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Abstract
Purpose Over the last decade, the demand for content man-
agement of video recordings of surgical procedures has
greatly increased. Although a few research methods have
been published toward this direction, the related literature is
still in its infancy. In this paper, we address the problem of
shot detection in endoscopic surgery videos, a fundamental
step in content-based video analysis.
Methods The video is first decomposed into short clips
that are processed sequentially. After feature extraction, we
employ spatiotemporal Gaussian mixture models (GMM)
for each clip and apply a variational Bayesian (VB) algo-
rithm to approximate the posterior distribution of the model
parameters. The proper number of components is handled
automatically by the VBGMM algorithm. The estimated
components are matched along the video sequence via
their Kullback–Leibler divergence. Shot borders are defined
when component tracking fails, signifying a different visual
appearance of the surgical scene.
Results Experimental evaluation was performed on laparo-
scopic videos containing a variable number of shots. Per-
formance was measured via precision, recall, coverage and
overflow metrics. The proposed method was compared with

B Constantinos Loukas
cloukas@med.uoa.gr

1 Simulation Center, Laboratory of Medical Physics, Medical
School, National and Kapodistrian University of Athens,
Athens, Greece

2 1st Department of Surgery, Laiko General Hospital,
University of Athens, Athens, Greece

3 Medical Physics Lab-Simulation Center, School of Medicine,
University of Athens, Mikras Asias 75 str., 11527 Athens,
Greece

GMM and a shot detection method based on spatiotempo-
ral motion differences (MotionDiff). The results demonstrate
that VBGMM has higher performance than all other meth-
ods for most assessment metrics: precision and recall>80%,
coverage: 84%. Overflow for VBGMM was worse than
MotionDiff (37 vs. 27%).
Conclusions The proposed method generated promising
results for shot border detection. Spatiotemporal modeling
via VBGMMs provides a means to explore additional appli-
cations such as component tracking.
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Introduction

Minimally invasive surgery (MIS) is a widespread therapeu-
tic procedure with well-documented benefits for the patient
such as shorter hospital stays, less pain and shorter recov-
ery. Another advantage is the effortless video recording via
the endoscope used to visualize the anatomical area in oper-
ation. The videos may be stored in the hospital’s server or
uploaded into dedicatedWeb-basedmultimedia resources for
reasons such as: as an educationalmaterial to teach junior sur-
geons [1], for retrospective evaluation and improvement in
the applied technique [2], and to provide patients a personal
copy for later review. In addition, digital video recording
and archiving of surgeries is considered mandatory in some
countries in order to provide evidence for lawsuits in case
of malpractice [3]. Alternatively, some surgeons may record
specific video segments showing themost critical parts of the
operation.

Despite the growing availability of surgical videos, tools
and methods for effective organization and management of
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related databases are still limited. Typically, tasks such as
video annotation and content representation are performed
manually via tags that provide keywords or a short descrip-
tion about the employed technique. In the general field of
multimedia analysis, the literature abounds with algorithms
that target video content analysis for various applications
such as retrieval, annotation and detection of semantic infor-
mation [4]. A fundamental prerequisite for most video
abstraction and content representation approaches is the
detection of shot boundaries. In this context, a shot is consid-
ered as a sequence of video frames that represent a continuous
spatiotemporal action [5], whereas a boundary is defined as
the time where the content of the shot presents a dramatic
change. The later may be the result of an abrupt movement of
the camera or object(s) beingmonitored. Therefore, there are
significant content correlations between frameswithin a shot.
Shots are considered to be fundamental units in video con-
tent organization and the primitives for higher-level semantic
annotation and retrieval tasks [6]. After shot segmentation, it
is then straightforward to establish the overall video context
as a collection of representations arisen from the analysis
of the individual shots (e.g., shot-based feature descriptors,
keyframes, etc.). Hence, retrieval of frames or even tasks rel-
evant to a video content query may lead to more effective
management of video databases.

The aforementioned benefits also apply to the field of
surgical video analysis, where software systems for video
database organization are still limited. Representing a video
as a group of descriptors, keyframes or scenes, extracted
from each shot detected, may lead to a number of interest-
ing applications such as video summarization and retrieval
of shots with content similar to a query shot, where the
similarity may refer to semantic information such as: the
tool used, organ/anatomy contained or task performed, in
the query shot. Moreover, extracting relevant keyframes or
keyshots may be considered as a first step for video-based
assessment of surgical skills. For example, a higher number
of shots may be correlated to more erratic camera move-
ments (and consequently worse performance). Although this
information on its own does not define entirely ‘surgical
dexterity,’ it may well be used in conjunction with other
information extracted from the shots, such as the amount of
specular reflections. Alternatively, given the extracted num-
ber of shots and associated keyframes, surgical educators and
performance reviewers could concentrate on particular shots.
As another example, consider a surgical educator or trainee
who for didactic purposes would like to retrieve segments
that show how a predefined activity is performed or retrieve
shots of an important task performed with a specific instru-
ment. Manual annotation of digital media provides only a
minor way to describe what has really happened in a surgery.
Currently, users have to go through the whole video stream
in order to visualize such events.

In the area of multimedia analysis, there are plenty
of methodologies for video shot detection [7]. A typical
approach includes the computation of a dissimilarity metric
between consecutive frames based on various representa-
tions, such as motion, color, texture and edge features as
well as combinations [8–10]. These algorithms are mostly
designed to detect cuts and gradual transitions (e.g., fade,
dissolve, etc.), which are commonly found in movie videos
and TV news. However, in endoscopic surgery there are fun-
damental challenges for shot boundary detection. First, the
recordings typically contain one shot per videofile, unless the
camera is removed/reinserted several times (e.g., for remov-
ing haze from the lenses). Second, there is significant color
similarity between the consecutive frames. Third, the camera
is close to the area in operation, which is heavily magnified
by the lenses, and thus, even a small movement of the cam-
era could result in a significant change of the field of view.
Fourth, the lighting conditions are not constant since the light
source is attached to the front lenses of the camera, which is
operated manually. Finally, there is high amount of noise due
to specular reflections and frequent movement of the camera,
the instruments and the operated tissue.

In endoscopic surgery, shot detection techniques based
on video content analysis are still limited. The most rele-
vant work is that of Primus et al. [3], where a method based
on differences of motion is proposed. Using the well-known
Kanade–Lucas–Tomasi tracker, an aggregatemovement vec-
tor was extracted separately for nine areas of each frame.
The segmentation border was based on the spatiotemporal
standard deviation of these vectors. In another related work
[11], the extended Kalman filter was applied to identify key
episodes by encoding motion of tracked salient features on
videodata from robotically assistedMISprocedures. Episode
borders were defined when feature tracking fails. Moreover,
probabilistic motion modeling of tracked features was used
for episode representation. Video content analysis in MIS
has attracted increased interest lately with applications in
various directions such as: task boundary detection [12],
surgery classification [13], detection of irrelevant segments
[14], keyframe extraction [15], skills assessment [16] and
video retrieval [17]. However, the overall methodology in
these works (except keyframe extraction) is based on the
design of appropriate similarity criteria with regard to the
query video/frame, which is different to shot detection where
there is considerable difficulty in selecting reference data
from optimal video shots.

In the neighboring field of surgical process modeling,
there has also been a small number of vison-based techniques.
For example, the potential of using video data for segmenta-
tion of a surgery into its key phases was addressed in [18].
Using color information and canonical correlation analysis,
the average accuracy was about 60%. In [19], an algorithm
based on kinematic feature analysis was recently proposed
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Fig. 1 A graphical overview of
the main steps of the proposed
shot border detection technique

for segmentation of endoscopic videos into ‘smoke events.’
In another study [20], a method based on user-selected visual
features and appropriate dissimilarity metrics was proposed
for video summarization of MIS operations.

Content-based video analysis techniques are also encoun-
tered in medical domains other than endoscopic surgery. For
example, a method employing visual features extracted from
compressed videos together with audio analysis was pro-
posed in [21] for detecting semantic units in colonoscopy.
A novel methodology for semantic encoding of endoscopic
visual content is described in [22]. Two techniques (edge
based and clustering based) for detection of uninforma-
tive endoscopy frames are proposed in [23]. Video content
representation of low-level tasks in eye surgery has also
attracted some interest lately [24]. However, the visual con-
tent of the medical procedures in the aforementioned studies
is significantly different to that encountered in MIS where
there is significant tissue deformation and camera/instrument
motion, and the lighting conditions are variable.

The purpose of this paper is to propose a content-
based methodology for shot border detection in laparoscopic
videos. The first contribution lies in the application of a
variational Bayesian (VB) framework for computing the
posterior distribution of spatiotemporal Gaussian mixture
models (GMMs). In particular, the video is first decomposed
into a series of consecutive clips. The VBGMM algorithm

is applied on feature vectors extracted from each clip. The
proper number of components is estimated automatically via
the sparseness of a Dirichlet prior on the mixture weights.
The second contribution lies in the tracking of the mixture
components, which is accomplished by estimating the short-
est Kullback–Leibler distance between the posteriors of the
components found in each pair of consecutive clips. Compo-
nent entry and exit are handled by the resulting number of
components. The final step of the method examines whether
a clip is a border of the current shot. This is based on the fail-
ure of the component tracking process, via a criterion that
signifies the appearance of a different visual content with
regard to the past clips. A graphical overview of the main
steps is presented in Fig. 1. The method was tested on video
segments containing a variable number of shots. Comparison
amongVBGMM,GMMand a recently publishedmethod [3]
was also performed.

Methods

Video processing

Given a video segment, we first decompose into consecutive
clips of fixed duration: U = (u1, . . . , ut , . . .). Each clip is
processed sequentially as a separate spatiotemporal volume.
A GMM is employed, where a feature vector, y, extracted
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from each pixel in the volume, is assumed to have been drawn
from a set of K components:

p (y/θ,π) =
K∑

j=1

π j p
(
y|μ j ,Λ

−1
j

)
(1)

where π j is the weight for the j th component, K is the
number of components and p

(
y|μ,Λ−1) is a multivari-

ate Gaussian distribution with parameters μ (mean) and Λ

(inverse covariance or precision). In this context, a compo-
nent constitutes a cluster of pixelswith similar characteristics
described by the entries of the feature vector.

The overall GMM parameters are denoted as: Θ = {
θ j

}
,

where θ j = {
π j ,μ j ,Λ j

}
. A common approach in com-

puting these parameters is to introduce a latent variable,
z = {

z j
}
, that denotes one of the K components and then

apply expectation maximization (EM) to find a maximum
likelihood (ML) solution. In particular, the E step evaluates
the posterior of the latent variables, p

(
z j/ y

)
, using the cur-

rent model parameter values. Then, the M step re-estimates
the parameters using the current posteriors. The equations
for the model parameters are obtained by maximizing the
expectation of the complete data likelihood:

Q
(
Θ,Θold

)
=

∑
Z
p

(
Z/Y ,Θold

)
ln p(Y , Z|Θ) (2)

where Z = {zi }, Y = {
yi

}
, i = 1, . . . , N , with N denoting

the total number of feature vectors in the video clip.

Variational Bayes framework

A significant limitation of the aforementioned approach is
that it requires setting K in advance. Techniques such as the
maximum value of the Bayesian Information Criterion (BIC)
are not always suitable for finding the optimum value for
K [25]. Moreover, ML estimation does not provide a means
for excluding redundant components, typicallywhen initially
setting large K . Another reason is that in the case of time-
varying data, such as those employed in this study, it is not
easy to find component correspondence between video clips,
especially when a component disappears in the upcoming
clip, or a new one is introduced.

A Bayesian treatment of the mixture model resolves many
of these obstacles. In this paper, we employ spatiotemporal
GMMs for each video clip and applyVB inference to approx-
imate the full posterior distribution on the model parameters
[26,27]. Based on the VB framework, the parameters π and
μ,Λ are modeled with conjugate priors:

p (π) = Dir (π |α0) (3)

p (μ,Λ) =
∏K

j=1
p(μ j |Λ j )p

(
Λ j

)

=
∏K

j=1
N

(
μ j |m0,

(
β0Λ j

)−1
)
W (

Λ j |W0, ν0
)

(4)

where Dir denotes the Dirichlet distribution with an associ-
ated parameter α0, p(μ j |Λ j ) and p

(
Λ j

)
are the normal and

Wishart distributions, respectively,m0, β0 are prior parame-
ters for the distribution of mean μ j and W0, ν0 are prior
parameters for the distribution of precision Λ j .

In order to find the posterior distribution of the model
parameters given data Y , one needs to compute:

p(Θ|Y) = p(Υ |Θ) p (Θ)∫
p (Y ,Θ) dΘ

= p(Y |Z,μ,Λ)p(Z|π)p (π) p(μ|Λ)p (Λ)∫
p (Y ,Θ) dΘ

(5)

The main difficulty in the previous equation is that the
marginal likelihood, or evidence, in the denominator is ana-
lytically intractable.VBapproximation is an efficientmethod
used for estimating such integrals. In brief, using an approx-
imation distribution q(Θ|Υ ) the logarithm of the evidence
can be written as:

ln p (Y ) = L (q) + K L(q||p) (6)

where L (q) is a functional of the distribution q (Θ/Y):

L (q) =
∫

q (Θ|Y) ln
p (Y , Θ)

q(Θ|Υ )
dΘ (7)

and K L(q||p) is the Kullback–Liebler divergence from
q (Θ|Υ ) to the true posterior distribution p(Θ|Υ ):

K L (q||p) = −
∫

q (Θ|Y) ln
p(Θ|Y)

q(Θ|Y)
dΘ (8)

Because K L(q||p) ≥ 0, it follows that ln p (Y ) ≥ L (q),
with equality if and only if q = p. The variational distribu-
tion q is found by maximizing L (q). The only assumption
made is that q is chosen to be factorizable between the
latent variables and the parameters: q (Z, p, μ, Λ) =
q (Z) q (π ,μ,Λ). Thus, the true posterior distribution of a
model parametermay be replacedwith its variational approx-
imation, which has an equivalent form but with different
parameters:

q (π) = Dir (π |α) (9)

q(μ j |Λ j )q
(
Λ j

) = N
(
μ j |m j ,

(
β jΛ j

)−1
)
W (

Λ j |W j , ν j
)

(10)

The hyperparameters of interest for each component: ω j ={
m j ,W j , ν j , β j , α j

}
, Ω = {

ω j
}
, are obtained under the

VB framework using a set of update equations (a detailed
derivation may be found in [28]). Based on these equations,
the posterior distributionof the latent variables, also knownas
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responsibility, that denotes the probability of the j th mixture
component given a data vector, yi , is calculated as:

γi j = ρi j∑K
j=1 ρi j

(11)

where

ln ρi j ≈ ψ
(
α j

) − ψ
(∑

j
α j

)

+ 0.5

[
d∑

n=1

ψ

(
ν j + 1 − n

2

)

+ ln
∣∣W j

∣∣ − dβ−1
j − ν j

(
yi − m j

)T W j
(
yi − m j

)]

(12)

The symbol T denotes the transpose operator, d is the dimen-
sionality of the feature vector and ψ(.) is the digamma
function. The previous equation is essentially used to assign
each pixel in ut to the component with the highest respon-
sibility value. The set of assigned labels for all pixels in ut
is denoted as Lt . Hence, the components essentially denote
clusters of pixels in the video clip with similar feature values,
whereas the labels are the ‘tags’ (indices) of these compo-
nents.

Label tracking

Having obtained the labels Lt for all pixels in ut , we next seek
to determine the labels Lt+1 for all pixels in the forthcom-
ing clip ut+1. Recall that the labels essentially indicate the
indices of the components clustered by the VBGMM algo-
rithm, and the relationship between labels and components is
one to one for a specific video clip. Consequently, the model
parameters of a certain component (that defines a cluster of
pixels in a clip) are also linked to the label assigned to that
component.

Now, to compute Lt+1 one needs to compute the new
responsibilities for all pixels in ut+1, using the new data
vectors Y t+1. This process is essentially the same to that
described in the previous section, with the only difference
being the initialization step: The priors for the mixture labels
in ut+1 are set equal to the posteriors from ut .

The remaining step is to find the correspondence of the
labels Lt+1 with regard to the previous ones Lt . This is
achieved by computing the KL distance between the pos-
teriors on the mixture parameters at time t + 1 and t . Hence,
a new feature vector y in ut+1 with label lk is assigned a label
lk′ from the previous clip ut when:

lk′ = arg min j∈Lt+1
K L

(
p( y|Θt+1, l j

) ||p( y|Θt , lk)) (13)

Note that the aforementioned process is followed only for
those components that have significant amplitude weights.

In fact, an important advantage of the VB framework is
that the components with near-zero amplitude weights can
be easily determined by calculating the expectation values
E

[
π j

]
, ∀ j ∈ K :

E
[
π j

] = α j∑K
k=1 αk

(14)

where:

α j = α0 +
N∑

i=1

γi j (15)

Hence, components with a weight smaller than threshold επ

are deemed insignificant and are removed, whereas compo-
nents with higher weights are considered significant and are
kept for the next label tracking step (επ = 0.01 was used
here).

Component entry and exit

As the video content changes through the consecutive clips,
it is expectable that some components may disappear in the
upcoming clip, or new ones may appear. In this case, it is
essential to find these components and remove or add their
labels, respectively.

Component removal is encountered when the number of
significant components in ut is greater than that found in
ut+1. Hence, those labels from ut that are not reassigned a
label in ut+1, during label tracking, are removed and may
be used for label assignment in a future step. The entry of
new components is decided when the number of significant
components in ut+1 is greater than that found in ut . Any
component that has not been given a label during tracking
at this step is assigned a random one from the initial set of
labels, with the only restriction being that this label is not
already assigned to a component in the current clip ut+1. As
an example, consider a label set for clip ut as: Lt = {6, 3, 2}.
If, for the next clip ut+1, VBGMMyields 4 significant labels,
then the three of them will be assigned a unique label from
the set Lt (based on the KL distance matching), whereas the
fourth one can take any label from the initial set K , as long
as it is different to the three ones already assigned (so it may
be Lt+1 = {6, 3, 2, 8}). Note that the new label added may
have been used before in another clip. However, as will be
described next, this does not affect the shot border detection
process since the proposedmethod does not take into account
the entire label correspondence history.

Shot border detection

The proposed shot boundary detection method is based on
the label assignment process performed via the sequential
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processing of the video clips. In particular, we monitor the
number of significant components tracked from the first clip
of the current shot, up to the current clip, say ut+1. Due to the
variation of the video content, as a result of the camera and
the instruments’ movement, it is expectable that the tracking
process will fail at some point. Tracking failure is considered
when the number of significant components found in clip
ut+1 falls below a minimum threshold value εL :

εL = min
(
0.5 av{Lsign

τ }
)

, 2), τ = t, . . . t − 2 (16)

where av is the average operator and {Lsign
τ } is the set con-

taining past number of significant components, back to t−2.
The previous equation essentially denotes that the bor-

der of the shot occurs when the threshold is the minimum
between two parameters: The 50% of the average number of
the significant components found in the last three video clips
and the number 2. The first parameter was used to take into
account some past history of the label assignment process; a
50% deviation from the three most recent video clips is con-
sidered significant here. Number 2 was used essentially to
denote that in the current clip tracking fails to provide more
than two components (e.g., background and foreground).

Finally, after a border is detected, the whole process is
reinitialized for the next video clip (say ut+2, if ut+1 denotes
the shot border found). Initial experimentation on individ-
ual clips showed that K = 10 was sufficient to represent
the maximum number of components encountered in a video
clip. With regard to the VB framework, the components’
weight, mean and covariance were initialized via a standard
GMM algorithm. The initial parameters for the prior distri-
butions were selected so as to be sufficiently uninformative
(m0 = 0,W0 = 100I, ν0 = 10, β0 = 1, α0 = 0.001,
where 0 is the zero matrix and I the identity matrix).

Results

Dataset

The initial video collection included 8 laparoscopic chole-
cystectomy operations performed by two different surgeons
over a period of one year. Each video corresponded to an
operation performed on a different patient. The video resolu-
tion of the endoscope camera was 720 × 576, and the frame
rate was 25 fps. From the initial collection, an experimental
dataset of 53 video segments was randomly selected by the
surgeons, U = {UM }53M=1, so that each segment contained
from 0 up to 4 shot borders (i.e., 1 to 5 video shots). The
video segments had duration: 204 ± 47 s (mean ± SD), and
contained views from various phases of the surgery, such as
gallbladder inspection, dissection, clipping and coagulation.

Each segment was decomposed into consecutive clips:
U = (u1, . . . , ut , . . .); the clips had fixed duration equal
to the frame rate of the camera. To reduce computational
cost, the clips were temporally and spatially downsampled
by a factor of 5 and 4, respectively. From each pixel in the
downsampled volume, a feature vector containing the RGB
color values and the 2D optical flow was extracted (five-
dimensional feature vector). All clips from each segment
were processed sequentially by the proposed method.

The ground truth for the shot borders was created by expe-
rienced operators, using a scheme similar to that reported
in [3]. In particular, each video segment was annotated for
events that relate to a combination of two activities: cam-
era/instrument movement and different view of the surgical
scene. Specifically, we were interested in identifying motion
activities that also bring a significant change in the surgical
scene. Examples included: camera removal/insertion, camera
panning and expose of anatomical structures with the instru-
ments. Such events not only relate to amovement activity, but
also introduce a change in the timeline view of the surgery.
The timings of these events were matched with the corre-
sponding video clips, which defined the shot borders.

Label tracking

Figure 2 shows an example of the label tracking process for
a series of 12 clips selected from a video segment (only the
first frame fromeach clip is shown). The surgical scene shows
the abdominal wall and the upper surface of the liver. In the
first 5 clips, the camera is slightly moving to the right. The
VBGMM framework detects 5 components that are firmly
tracked by label tracking (label color coding is shown at the
bottom). In the sixth frame, the obturator of the trocar is
inserted from the right, and a new label (L7) is assigned due
to the different color of this component. Clips 7, 8 show the
entry of a larger portion of the obturator,which is successfully
tracked, along with the previous components. In clips 9–12,
we have the entry of another component, the cannula of the
trocar. The algorithm successfully identifies its spatial region,
although it does not assign a new label, mainly due to color
similarity with a component found previously. In clip 12,
the obturator is removed and so its label by the algorithm.
Note that throughout the sequence all common components
among the clips are successfully reassigned the same label
number.

Figure 3 provides the tracking results using the GMM
method. To have comparable results with VBGMM, any
component for which its total volume was <5% the clip
volume was merged into its nearest component using the
KL distance. Clearly, GMM detects more components than
VBGMM, which may be considered as over-segmentation.
Moreover, the label correspondence among the clips is not
robust. For example, in the first 5 clips, where there are small
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Fig. 2 First frames and the corresponding component classification output, from a series of laparoscopic video clips processed by the VBGMM
algorithm. Label color coding is shown at the bottom

changes in the scene, GMM fails to track the same com-
ponents. For example, compare L7 among clips 1–3. The
components of the trocar are successfully tracked, but the
surrounding regions are mistracked (see for example L1, L8
between clip 10 and clip 11).

To further demonstrate the value of VBGMM, Fig. 4a,
b shows the total number of significant components in the
sequence and the mixture weights for the first clip, respec-
tively. As previously mentioned, when the obturator appears
in the scene, VBGMM assigns a new label, and hence, the
number of labels is increased to 6. In clip 12 the obturator

is removed and so its label. For GMM, the total number of
labels varies greatly along the sequence. In particular for clip
6, the entry of the new component seems to negatively affect
label tracking, resulting in 2 less labels with respect to the
previous clip.

As shown in Fig. 4b, the VBGMM framework allows the
usage of error bars in the mixture weights, while for GMM
this is not valid. Moreover, using a Dirichlet prior for the
weights leads to several insignificant components theweights
of which are almost zero. In contrast, for GMM all 10 initial
components are denoted as significant and their weights are
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Fig. 3 GMM-based component classification output for the clips shown in Fig. 2

Fig. 4 a Total number of significant components generated by
VBGMM and GMM for the clips shown in Fig. 2. b The corresponding
mixture weights for the first clip. c The sequence of the mixture weights

as found by the VBGMM algorithm; the line colors are in accordance
with the color coding shown in Fig. 2

variable, although none is near zero. In Fig. 4c, we plot the
sequence of the weights for the components that are consid-
ered significant. The components labeled as L1, L4, L5, L8
and L10 are tracked throughout the 12 clips. In clip 6, there
is an extra component (obturator) with a significant weight,
and it is assigned a previously unused label (L7). The weight
of this component is significant up to clip 11. In clip 12, the
algorithm finds 5 components that are matched with those in
the previous clip. Label L7 is dropped since its weight did
not find a close match with the previous components.

Shot border detection

Figure 5 shows the first frames from various clips extracted
from a video segment processed with the VBGMM algo-

rithm. The sequence of the total number of labels, along with
the different shots found by our method, is shown at the bot-
tom. As described previously, a border is defined when label
tracking fails (clips 14 and 45). As can be seen from clips 5
and 10, during the first shot the surgeon attempts to lift the
gallbladder. The content of the scene does not change much,
which is captured by label tracking. In clip 14, the camera
is pulled out abruptly, and consequently label tracking fails,
signifying the end of the current shot. In shot 2, there is
a variable change in the number of labels, but the surgical
scene is similar as may be seen from clips 20 and 30. From
clip 43, the camera starts moving to the right and tracking
fails in clip 45 where a new border is defined. Note the dif-
ference between clips 20, 30 and 45 where the gallbladder
is absent. The following frames (clips 50, 55) are repre-
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Fig. 5 First frames from various clips along a video segment. The bottom panel shows the number of the significant components estimated by the
VBGMM algorithm and the corresponding shots defined by the proposed method

sentative of shot 3, where the surgeon starts dissecting the
gallbladder.

Figure 6 shows another example from a lengthier video
segment that is split into 3 shots. The two borders were found
at clips 48 and 65. To obtain better understanding about the
video content, for the two shot borders we present two con-
secutive frames (t and t + � t) for the clip before the shot
border, and the clip defined as the border. For the first one
(clip 48), it is clear that the camera movement results in a
completely different visual content, leading to a tracking fail-
ure. However, for the second border, the surgical scene does
not change much, despite the maneuver of the surgeon to
lift the gallbladder. In this case, the instrument movement
seems to negatively affect label tracking, and hence, clip 65
is detected as a shot border. This is an example of a false

hit since according to the reviewer the overall content of the
scene did change much.

Figure 7 presents results from a video segment that con-
sists of a single shot. The top row shows frames from various
clips along the segment, and the next row shows the labels
assigned by the tracking algorithm. At the bottom, there
is the sequence with the total number of significant com-
ponents found. The label images are the pure output of
the VBGMM-based tracking algorithm (i.e., without post-
processing). Note that our purpose here is to highlight the
output of label tracking for a lengthy video segment rather
than presenting multilabel image classification results. As
can be seen from the labeled images, there is a consistency in
the component label matching throughout the sequence. For
example, the background tissue (liver) is constantly assigned

123



1946 Int J CARS (2016) 11:1937–1949

Fig. 6 Another example of shot detection. Between the shots, the first two frames from the clip before the border, and the actual border found, are
shown

Fig. 7 An example of a continuous shot in a video segment. The first
panel shows thefirst frames fromvarious clips along the video sequence.
The second panel shows the component classification output of the

VBGMM algorithm. The third panel shows the total number of com-
ponents found and the corresponding label color coding

label L6. The black-gray instrument shaft takes label L1,
the silver-colored instrument tip is assigned label L8, and
light- saturated components (for example the gallbladder or
the tip when it is close to the camera) are assigned label L10.
Other tissue structures are assigned labels L3 or L5. It should

be emphasized here that the aforementioned description of
the label correspondence is not exclusive since the proposed
algorithmconsiders not only the color content but also optical
flow.
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Performance evaluation

Evaluation of shot border detection was based on two assess-
ment schemes [3,12]. The first one was represented by mean
precision and recall, calculated as:

Pre = 100
Sum

{
Tg ∩ Te

}

card{Te} , rec = 100
Sum

{
Tg ∩ Te

}

card
{
Tg

} (17)

where Tg and Te denote the timings of the estimated and the
true (ground truth) shot borders in the video segment, respec-
tively. In particular, we compute the percentage of the total
number of intersections between the estimated and the true
timings, with respect to the number of estimated timings, for
precision, and to the number of true timings, for recall. An
intersection was set to 1 if the estimated timing was found
within a tolerance period centered on the true timing; other-
wise, it was set to 0. For all methods, the tolerance period
was set to 5% of the length of the examined video segment.

The second scheme was based on the computation of cov-
erage and overflow, which are related to the evaluation of
the length of the estimated shots. In this context, coverage
denotes the percentage of frames of an estimated shot that
indeed correspond to the true shot. Overflow denotes the per-
centage of frames of an estimated shot that exceed the length
of the true shot. Both metrics were computed with respect
to the length of the true shots. For each video segment, an
average value was computed, separately for each metric, for
the number of true shots included in this segment. Cover-
age takes values 0–100%. Overflow may vary from 0 up to
>100%, since the number of frames of the estimated shot
that exceed the true shot may be more than the length of the
true shot.

Table 1 summarizes the evaluation results for VBGMM,
GMM and ‘MotionDiff’ which is described in [3]. The later
method employs spatiotemporal differences of motion and is
based on sequential frame processing, so to have compara-
ble results the estimated boundarywasmatched to the nearest
clip. The results demonstrate that VBGMM has higher per-
formance than all othermethods formost assessmentmetrics.
Precision and recall measures are >80% whereas the other
two methods had lower performance. Higher recall than pre-
cision implies that the algorithm is better in generating true
negatives than true positives, and vice versa. Our results show

Table 1 Shot boundary detection results (% average ± SD)

Precision Recall Coverage Overflow

VBGMM 83 ± 9 85 ± 7 84 ± 12 37 ± 13

GMM 54 ± 12 76 ± 9 54 ± 9 89 ± 11

MotionDiff 70 ± 11 77 ± 8 58 ± 9 27 ± 6

that VBGMM generates similar precision and recall values,
whereas GMM has very low precision which means that a
large number of false borders is generated. MotionDiff gen-
erates higher recall than precision although its performance
was higher than GMM but lower than VBGMM.

With regard to coverage and overflow, the shots generated
byVBGMMseem to coincidewith the true ones by 84%.The
estimated shots had a (false) extra length of about 37% than
that of the true shots. ForGMM, the corresponding results are
much lower, whereasMotionDiff seems to generate less false
positive shot clips than VBGMM (37 vs. 27%), although the
true positive shot clips were less than that of VBGMM (84
vs. 58%).

Discussion

Our results showed that VBGMM has a consistent perfor-
mance of >80% in three of the four assessment metrics
(precision, recall and coverage). Provided that in general
terms, precision–recall evaluates the number of borders,
whereas coverage–overflow evaluates the length of the shots,
we can conclude that the proposed method generates shot
sequences that are in a good agreement with the external
observers’ views. If one could visualize the video sequence
as a timeline arrow with vertical bars corresponding to the
shot borders (e.g., see Fig. 1), the generated shot sequences
coincide (using a tolerance period) with the ground truth
ones by ≈80% in terms of the number of bars and the inter-
section of the length of the consecutive bars. However, our
method has a tendency to overestimate the length of the true
shots on average by 37%. In other words, it may detect the
border(s) of a shot quite a few frames beyond the true start-
ing/ending border. Provided that in ourmethod the estimation
of the shot border is heavily related to the number of signif-
icant components tracked along the sequence, there may be
multiple factors contributing to this limitation, such as the
number of the past components considered, the spatiotem-
poral downsampling ratio, the length of the analyzed video
clips. Fine-tuning of these parameters may restrict this over-
flow result.

The selection of the appropriate shot border was based on
the failure of the label tracking process. The idea of tracking
failure to signify the start/end of an activity is not new and has
been employed previously in surgery for various reasons such
as surgical navigation [29] and content-based surgical scene
representation [11]. However, these works rather present
evaluation of novel feature descriptors for Kalman-based
tracking in short video segments, with no reference to spe-
cific applications such as shot detection.Ourmethod employs
simple color and motion features, although more advanced
descriptors such as those used in the aforementioned works
can also be employed, though at a higher computational cost.
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The main idea lies in the application of the VBGMM frame-
work for clip segmentation into spatiotemporal components
and the tracking algorithm that employs the posteriors of
the previous clip as posteriors for the next processing step.
Based on this idea, our results showed that label component
correspondence is treated effectively.

Compared to the work presented in [3], our method
provides superior results for most assessment metrics. In
contrast to shot detection based only on motion differences,
VBGMM-based tracking analyzes also the color content of
the spatiotemporal volume. Moreover, a border is defined
when there are significant changes not only in terms of
motion but also in the visual content of the volume exam-
ined, which results in smoother results. MotionDiff simply
monitors motion changes in subsequent frames, resulting in
oversegmentation of the video clip sequence.

The proposedmethodology does not employ future data to
performborder detection since all clips fromagivenvideo are
analyzed in a sequential order. This is a notable characteris-
tic that allows the exploitation of additional applications such
as the segmentation of an operation into its main workflow
phases in real time. Potential benefits include the manage-
ment of a surgical process and the study of surgical skills, as
reported in relevant works [18,30]. However, using amodern
computer the VBGMM algorithm takes ≈120s to analyze a
downsampled clip volume consisting of≈0.5 million pixels,
for a maximum number of 20 iterations. Based on this limit,
the potential for real-time application is prohibitive, although
with faster implementations based on parallel core process-
ing and the exponentially increasing computational power,
the speed can be increased.

Although the main focus of this work was to present a
proof of concept methodology for shot detection, a poten-
tial drawback is that it was not tested to detect irrelevant
scenes, usually encountered when the camera is removed
from the patient’s body. Segmentation of these scenes is
desirable due to the waste of storage capacity and the result-
ing difficulty in retrieving relevant parts. However, based on
the current design, it is expectable that the proposed method
could easily detect the onset of these scenes since the content
between in- and outpatient video clips presents significant
changes. Alternatively, one could add a preprocessing that
takes into account ad hoc color analysis techniques such as
those reported in previous works [14,23].

Conclusions

In this paper, we have presented a method for grouping
consecutive video clips into shots, based on spatiotemporal
changes occurred in the timeline of surgery. The core idea
was based on the application of the VBGMM algorithm for
clip segmentation into components that share similar color–

motion characteristics and then track these components along
the clip sequence of the video. An important advantage of the
variational approach is that by employing Dirichlet priors for
the GMM weights, the problem of model-order selection is
handled effectively. Hence, based on an arbitrary initial set-
ting, only those components that have significant weights are
selected for further processing. In contrary, GMM is unable
to provide the proper number of components since the seg-
mentation is based solely on the initial setting.

In the future, we aim to investigate two additional appli-
cations of the proposed method. The first one will target
grouping of the segmented shots without considering their
temporal order. As it is now, the algorithm segments the
video sequentially, without considering similarity with pre-
vious or subsequent shots. Post-processing for identifying
similar shots irrespective to their time stamp may provide a
valuable tool for applications related to video summarization.
Second, keyframe extraction could be investigated by ana-
lyzing further the generated shots and extract keyframes (or
key clips) from the plateaus of the label sequence generated
by the tracking algorithm. For example, the most corre-
lated keyframe could be selected, since the video content
is mostly uniform for the clips in the plateau of the esti-
mated label sequence. We expect that the investigation of
these technological challenges will unfold new pathways in
the computer-based understanding of surgical interventions.
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