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Abstract
Purpose Surgical phase recognition using sensor data is
challenging due to high variation in patient anatomy and
surgeon-specific operating styles. Segmenting surgical pro-
cedures into constituent phases is of significant utility for
resident training, education, self-review, and context-aware
operating room technologies. Phase annotation is a highly
labor-intensive task and would benefit greatly from auto-
mated solutions.
Methods We propose a novel approach using system events
—for example, activation of cautery tools—that are easily
captured in most surgical procedures. Our method involves
extracting event-based features over 90-s intervals and
assigning a phase label to each interval. We explore three
classification techniques: support vector machines, random
forests, and temporal convolution neural networks. Each
of these models independently predicts a label for each
time interval. We also examine segmental inference using
an approach based on the semi-Markov conditional ran-
dom field, which jointly performs phase segmentation and
classification. Our method is evaluated on a data set of 24
robot-assisted hysterectomy procedures.
Results Our framework is able to detect surgical phaseswith
an accuracy of 74% using event-based features over a set of
five different phases—ligation, dissection, colpotomy, cuff
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closure, and background. Precision and recall values for the
cuff closure (Precision: 83%, Recall: 98%) and dissection
(Precision: 75%,Recall: 88%) classeswere higher than other
classes. The normalized Levenshtein distance between pre-
dicted and ground truth phase sequence was 25%.
Conclusions Our findings demonstrate that system events
features are useful for automatically detecting surgical phase.
Events contain phase information that cannot be obtained
from motion data and that would require advanced computer
vision algorithms to extract from a video. Many of these
events are not specific to robotic surgery and can easily be
recorded in non-robotic surgical modalities. In future work,
we plan to combine information from system events, tool
motion, and videos to automate phase detection in surgical
procedures.

Keywords Surgical phase detection · System events ·
Sensor data · Surgical workflow analysis · Robot-assisted
surgery · Surgical task flow · Surgical process modeling

Introduction

Birkmeyer et al. [1] have shown that postoperative outcomes
are associated with technical skills of the operating surgeon
and that peer review may be useful to assess surgical skills.
Such peer review is impractical at scale due to time and
resource constraints. However, this may become tractable
if new tools are developed to efficiently index all surgical
phases within each procedure.

Weposit computationalmodels that automatically analyze
surgical procedures and extract critical phases will benefit
both manual and automated video review. Computational
models could also help focus surgical training by detecting
and annotating common errors that occur in each step of a
surgery. In addition, phase cataloging may be important for
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self-review and context-aware operating room technologies.
For example, trainees could be shown a set of relevant sur-
gical phase videos from the catalog based on a structured
query. Surgeons could be provided statistics on the phases
from their previous operating room performances along with
patient outcomes. Useful information related to the current
phase of the surgery could be displayed to the operating room
members to enhance workflow efficiency.

In this paper, we describe work toward automated surgical
phase detection in efforts to make these tools a possibility.
The method we present relies on readily available event data
such as a binary signal indicating whether an energy instru-
ment is active. Although our data were acquired from a da
Vinci surgical robot, we show that we achieve similar perfor-
mance using only events that are easily acquired from most
surgical platforms for laparoscopic, endoscopic, and open
surgeries. The event-based signals are simpler than video or
kinematic data, but, as we show later, can be highly discrim-
inative of surgical phase.

Few papers have focused on using event-based data for
phase recognition. The structured review presented in [2]
shows that there has been a significant effort since 2002
to develop methods for surgical process modeling, but only
a small fraction of this work has addressed surgical phase
segmentation. Methods using techniques such as dynamic
time warping [3,4], canonical correlation analysis [5], hid-
den Markov models [6], random forests [7], support vector
machines, and conditional random fields [8] have been
used on sensor data recorded during laparoscopic chole-
cystectomy procedures in order to perform surgical phase
modeling. However, the sensor data used in this work—
carbon dioxide pressure, weight of the irrigation and suction
bag, inclination of the surgical table—require additional, and
sometimes sophisticated, instrumentation of the operating
room prior to the surgery. Themethod presented byNeumuth
et al. in [9] for surgical phase detection by jointly represent-
ing each low-level action using the action class, instrument,
and anatomy has been recently applied by Forestier et al.
[10] to detect phases of surgery using manually labeled
low-level activity information. Similarly,Katic et al. [11] pro-
posed a rule-based surgical workflow analysis using manual
low-level activity labels for phase detection. The low-level
activity data that these approaches rely upon require explicit
manual labeling, thereby limiting their scalability.

Previous approaches using tool motion data, video data,
and combination of both have been developed to perform
surgical process modeling. However, most of this work has
operated at a different level of abstraction than phases.
Twinanda et al. [12] performed whole procedure classifica-
tion using endoscopic video data. Other work has focused on
detection of low-level activities at the maneuver/subtask and
gesture/surgeme level using machine learning approaches
such as hidden Markov models [13–15], linear dynami-

cal systems [16,17], conditional random fields [18,19], and
many more. However, to the best of our knowledge, none of
these methods have been successfully applied at the surgical
phase granularity using live surgery data.

In the remainder of this paper, we present a framework for
surgical phase detection using features obtained from system
events collected from the da Vinci Surgical system (dVSS;
Intuitive Surgical, Inc., Sunnyvale, CA), and we demonstrate
its effectiveness at performing surgical phase recognition in
robot-assisted hysterectomy.

Methods

Our phase detection framework consists of: aggregating
system events over short time intervals (section “Feature
extraction”), computing the surgical phase probability for
each interval (section “Phase scoring”), and jointly segment-
ing and classifying all surgical phases (section “Joint phase
segmentation and classification”).

Feature extraction

We define a set of features, highlighted in Table 1, that sum-
marize tool and event information within each 90-s interval.
These features aremotivated by the notion that many surgical
phases must be completed using a specific set of tools. For
example, a Cuff Closure should ideally be performed using
a large needle driver.

We categorize tools into three types: monopolar energy,
bipolar energy, and normal. The first two refer to cautery
tools and the last refers to non-energized tools such as a
needle driver. Note while some tools are intended for cautery
actions, there are timeswhen a surgeonwill use them for other
tasks like grasping.

For cautery tasks, the surgeon uses one form of energy
over the other based on the step of the procedure and the
surrounding anatomy. For example, a surgeon applies “bipo-
lar” energy to coagulate a structure that is small enough to
be grasped between its two grippers. This tool isolates most
of the electrosurgical current passed to the grasped tissue or
blood vessel. In contrast, amonopolar tool is used when dis-
secting a larger area where there are no significant anatomic
structures or vasculature.

We use additional events recorded by the da Vinci includ-
ing tool identity, tool changes, movement of the endoscope,
repositioning (“clutching”) the manipulators in the surgical
console, and a head-in indicator indentifying whether a sur-
geon is working at the console. For evaluation, we compute
results using events common among most surgical systems
as well as ones also available for the da Vinci.

There are three types of features corresponding to the dura-
tion of an event during each 90-s interval, how many times
it was activated, and whether or not it was in use within that
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Table 1 System events-based features and their descriptions

Name Description

Fraction of segment length for which

MonopolarCutTime Monopolar cut energy was active

MonopolarCoagTime Monopolar coagulation energy was active

BipolarTime Bipolar energy was active

TotalTime Any of the energy types was active

CameraTime Camera was moved

ClutchTime Clutch was pressed

HeadInTime Surgeon was looking into the console

Number of times

MonopolarCutCount Monopolar cut energy was activated

MonopolarCoagCount Monopolar coagulation energy was
activated

BipolarCount Monopolar cut energy was activated

TotalCount Any of the energy types was activated

CameraCount Camera was moved

ClutchCount Clutch was pressed

Binary flag indicating

IsMonopolarTool A monopolar instrument was in use

IsBipolarTool A bipolar instrument was in use

IsNormalTool A non-energy instrument was in use

period (as listed in Table 1). We compute a feature vector ft
for each time interval from 1 to T composed of each item
listed in Table 1. When using all da Vinci events, each vector
is of length 16.

Figure 1 shows a subset of the above features for a sample
procedure from our data set.

Phase scoring

A score is computed for each interval which corresponds
to the likelihood that the interval belongs to each class. Let
st ∈ R

C be a vector at time t where C be the number of

surgical phase classes. We compare three score models. The
first is a linear model applied to features at each time step, the
second assumes a nonlinear model applied to each time step,
and the third assumes a nonlinearmodel applied to sequences
of time steps.

Linear frame-wise model The first model assumes there is
a linear vector wc ∈ R

16 that discriminates phase c from
the rest of the data. Let the score sct = wT

c ft . If phase label
yt = c then the correct score, sytt should be higher than the
score for any other class such that sytt > sct for all c where
c �= yt . We learn weights w with a one-versus-all support
vector machine (SVM).

Nonlinear frame-wise model Each phase may be best classi-
fied using a nonlinear mapping of the given features in each
interval. We follow the work of Stauder et al. [7] who model
surgical phase using a random forest classifier. A random
forest is an ensemble learning method that randomly learns
which features aremost indicative of each class. At each node
in the tree, a subset of the features from the training data
are selected and tested for their Gini’s index as described in
[20]. In our data, we observe different subsets of features are
important in characterizing different active surgical phase;
thus, the random forest is well suited to our problem. The
score for the cth class is given by the posterior probability
sct = P(c| ft ) as computed by this model.

Nonlinear temporal model The previous two models assume
the label at each time step is only a function of the data at
the current time step. However, in many phases the features
may change substantially between the start and the end of a
phase. For example, a surgeon may use a monopolar tool at
the start of a dissection and a bipolar tool at the end.

We apply the temporal convolutional neural network
(tCNN) of [21] to capture long-range dependencies across
intervals. A set of temporal filtersWI ∈ Rd×F model the fea-
tures across a sequence of d intervals where F is the number
of features in each interval. Let there be a total of I tempo-
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BipolarTime

IsNormalTool
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Fig. 1 System events-based features for a sample hysterectomy procedure from our data set. (Note feature values have been scaled to [0,1] for
better contrast)
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ral filters. Each filter models how features change over the
course of a phase. The data for each class can be modeled
as a function of these weights where variable αc

i weighs how
important each filterWi is for class c. The score is computed
as sct = ∑I

i=1 αc
i Wi ∗ ft :t+d where ft :t+d denotes the set of

features from times t to t + d. Symbol ∗ refers to a temporal
convolution where the features for each event are convolved
over time with the filter.

Joint phase segmentation and classification

In frame-wise prediction, the class for each time step is yt =
argmaxy s

y
t where yt is the best scoring phase. While frame-

wise accuracy is reasonable, some actions get oversegmented
due to high variance in the data.We use a segmental inference
method based on the semi-Markov conditional random fields
to prevent this issue [22].

Let tuple p j = (y j , t j , d j ) be the j th action segment
where y j is the action label, t j is the start interval, and d j

is the segment duration. There is a sequence of M segments
P = {p1, p2, . . . , pM } for 0 < M ≤ T such that the start
of segment j coincides with the end of the previous segment
t j = t j−1+d j−1 and the durations add up to the total number
of intervals

∑M
i=1 di = T .

Given scores S = (
s1, s2, . . . , sn

)
, we find the segments

P that maximize the cost E(S, P) of the whole sequence:

E(S, P) =
m∑

j=1

g(S, y j , t j , d j ) (1)

The segment function g(·) is defined as a sum of the scores
within that segment with the constraint that segment j and
segment j + 1 do not belong to the same phase:

g(S, y j , t j , d j ) =
{∑t j+d j−1

t=t j s
y j
t , if y j �= y j−1

−∞, otherwise
(2)

This model can be viewed in the probabilistic setting as a
conditional random field using Pr(P|S) ∝ exp(−E(S, P)).

We solve the following discrete constrained optimization
problem to find all phases, their start times, and durations:

P = arg max
P={p1,...,pm }

E(S, P)

s.t.
∑m

i=1 di = T and 0 < m ≤ T (3)

In the naive case, this problem has computational complexity
O(T 2C2). We use the method proposed in [21] that is of the
order O(KTC2) where K is an upper bound on the number
of segments. K is typically much smaller than T .

Experiments

Hysterectomy data set

We collected data from a da Vinci surgical robot for robot-
assisted hysterectomy (RAH) procedures during an ongoing
institutional review board (IRB)-approved study [23]. We
interfaced with the robot using the da Vinci research API
[24] to collect time synchronized (1) endoscopic video, (2)
tool motion data, and (3) system (console) events. The data
set consists of 24 full RAH surgeries. This excludes those
recordings that had missing video or system event data.

Hysterectomies are highly variable in duration and phase
flow. This is unlike procedures like cholecystectomies which
have been studied in many previous phase detection papers.
Our data set contains surgeries that range from 47min to 3h
and 47min in length and contain between 8 and 18 phase
instances. Six faculty surgeons performed the procedures
with the assistance of more than 20 surgical residents. At
least two surgeons participated in each procedure.

Phase labels

A set of surgical phases were defined after consulting with
our collaborating gynecologist. These phases are listed in
Table 2.Our event-based features cannot distinguish between
anatomical structures so similar phases were grouped into
a higher-level labels. In addition to the four surgical phase
labels from Table 2, remaining portions of the surgery were
labeled a background class named No Label. In total, our
systemclassifies five phase labels: ligation, dissection, colpo-
tomy, cuff closure, and no label.

Table 2 Phases during a robot-assisted hysterectomy procedure along
with their duration distribution across the 24 surgeries (VCC: vaginal
cuff closure)

Original phase label Derived label Prior

Ligation of left/right IP ligament Ligation 0.067

Ligation of left/right round ligament

Ligation of left/right utero-ovarian ligament

Isolation of uterus Dissection 0.460

Dissection of auxiliary structures

Colpotomy (cutting the cervix) Colpotomy 0.061

VCC using interrupted suturing Cuff closure 0.161

VCC using V-lock suture

VCC using running suturing

VCC using figure-of-eight suturing

Background No label 0.251
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A vocabulary consisting of the start point, end point, and
description for each phase was created in consultation with
an expert surgeon. A single individual (without a medical
background) followed these instructions and labeled each
procedure by manually annotating the start, stop, and phase
type of each such instance. Another individual independently
verified these phase labels.

Feature extraction

In total, the 24 RAH procedures contain approximately 50h
of data. Features are aggregated in overlapping intervals of
90 s resulting in 5781 intervals across all surgeries. In the
discussion, we show sensitivity analysis on interval lengths
from 60 to 180s. Note it is possible for a single interval to
contain more than one distinct phase label. As such, the label
that is true for the longest is chosen as that interval’s ground
truth phase label.

In principle, we could compute a feature for every time
step; however, the data tend to stay constant over long peri-
ods of time. As such, we only compute features every 30s.
This makes training our models much more reasonable. We
explore different rates in the discussion.

Modeling tools implementation

All data were normalized using zero-mean and unit-variance
scalingusing statistics from the trainingdata.Cross-validation
was performed to find the hyperparameters in each model.
The random forest uses 100 trees using out-of-bag estima-
tion error over the range of N = [10, 500]. The minimum
number of leaf nodes in each tree is set to 5. The temporal
CNN was implemented using Keras,1 an efficient library for
developing deep learning models. We set the filter duration
to be 20 intervals based on cross-validation. For segmental
inference, we set the upper bound on the number of phases
in a procedure sample to be 15.

Metrics

Results are evaluated using overall accuracy, per-class preci-
sion/recall, and a segmental Levenshtein distance. Accuracy,
precision, and recall are computed using their standard
formulae. The Levenshtein distancemetric (LD) [25] empha-
sizes the difference in errors like false-positives between
frame-wise and segmental inference. It computes the dif-
ference between two string sequences by computing the
minimum number of edits (insertions, deletions and substitu-
tions) that need to be performed to change one sequence into
the other. Each set of predictions is split into its constituent
segments. For example, “AAABBCCCC” becomes “ABC.”

1 Keras: Deep Learning library: http://keras.io.

The number of segments in each prediction and ground truth
labeling may vary; thus, LD is normalized by the maximum
number of segments in each prediction and ground truth
labeling. Note smaller values for LD indicate better perfor-
mance.

Skewed phase distribution

Some surgical phases aremuch longer in duration thanothers.
Table 2 shows the ground truth phase distribution is highly
skewed towardDissection andNo Label class. To account for
this, we subsampled the training data for the SVM and RF
classifiers to create a balanced training data set. We created
100 iterations for training set in each of the validation folds.
The final score st for a test sample was the average of the
score over the 100 iterations. However, as the test set was
expected to be skewed, the training data class distribution
was set as the class weight for the SVM and RF models.

The most important phase labels from a surgical
standpoint—Ligation and Colpotomy—are sometimes very
short in duration. Using a step size of 60 s, most instances
of these phases are contained by a single time step. In the
discussion, we show performance using different sampling
periods (10, 30, 45, 60 s).

Sensitivity analyses: interval length and feature set

In addition to the validation of the three models using the
metrics listed above, we performed two sets of experiments
to analyze the effect on phase prediction performance of our
framework:

Interval length This is the time period over which the sig-
nals are aggregated. For an interval length of 120s, if the
bipolar energy tool was activated 10 times during the period
(t, t + 120), then its count feature at time t would be 10. We
evaluated performance for interval lengths ranging from 60
to 180s in increments of 30 s.

Feature set Although our data were recorded using a daVinci
system, a subset of the features, like those derived from
energy activations and tool identification, can be captured
easily and at a low cost using button sensors and RFID tags.
These signals are generic across laparoscopic, endoscopic,
and open surgical procedures.We evaluated our framework’s
prediction performance using a nine-dimensional subset vec-
tor (EtECtTi) containing three time-based energy features,
three count-based energy features, and three tool informa-
tion flags.

Results

Performance is computed using leave-one-surgery-out cross-
validation over all 24 trials.We address several questions: (1)
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Table 3 Phase prediction accuracy for various step sizes

Method Time steps (s)

10 30 45 60

SVM 66.8 67.1 66.0 64.4

RF 71.5 71.7 71.9 70.4

tCNN 73.4 74.3 71.7 69.1

SVM(Seg) 70.2 70.4 70.1 67.1

RF(Seg) 74.4 74.3 74.4 72.0

tCNN(Seg) 74.5 76.0 73.6 70.3

Bold refers to time step with highest accuracy for each method
(Seg) refers to segmental inference-based phase predictions

What is the overall accuracy and precision/recall for each sur-
gical phase? (2) What is the impact of segmental inference?
(3) How do the interval length and time between intervals
impact accuracy? and (4) Do signals specific to the da Vinci
enhance performance versus signals available and generic to
most other forms of surgery?

Overall frame-wise prediction accuracy is displayed in
Table 3. Results using frame-wise inference are listed on
top and using segmental inference are on bottom. In gen-
eral, RF and tCNN perform better than SVM; however,
these differences are only 4–5%. Accuracy of the segmental
predictions is higher than the corresponding frame-wise pre-
dictions by about 3%. The phase label predictions from the
three approaches along with the ground truth phase sequence
from one of the data set procedures are shown in Fig. 2. Addi-
tionally, the feature importance based onmean-squared error
at each node from RF showed that all the features were sim-
ilar in importance.

Table 3 also shows that there is a minor increase in accu-
racy as the step size decreases from 60 to 10s. The results
stabilize around 30s. This may be because phases with short
duration, such as Ligation, yield a small number of samples.

The improvement is largest for the temporal CNN which
models how the features change over time.

Tables 4 and 5 show per-class precision and recall. Preci-
sion is higher for Dissection and Cuff Closure, moderate for
Colpotomy and No Label, and low for Ligation. Segmental
inference tends to improve precision in all except three cases
(marked with a ∗). Cuff Closure phase has near perfect recall
and Dissection has recall of 85%. Recall for Ligation was
poor in most cases.

Table 6 compares performance using the LD metric. The
results are similar to observations in the overall accuracy.
RF and tCNN perform similarly and are both better than
SVM. The segmental inference performance across the three
approaches improves the LD metric as well. As the step size
decreases, the LD performance tends to decrease.

Table 7 shows effect on accuracy in phase prediction
as part of the first sensitivity analysis (section “Sensitivity
analyses: interval length and feature set”) using features com-
puted with interval lengths varying from 60 to 180s. The
performance is similar among all values; however, results
at 60 s are marginally worse. This matches our intuition to
choose 90-s intervals for themain results based on the typical
phase lengths for hysterectomy procedures.

Table 8 compares results using all signals recorded by
the da Vinci versus the subset EtECtTi of signals common to
most surgical systems (section “Sensitivity analyses: interval
length and feature set”). Our results show the performance
using these generic features is only a small amount worse
than using all features.

Discussion and future work

Our data set is highly realistic and contains natural varia-
tions in procedure flow pertaining to patient anatomy, type
of hysterectomy (total, radical, subtotal), and surgeon style.
Despite these challenges, the performance of our framework

True Labels

SVM

RF

tCNN

SVM (Seg)

RF (Seg)

tCNN (Seg)

Ligation Dissection Colpotomy Cuff Closure No Label

Fig. 2 Phase prediction for a hysterectomy procedure from our data set using system events-based features. (Seg) refers to segmental inference-
based predictions
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Table 4 Per-phase precision
with a 30s step size

Phase SVM RF tCNN SVM (Seg) RF (Seg) tCNN (Seg)

Ligation 24.1 36.0 37.7 14.3∗ 44.6 40.9

Dissection 72.7 73.7 78.2 75.0 72.9∗ 78.3

Colpotomy 38.9 60.1 57.7 41.3 63.8 69.1

Cuff closure 80.8 83.0 85.3 80.6∗ 83.1 85.4

No Label 55.8 62.6 68.8 61.6 74.1 70.6

Bold text refers to the highest precision values
(Seg) refers to segmental inference-based phase predictions
∗ Segmental inference lowered the precision value

Table 5 Per-phase recall with a
30s step size

Phase SVM RF tCNN SVM (Seg) RF (Seg) tCNN (Seg)

Ligation 14.9 15.9 27.5 3.6 9.5 24.4

Dissection 78.2 84.0 82.2 82.8 91.3 85.6

Colpotomy 39.5 37.3 55.9 44.4 32.7 60.2

Cuff closure 97.0 98.0 95.3 98.8 98.8 95.0

No Label 44.6 52.4 61.4 50.2 50.7 61.4

Bold text refers to the highest recall values
(Seg) refers to segmental inference-based phase predictions

Table 6 Overall Levenshtein distance in phase prediction for the dif-
ferent time steps

Method Time steps (s)

10 30 45 60

SVM 32.1 32.0 33.0 33.8

RF 27.2 27.0 26.6 27.7

tCNN 26.2 25.0 27.1 29.0

SVM(Seg) 29.9 30.1 29.9 31.9

RF(Seg) 24.8 25.0 25.3 27.0

tCNN(Seg) 25.2 23.9 26.2 28.4

Bold refers to the highest edit distance values for each method
(Seg) refers to segmental inference-based phase predictions. Smaller
values for LD indicate better performance

Table 7 Phase prediction accuracy using different interval lengths for
aggregating the features

Method Interval length (s)

60 90 120 150 180

SVM (Seg) 69.8 70.4 70.2 70.7 70.6

RF (Seg) 72.4 74.3 74.5 74.1 74.6

tCNN (Seg) 76.0 76.0 77.0 76.3 76.1

Time step size was 30s using the 16-dimensional feature set

was comparable to the overall accuracy of other reported
results [7,8]. Precision and recall across phases are similar
to those reported in [7]. That work also finds precision and
recall of the dominant class tends to be much higher than
other classes.

Table 8 Phase prediction accuracy using signals specific to the daVinci
(all) versus signals generic to many surgical systems (EtECtTi)

Feature set SVM(Seg) RF(Seg) tCNN(Seg)

all 70.4 74.3 76.0

EtECtTi 61.6 71.0 72.5

EtECtTi is a nine-dimensional vector containing the three time-based
energy features, three count-based energy features, and three tool infor-
mation flags

Despite investigating several models with various distinct
assumptions, we found all approaches achieved relatively
similar performance. The first (SVM) assumed a simple
linear model, the second (random forest) learned the most
important subsets of features for each phase, and the third
(temporal CNN) non-linearly modeled the temporal evolu-
tion of features. Based on these results and our experience
working with these data, we surmise the biggest issue is not
with the activity recognition models but with the way the
problem is posed. The extreme temporal variability has a
large negative impact on prediction. Some of the phases are
many times longer than others. This results in many short
phases being merged into neighboring larger ones. This was
an issue with the tCNN because temporal filters tended to
smooth out feature responses across short phases. Itwas espe-
cially apparent when using segmental inference.

The presented framework and its validation were based on
events data captured from a robot-assisted surgery platform.
However, we performed the same validation experiments by
leaving out some of the robot-specific events such as camera
motion, clutching, and the console head sensor. This analy-
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sis showed that the performance of the different models in
predicting the phase label did not decrease by a large amount
using the smaller set of features generic to other forms of
surgery (Table 8). Thus, ourmethod can be applied and tested
with non-robotic surgical systems. The previous work [7] has
successfully captured these signals in the laparoscopic chole-
cystectomy procedure setting. This would enable large-scale
studies that require surgical phase analysis in the domain of
traditional laparoscopic as well as open surgery, in addition
to robot-assisted procedures.

Information for surgical phase detection is distributed
across different forms of data video, tool motion and system
events. Each data type has its own advantages and disadvan-
tages.While video contains themost context it is challenging
to detect the action being performed, anatomy being operated
upon, and the instruments in use. Tool motion data capture a
surgeon’s direct movements but lack contextual information
such aswhat anatomy the surgeon is operating on. Events sig-
nals such as button presses and releases are the simplest and
cheapest to acquire but do not capture anatomy or nuance
in a surgeon’s motions. Our presented work supports the
hypothesis that phase information is contained in the sys-
tem event signals. This information is not available through
tool motion data and hard to extract from video data. Thus,
future work should look at combining multiple modalities to
capture complementary information about surgical phases.

There are many questions that require further investi-
gation. For example, can our proposed approach apply to
other surgical procedure data? How does workflow vary
between different surgeons? Do certain workflows correlate
with improved outcomes? How do patient anatomy or prior
conditions affect the workflow? While this work highlights
some of the tools necessary for addressing these questions,
our analysis is limited by the size of our data set. To answer
these questions, we must scale up the data set so there are
a sufficient number of samples belonging to different sets
of parameters like operating surgeon, patient’s anatomy, for
statistically significant analysis and results. Future research
must consider this when generating new data sets.

Conclusion

Surgical phase detection, at scale, has many useful appli-
cations for surgical education, training, and assessment.
Analysis of surgical phases and their impact on patient out-
comes can provide important insights about critical steps in
a surgery. We have presented a scalable solution for phase
detection using system events captured during live surgi-
cal procedures. Our findings demonstrate that system events
contain surgical phase information, and thus, they may be
combined with tool motion and/or video data to automate
surgical phase recognition with a better performance.
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