = 0.892, SD = 0.016), volBrain
external (M = 0.859, SD = 0.014), FSL (M = 0.808,
SD = 0.017), FreeSurfer (M = 0.771, SD = 0.023) and
SPM (M = 0.735, SD = 0.038). For diffusivity measure-
ments, volBrain provides values closest to those obtained
from manual segmentations. volBrain is the only method
where FA values do not differ significantly frommanual seg-
mentation of the thalamus.
Conclusions Overall we find that volBrain is superior in
thalamus and hippocampus segmentation compared to FSL,
FreeSurfer and SPM. Furthermore, the choice of segmenta-
tion technique and training library affects quantitative results
from diffusivity measures in thalamus and hippocampus.

Keywords MRI ·Segmentation ·Hippocampus ·Thalamus ·
MP2RAGE · Diffusion-weighted imaging

Introduction

The extensive use of magnetic resonance imaging (MRI) to
investigate pathology in the brain entails identification of
specific regions of interest (ROI) for quantitative analysis.
Accurate manual tracing of deep brain structures, such as the
thalamus and hippocampus, demands a high level of tracer
expertise and preferably standardized segmentation proto-
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cols. Introducing automatic or semi-automatic techniques
into post-processing pipelines accelerates data analysis and
offers reproducible and consistent decisions across datasets
in large studies, which is crucial for obtaining reliable results
[1].

Several software solutions for automatic segmentation
are publicly available. Frequently used softwares in clin-
ical research include “Oxford Centre for Functional MRI
of the Brain” (FMRIB) Software Library (FSL) (http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/), FreeSurfer (http://surfer.nmr.
mgh.harvard.edu) and Statistical ParametricMapping (SPM)
(http://www.fil.ion.ucl.ac.uk).

The segmentation techniques applied in FSL, FreeSurfer
and SPM are model-based methods. In highly variable data,
such as MRI of the brain, it may be difficult for the segmen-
tation tools to model the ROIs with sufficient accuracy, even
when the techniques are trained on representative datasets.
To address this, multi-atlas label fusion has been suggested
and has demonstrated excellent segmentation abilities [2–4].
Label fusion relies on a representative image library with
corresponding validated structure segmentations (atlases).
Recently,multi-atlas segmentation techniques, such as patch-
based segmentation, have become popular [5,6]. Patch-based
methods have the advantage of requiring a smaller training
library compared to regular label fusion and is therefore rela-
tively easy to implement in a local setting [5,7]. Even though
these improvements in segmentation algorithmshave demon-
strated highly accurate morphometric results,1 most of the
novel approaches are still not publicly available and there-
fore less used in clinical research. Moreover, the impact of
segmentation accuracy on quantification of parameters from
other imaging modalities, such as diffusion and perfusion
MRI, is not well studied.

Quantitative diffusion tensor imaging (DTI) is widely
used to investigate microstructural changes in tissue. In dis-
eases that cause subtle microstructural changes, such as mild
traumatic brain injury (mTBI), there is a need for sensitive
biomarkers in clinically relevant areas of the brain. Thalamus
and hippocampus are two deep brain structures, where previ-
ous DTI studies have shown microstructural changes linked
to cognitive impairment [8,9], stress [10] and headache
[11]. Segmentation directly on the DTI maps is prone to
inconsistency and bias, as DTI provides limited anatomical
information. Unbiased and automatic studies rely on accu-
rate T1-weighted (T1w) segmentation and co-registration for
obtaining quantitative measurements within relevant brain
regions. Thus, it is highly relevant to investigate the impact of
automatic segmentation accuracy on these quantitative mea-
sures.

1 See, for example, the recent MICCAI workshop on Multi-Atlas
Labeling, https://masi.vuse.vanderbilt.edu/workshop2012/images/c/
c8/MICCAI_2012_Workshop_v2.pdf.

Patch-based segmentation methods [5] perform well on
conventional T1w images, such as Magnetization Prepared
Rapid Acquisition Gradient Echo (MPRAGE) [12]. To the
best of our knowledge, the accuracy of different automated
segmentation methods has not yet been compared using T1w
images from the recently proposed MP2RAGE sequence,
which significantly reduces the intensity bias and provides
superior grey matter (GM) to white matter (WM) contrast
[13].

In this study, we compared the performance of a multi-
atlas, patch-based segmentation method, as implemented in
the online software platform volBrain (with two different
training libraries), to three widely applied methods imple-
mented in FSL, FreeSurfer and SPM. We used manual
segmentation as the gold standard andmeasured the segmen-
tation accuracy of thalamus and hippocampus when imaged
with MP2RAGE. Additionally, we applied the segmented
masks of thalamus and hippocampus on co-registered frac-
tional anisotropy (FA) and mean diffusivity (MD) maps for
the purpose of evaluating the effect on the quantification of
these diffusivity metrics.

Material and methods

Participants

Twenty-two healthy subjects were included in the study (age
range 19–40 years, 12 females). MP2RAGE images were
acquired from all subjects and DTI images in 10 subjects.
All subjects were scanned on a Siemens Magnetom Skyra
3T MRI system with a 32-channel head coil. MP2RAGE
parameters were acquired with TR = 5 s,TI1 = 0.7 s,
TI2 = 2.5 s, α1 = 4◦, α2 = 5◦, a 3D sequence imaged at
isotropic 1mm3 resolution (acquisition matrix: 240 × 256,
176 sagittal slices) and turbo factor of 176 as defined byMar-
ques et al. [13]. DTI was acquired with 32 directions, 5 B0
acquisitions, TR=10.9 s, TE = 0.079, TI = 2.1 s, imaged at
isotropic 2.3mm3 resolution (acquisition matrix: 96 × 96,
38 axial slices), and inversion recovery-based CSF suppres-
sion to reduce partial volume effects. Figure 1 provides an
overview of the methods and comparisons.

Pre-processing

MP2RAGE images were calculated as the ratio of two
MPRAGE images, acquired with different inversion times
[13]. As reported by Fujimoto et al. [14], the amplified back-
ground noise in MP2RAGE images may introduce errors
in FreeSurfer segmentations. To deal with this, we used a
slightly different approach than Fujimoto and colleagues.
We classified the intensities of the proton density-weighted
image acquired during the second inversion recovery into
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Fig. 1 Overview. Left six segmentation methods, middle the two ROIs highlighted in red (upper thalamus, lower hippocampus) and right three
MRI comparisons (upper T1 (DSI comparison), middle FA, lowerMD)

four classes using a Fuzzy C-means algorithm [15]. This
robustly separates the background (1 class) from foreground
(3 classes). To regain a “natural” background noise, we added
the background noise of the second inversion recovery to the
combined (flat) image. Themodified imagewas used as input
to all segmentation pipelines, and no errors were detected.
Despite inherent intensity normalization of the MP2RAGE
images, all segmentation tools were run with intensity non-
uniformity correction, as this was the default setting.

Diffusion data were eddy current and motion corrected
using FSL, and EPI distortion correction was performedwith
ExploreDTI toolbox [16]. During pre-processing, the dif-
fusion data were resampled to the space of the undistorted
MP2RAGE image and FA andMDvalues were subsequently
calculated with the ExploreDTI pipeline.

Manual segmentation of ROIs

Thalamus and hippocampus from the 22 MP2RAGE images
were manually segmented by an experienced neuroradiol-
ogist (EN: 7years of experience in neuroradiology) and a
trained assistant (TA) using ITK-SNAP (www.itk-snap.org)
[17]. The thalami were first manually traced by EN in the
axial plane using anatomical landmarks. Next an initial train-
ing phase of TA using the protocol outlined by Power et
al. [18] and supervised by EN was established. TA then
adjusted the thalami in all three principal planes according
to the protocol. Bilateral thalamus segmentation took 35–
40 min per subject. The hippocampi were manually traced
according to the EADC-ADNI segmentation protocol [19]
by TA, initially supervised by EN. Segmentation of both
hippocampi took 25–35 min per subject. As done in the
EADC-ADNI protocol [19], all manual segmentations were
performed in MNI space, where similar appearance of the

nuclei is expected to improve tracing consistency and speed
when using the segmentation protocols. The final segmen-
tations were transformed back to scanner native space for
comparison. Manual intra-operator reliability on hippocam-
puswas tested 10months after initial segmentations byTAon
the ten subjects with DTI. A 1-h training session, reading the
protocol and training on a separate subject were performed
before segmentation of the ten subjects was carried out.

Automatic segmentation

The following provides a brief overview of the four process-
ing methods volBrain, FSL, FreeSurfer and SPM with the
applied settings.

volBrain

volBrain (http://volbrain.upv.es), which is an open-access
platform, is based on an advanced pipeline providing auto-
matic segmentations of several brain structures [20]. The
version of volBrain used in the current setting involves an
updated version of a recent patch-based method [5]. We
tested the segmentation method using two different libraries:
(1) the default volBrain library (external) consisting of 50
conventional T1w images (MPRAGE and SPGR), and (2)
our ownmanually segmented library (local) of 22MP2RAGE
images in a leave-one-out fashion. In both cases, the images
were flipped across the mid-sagittal plane to artificially
increase the library size as done in related work [7].

FSL

FSL is freely available for download online (http://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/). The FMRIB’s Integrated Registration
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& Segmentation Tool (FIRST), from FSL v5.0, was used
to segment subcortical structures [21]. FSL FIRST is a
model-based segmentation tool that uses training data from
manually segmented images. In the current pipeline, we
used the default setting of FIRST, which applies empirically
optimized settings (numbers of modes and shape/boundary
correction) for each structure (see http://fsl.fmrib.ox.ac.uk/
fsl/fsl-4.1.9/first/index.html).

FreeSurfer

FreeSurfer image analysis suite (version 5.3), which is doc-
umented and freely available for download online (http://
surfer.nmr.mgh.harvard.edu), was used in a default mode in
the current setting. The segmentation maps are created using
spatial intensity gradients across tissue classes and are there-
fore not simply reliant on absolute signal intensity [22].

SPM

SPM is a MATLAB-based (MathWorks Inc.) freely avail-
able software, which can be downloaded online (http://www.
fil.ion.ucl.ac.uk). Segmentation was performed with SPM12
and MATLAB R2015b by combining the unified segmen-
tation tool with the neuroinformatics SPM template [23],
which consists of multiple structures of the brain segmented
in Montreal Neurological Institute (MNI) space.

Data and statistical analysis

The segmentations obtained from the four automaticmethods
were compared to the manual segmentations using volume,
Dice similarity index (DSI), false positive rate (FPR), false
negative rate (FNR), and Hausdorff distance estimated bilat-
erally. We report mean (M) and standard deviations (SD) and
visualize data with boxplots.

DSI is defined as 2C
A+B and is the quotient of similarity

ranging from zero to one. A and B are the number of voxels
in segmentation A and segmentation B, respectively, and C
is the number of voxels shared by the two segmentations.
FPR and FNR were calculated, respectively, as number of
false positive and false negative voxels as percentage of the
total manually segmented number of voxels. Hausdorff dis-
tance, h, indicates themaximum distance error and is defined
as the maximum distance, d, from the surface of segmenta-
tion A to the nearest point in the surface of segmentation
B: h(A, B) = maxa∈A{minb∈B{d(a, b)}}. Intra-rater relia-
bility, volume, DSI, FPR, FNR and Hausdorff distance were
analysedwith two-wayANOVAandpost-estimationwas car-
ried out, with a significance level of 0.05. Finally, FA and
MD values were analysed using two-way ANOVA. Post hoc
analyses of FA and MD were carried out with a primary
analysis of the automatic segmentations against the manual

segmentation and secondary between the automatic meth-
ods. Results are presented at a significance level of 0.05, and
in addition, diffusivity results were reported with correction
for multiple comparisons (60 tests on diffusion metrics were
carried out, which yields a Bonferroni-corrected threshold of
p = 0.0008).

Results

Intra-operator reliability of manual segmentation

The 10-month intra-operator reliability test of hippocampus
manual segmentation resulted in a mean volume difference
of 3.1% (SD = 4.9%), which was not significantly differ-
ent (p > 0.05). Mean DSI was 0.913 (SD = 0.010), and
mean FPR and FNR were, respectively, 10.4 (SD = 3.4%)
and 7.3% (SD = 1.6%). Intra-operator Hausdorff distances
ranged from 2.2 to 4.9 mm. For DTI metrics, the overall
model was significantly different for both FA (p < 0.001)
and MD (p < 0.001). Post-estimation revealed a FA mean
difference of 0.003 (SD = 0.002) which was significantly
different (p = 0.003). MD obtained a mean difference of
0.006×10−3(SD = 0.006×10−3), which was significantly
different (p = 0.018). If Bonferroni corrected, there is no
significant difference between the manual segmentations.

Thalamus and hippocampus volumes

Figure 2 shows the volumes of thalamus andhippocampus for
eachof the segmentationmethods.Overall themodelwas sig-
nificantly different in both ROIs (p < 0.001). There was no
significant difference (p > 0.05) in manual versus volBrain
local, manual versus volBrain external and volBrain local
versus volBrain external in thalamus, but all other compar-
isons for thalamus were significantly different (p < 0.05).
The hippocampus segmentations showed significantly higher
volumes of volBrain external, FSL, FreeSurfer and SPM
compared to the manual and volBrain local, and only FSL
versus FreeSurfer and volBrain external versus SPM were
not significantly different (p > 0.05) from each other.

Manual versus automatic segmentation

Comparison of manual and automatic segmentation methods
showed a substantial variation in DSI across the methods
(see Fig. 3), and the overall model was significantly different
(p < 0.001) for both thalamus and hippocampus DSI, FPR
and FNR. To maintain overview, only non-significant (p >

0.05) p values are marked in Fig. 3. All other p values are
significant (p < 0.001).

DSI of the thalamus was significantly higher for volBrain
local (M = 0.913, SD = 0.014) and volBrain external
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Fig. 2 ROI volumes of the thalamus and hippocampus. From leftman-
ual, volBrain local, volBrain external, FSL, FreeSurfer and SPM. Boxes
indicate 25 and 75% percentile and the bold line the median.Whiskers
indicate the most extreme point within 1.5 times the interquartile range.

Data points outside this range are plotted individually. Horizontal bars
indicate non-significant test for difference in volume. The remaining
comparisons showed significant differences in volume

Fig. 3 DSI, FPR and FNR for segmentations of the thalamus and
the hippocampus using volBrain local (vBlocal), volBrain external
(vBext), FSL, FreeSurfer and SPM compared to the manual “gold stan-
dard”. Boxes indicate 25 and 75% percentile and the bold line the
median.Whiskers indicate the most extreme point within 1.5 times the

interquartile range. Data points outside this range are plotted individu-
ally.Horizontal bars indicate non-significant test for difference in DSI,
FPR and FNR. The remaining comparisons showed significant differ-
ences
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Fig. 4 Hausdorff distance of the automatic segmentations of hip-
pocampus and thalamus compared to the manual segmentation. Boxes
indicate 25 and 75% percentile and the bold line the median.Whiskers
indicate the most extreme point within 1.5 times the interquartile range.

Data points outside this range are plotted individually. The horizontal
bar indicates a non-significant test for difference in Hausdorff distance.
The remaining comparisons showed significant differences

(M = 0.868, SD = 0.024) compared to FSL (M = 0.806,
SD = 0.034), FreeSurfer (M = 0.798, SD = 0.049) and
SPM (M = 0.787, SD = 0.031). FreeSurfer was not signifi-
cantly different fromFSL or SPM. FPR in the thalamuswhen
segmented with FSL (M = 41%) and SPM (M = 42%)
was significantly higher than the other segmentation meth-
ods. Over-segmentations are exemplified in Fig. 5a, b, where
the significantly lower FPR of volBrain local (M = 9%)
and external (M = 14%) also can be observed. FreeSurfer
FPR was significantly higher than volBrain and significantly
lower than FSL and SPM. The mean FNR of the four meth-
ods ranged from 5 to 13% all being significantly different,
except volBrain local versus SPM, volBrain external versus
FreeSurfer and FSL versus SPM.

The DSI of the hippocampus demonstrated significantly
different values between all methods, with volBrain local
(M = 0.892, SD = 0.016) showing the best performance,
followed by volBrain external (M = 0.859, SD = 0.014),
FSL (M = 0.808, SD = 0.017), FreeSurfer (M = 0.771,
SD = 0.023) and SPM (M = 0.735, SD = 0.038). A
similar pattern was observed for FPRs, with volBrain local
performing best (M = 9%) followed by volBrain external
(M = 26%), FSL (M = 36%), SPM (M = 40%) and
FreeSurfer performing worst (M = 41%). FSL versus SPM
and FreeSurfer versus SPM were the only methods which
were not significantly different in FPR. Mean FNR ranged
from 5 to 19%, and all methods were significantly different,
except volBrain local versus FreeSurfer.

In terms of Hausdorff distance, the overall model was
significantly different in both thalamus and hippocampus

(p < 0.001). Figure 4 shows the Hausdorff distances
for the automatic hippocampus and thalamus segmenta-
tions with low distances indicating good performance. Post-
estimation showed that allmethods had significantly different
Hausdorff distances (p < 0.05) except volBrain exter-
nal versus FSL in thalamus. The best performance was
seen with volBrain local, and the highest Hausdorff dis-
tances were measured with FreeSurfer in both thalamus and
hippocampus.

Visual inspection of ROIs

Examples of manual segmentations and the corresponding
automatic segmentations of the thalamus and hippocampus,
overlaid on the T1w image and the FA map, are shown in
Fig. 5

As illustrated, FreeSurfer, FSL and SPM generally over-
segment the thalamus, especially the non-thalamic tissue near
the border of the internal capsule (IC). volBrain external over-
segments to a lesser extent, and volBrain local demonstrated
only subtle over-segmentation at the inferior and lateral bor-
der of the thalamus. The same pattern of over-segmentation
is found in the hippocampus with more extensive over-
segmentation by FSL, FreeSurfer and SPM, but also slightly
by volBrain external, compared to the manual (Fig. 5a, b).
The over-segmentation of FSL, FreeSurfer and SPM in the
hippocampus is mainly restricted to the superior and the ros-
tral part of the hippocampus in the transition to thalamus and
fornix.
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Fig. 5 Examples of manual and automatic segmentations of thalamus
and hippocampus presented in a the subject where volBrain local had
the best performance, and b where volBrain local had the worst perfor-
mance.Upper two rows thalamus in an axial view, overlaid on native T1
and co-registered FA images.Third row 3D reconstructions of thalamus.
The lower three rows contain similar visualizations for hippocampus

segmentations. Left to right manual, volBrain local, volBrain exter-
nal, FSL, FreeSurfer and SPM methods. Green areas indicate overlap
between automatic methods and manual segmentation. Red indicates
areas, which are included in the automatic, but not the manual method
(false positives).Blue indicates areas, which are included by themanual,
but not the automatic method (false negatives)

Fig. 6 FA and MD values for thalamus obtained by the six different segmentation methods

Diffusivity results: Thalamus

The model was overall significantly different in the diffu-
sivity measurements for both FA (p < 0.001) and MD

(p < 0.001) in thalamus. Figure 6 shows mean FA and MD
values in thalamus extracted from the six different segmen-
tations and howMD values of all segmentations consistently
change based on the segmentation method used, while FA
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Fig. 7 FA and MD values for hippocampus obtained by the six different segmentation methods and the second manual inter-rater segmentation
(man2)

values change less consistently. The volBrain local method
provided the most accurate measurements compared to the
manual segmentation.

Diffusivity results: Hippocampus

The model also provided overall significantly different
results for FA (p < 0.001) and MD (p < 0.001) in hip-
pocampus. Diffusivity results of the hippocampus are shown
in Fig. 7. The figure illustrates the same consistent increase
or decrease in MD between methods and subjects, but with
different offsets and variation compared to the manual seg-
mentation. FA showed a less consistent pattern.All automatic
methods were significantly different from the manual values.
When corrected for multiple comparisons, FA values for all
methods stayed significantly different from the manual seg-
mentation, except volBrain local and SPM, and for MD, all
methods stayed significantly different except volBrain local.

Post hoc analysis on diffusivity parameters between
manual and automatic segmentation

Post hoc analysis for thalamus and hippocampus is reported
in Table 1. The post hoc analysis of thalamus revealed that
only volBrain local was not significantly different from the
manual segmentation and obtained the lowest mean differ-
ence of M = −0.3% in FA and M = −0.1% in MD.
The other methods obtained a higher mean difference, rang-

ing from M = 3% to M = 9% in FA and M = 1–3% in
MD.

All methods obtained significantly different diffusivity
parameters in the hippocampus when compared to the man-
ual segmentation. The volBrain local demonstrated the most
accurate result in the hippocampus, with a mean difference
of M = −1% of FA and M = −0.5% of MD. If corrected
for multiple comparisons, volBrain local FA and MD were
not significantly different from the manual and neither was
the SPM result of FA.

Post hoc analysis on diffusivity parameters between the
automatic segmentation methods

Between-method comparison revealed more variable
results. For an overview, see Table 2 with indication of cor-
rected and un-corrected p values for both thalamus and
hippocampus. All methods, except FSL, FreeSurfer and
SPM, were significantly different from each other, when
measuring FA in the thalamus. When measuring MD in
the thalamus, all five methods yielded significantly different
results. For hippocampus FA measurements, only volBrain
local stood out as different from all the other methods. Fur-
thermore, volBrain external was significantly different from
FreeSurfer, while FSL versus FreeSurfer and SPMwere also
significantly different. For hippocampus MD, all methods
were significantly different, except volBrain external versus
FSL and FreeSurfer versus SPM.
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Discussion

In this study, we evaluated the performance of a recent patch-
based segmentation method [5] as implemented in volBrain
[20] and three widely used conventional methods as imple-
mented in FSL [21], FreeSurfer [22] and SPM [23]. Using
MP2RAGE images, we tested the algorithms on two often
investigated deep brain structures: the thalamus and the hip-
pocampus. We found that the patch-based segmentation had
the best overall accuracy. FreeSurfer, FSL and SPM all over-
segmented the thalamus including non-thalamic tissue near
the border of the IC and under-segmented in regions of the
medial and lateral geniculate of the thalamus. In the segmen-
tation of hippocampus, volBrain performed best followed by
FSL, FreeSurfer and SPM. Moreover, we demonstrated that
volBrain, based on a local library, was the only method, in
which the diffusivity metrics of the thalamus did not differ
significantly from the metrics obtained based on manual seg-
mentation (Table 1). Analysis of hippocampus revealed that
volBrain and SPM (although reporting low DSI) were not
significantly different (Bonferroni corrected) from the man-
ual method in terms of FA, and for MD only, volBrain local
was not significantly different. This demonstrates that seg-
mentation accuracy impacts the obtained diffusivity results,
and less accuratemethods, such as FSL, FreeSurfer andSPM,
do not produce consistent diffusivity results.

The accuracy of the patch-based segmentation method in
our study is comparable to previous results on hippocam-
pus segmentations using MPRAGE images [5,6]. A study
by Patenaude et al. [21], using conventional T1w images and
a leave-one-out comparison on its own library, found higher
DSIs using FSL than found here. Patenaude and colleagues
reported a mean DSI of 0.887 and 0.840 for the thalamus and
hippocampus, respectively. This difference may reflect the
importance of using coherent labelling protocols and similar
imaging parameters within the template library. Patenaude
et al. did, however, not reach the accuracy of the volBrain
local segmentation in our study with DSI of 0.913 and 0.892,
respectively. To compare the performance of the volBrain
method with a training library different fromMP2RAGE, we
applied volBrain with an external training library consisting
of MPRAGE and SPGR images. We found that volBrain still
performed better than FSL, FreeSurfer and SPM (Fig. 3).
The results of the intra-reliability test on hippocampus fur-
ther emphasize the advantage of automatic segmentation.We
found a mean DSI of 0.915, which is consistent with the pre-
vious findings by Frisoni et al. [24] of DSI= 0.89. This result
is at an accuracy level of volBrain local. However, in contrast
to manual segmentations, automatic methods are determinis-
tic and yield consistent errors. Thus, automatic segmentation
methods are more robust in a longitudinal setting.

FSL, FreeSurfer and SPM over-segmented the structures
with FPRs in the range of 15–42%. This resulted in con-
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Table 2 Mean difference in FA and MD (×10−3) values of thalamus and hippocampus between the five automatic segmentation methods

MD (x 10–3)

MD (x 10–3)

Mean difference below the diagonal and p values above (∗ indicating significance at a 0.05 level and ∗∗ significance when Bonferroni corrected)

sistent inclusion of white matter in the segmented regions
of thalamus and hippocampus (both grey matter structures)
as qualitatively verified using FA maps (see Fig. 5a, b).
Regarding the volBrain method, no systematic over- or
underestimation for thalamus was observed with neither
local nor external libraries (FPR out-balanced FNR). Patches
can capture texture similarities [5], and this is perhaps why
the patch-based method attains consistently high accuracy
on both thalamus and hippocampus. volBrain local was
unbiased for hippocampus, while volBrain external slightly
over-segmented hippocampus (FPR M = 26%). This was
unexpected, because the two libraries were constructed using
hippocampus masks segmented based on the same pro-
tocol (the EADC protocol), while the protocols differed
for the thalamus libraries. For hippocampus, this may be
explained by different interpretations (different operators)
of the EADC-ADNI protocol in the segmentation proce-
dure of the hippocampus or by differences in contrast to
the T1w images in the training libraries (MP2RAGE versus
MPRAGE/SPGR).

The Hausdorff distance showed a stepwise increase
between the manual and automatic methods, with mean val-
ues in the range 2–6 mm, the lowest being volBrain local
followed by volBrain external, FSL, SPM and FreeSurfer
(see Fig. 4). When considering the obtained FPR and
FNR, the Hausdorff distance most likely reflects a max-
imum over-segmentation. However, evaluating the exam-
ples in Fig. 5a, b where the geniculate bodies of the
thalamus are excluded (except for volBrain local), the dis-

tance may be due to under-segmentation in this specific
region.

The intra-operator reliability test of manual hippocampus
segmentation showed a consistent segmentation and no sig-
nificant difference between volumes segmented with a time
interval of 10 months. Our intra-operator DSI (M = 0.913,
SD = 0.010) is in line with previous reports of manual hip-
pocampus segmentation reliability (M = 0.89, SD = 0.01)
[24]. The DSI of repeated tracings reveal that manual seg-
mentation of hippocampus has the same level of accuracy
as between manual segmentation and the volBrain local
method. The volBrain local method though has the advan-
tage of being more consistent, faster and less costly when
the library has been established [25].

The obtained segmentation accuracies are partly reflected
in the analysis of the diffusivity metrics. The volBrain local
method was the only method not yielding significantly dif-
ferent FA and MD results in the thalamus compared to the
results obtained by manual segmentation with a mean dif-
ference of −1 and −0.1% in FA and MD, respectively. The
other methods yielded mean differences between 1 and 9%
and were all significantly different in FA and MD compared
to the values obtainedwithmanual segmentation. This can be
explained by the over-segmentation expanding into IC and
the ventricular cerebral spinal fluid (CSF) (Fig. 5a, b). In
hippocampus, the manual method was significantly different
in FA compared to all methods (p < 0.03). When correct-
ing for multiple comparisons, FA values in both volBrain
local and SPM and MD in volBrain local was not signif-
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icantly different from manual measurements. The finding
of SPM not being significantly different from the manual
method, despite the inaccuracy of the SPM segmentation,
can be explained by the segmentation expanding into both
WM and CSF, which on average blur the FA differences
as WM and CSF, respectively, represent higher and lower
FA values. Higher FA values of volBrain external, FSL and
FreeSurfer in the hippocampus can be explained by over-
segmentation into areas at the transition to the thalamus and
fornix. The difference between volBrain local and the other
methods in the hippocampus segmentation is furthermore
confirmed by the post hoc analysis (Table 2), which shows
that both volBrain external, FSL, FreeSurfer and SPM all
significantly differ in FA from volBrain local estimates, but
not from each other, if corrected for multiple comparisons.
This is visualized in Fig. 7 by the offsets between volBrain
local and volBrain external, FSL, FreeSurfer and SPM. The
FA and MD results of the intra-operator reliability test in
hippocampus showed a significant difference between the
two segmentations. This difference is similar to that of the
best automatic segmentation (volBrain local). In both cases,
the difference seems to be systematic (Fig. 7). However, this
bias will be removed if using automatic methods in a longi-
tudinal setting, as automatic methods are consistent and not
prone to changing interpretations of the segmentation pro-
tocol. Finally, it should be noted that Bonferroni correction
removed the significant differences between the manual seg-
mentations.

Although the mean difference of FA and MD varies, all
segmentation methods yielded consistent inter-subject dif-
ferences compared to the manual approach (Figs. 6, 7).
This was most pronounced for MD results. Group compar-
isons may therefore relatively yield similar results, using
the same method within the same study. However, in dis-
eases and disorders with subtle structural changes where
the influence of segmentation errors could blur the find-
ings and result in reduced sensitivity, it is crucial to use
the most accurate method to detect pathological changes. A
study by Barbagallo et al. [26] found a significant difference
in MD in the thalamus between amyotrophic lateral sclero-
sis (ALS) patients and controls (0.06 × 10−3, p = 0.019)
using FSL FIRST, but the FA difference of 0.01 was not
significant (p > 0.025). We speculate that such a result
might have been significant if a more accurate segmenta-
tion method had been used. We found that volBrain local
obtained the most accurate measurements compared to the
manual segmentation (FA mean difference = −0.001), and
all the othermethods obtained amean difference of FAhigher
than the 0.01 level obtained between groups in the study
by Barbegello and colleagues. Although it is not directly
comparable, the impact of using different methods (more or
less accurate) in clinical studies should be investigated fur-
ther.

The variation of our diffusivity measurements was con-
siderably smaller compared to those reported in the study by
Barbagello et al. The volBrain local method obtained SDs of
FA values in the thalamus and hippocampus of, respectively,
0.008 and 0.007 and SDs of MD values of, respectively,
0.014 (×10−3) and 0.017 (×10−3). In the Barbagello study,
the corresponding SDs were 0.02 and 0.01 for FA and 0.05
(×10−3) and 0.07 (×10−3) for MD. This could be due to
the reliability of the MP2RAGE images, as pointed out in
a recent study [27]. The MP2RAGE sequence is less influ-
enced by B1 as well as M0 and T2*, improving the image
contrast and sharpness, which makes it easier to discriminate
between grey- and white matter structures [13]. Another rea-
son for the higher FA and MD variation in the Barbagello
study could be due to the ALS pathology.

In the present study, we executed the FSL pipeline with
the empirical optimized default settings. Experimentation on
optimizing the FSL modes and boundary correction adapted
to the MP2RAGE images may improve the final segmenta-
tion of FSL. The influence of adapting the FSL segmentation
tool, FIRST, to MP2RAGE remains to be investigated. How-
ever, Patenaude et al. [21] used an adapted and optimized
setting to their T1w images (no specification of the T1
sequence) and did still not reach the DSI levels of the patch-
based method in volBrain local. Furthermore, it was not
possible to use the same template library in volBrain and
FSL, which would have been optimal for comparing the
methods. Thus volBrain local has an advantage because it
uses consistent training and testing data. This is similar
to the Patenaude study [21], which showed good perfor-
mance when using customized local settings. Patch-based
methods have the advantage of requiring a relatively small
library, which makes it feasible to implement and optimize
locally.

State-of-the-art segmentation methods, like patch-based
methods [5], together with high image quality, as in
MP2RAGE data, may lead to higher sensitivity in future
studies of morphometry and of microstructural changes. It
could also be of interest to apply the presentedmethods retro-
spectively to clinical studies and evaluate whether statistical
power and conclusions might be altered.

In conclusion, we have shown the potential of a recent,
automatic patch-based segmentation method, volBrain, to
provide more accurate thalamus and hippocampus segmen-
tations in MP2RAGE images compared to conventional
approaches. We have furthermore demonstrated that FA and
MD values, extracted from co-registered DTI, deviated less
from the reference of the manual segmentation, when using
patch-basedmethods compared to the segmentations of FSL,
FreeSurfer and SPM. We have illustrated under- and par-
ticularly over-segmentations on T1w images and FA maps,
especially for FSL, FreeSurfer and SPM. Finally, we propose
that MP2RAGE images are more suitable for thalamus and
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hippocampus segmentation compared to conventional T1w
images.
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