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Abstract
Purpose Precise needle placement is an important task dur-
ing several medical procedures. Ultrasound imaging is often
used to guide the needle toward the target region in soft tissue.
This task remains challenging due to the user’s dependence
on image quality, limited field of view, moving target, and
moving needle. In this paper, we present a novel dual-robot
framework for robotic needle insertions under robotic ultra-
sound guidance.
Method We integrated force-controlled ultrasound image
acquisition, registration of preoperative and intraoperative
images, vision-based robot control, and target localization,
in combination with a novel needle tracking algorithm. The
framework allows robotic needle insertion to target a preop-
eratively defined region of interest while enabling real-time
visualization and adaptive trajectory planning to provide safe
and quick interactions. We assessed the framework by con-
sidering both static and moving targets embedded in water
and tissue-mimicking gelatin.
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Results The presented dual-robot tracking algorithms allow
for accurate needle placement, namely to target the region of
interest with an error around 1 mm.
Conclusion To the best of our knowledge, we show the first
use of two independent robots, one for imaging, the other
for needle insertion, that are simultaneously controlled using
image processing algorithms. Experimental results show the
feasibility and demonstrate the accuracy and robustness of
the process.
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Introduction

Several medical procedures require the targeted insertion of a
needle for diagnostic or therapeutic purposes. These include
a wide range of biopsies of cysts, lymph nodes, or lesions
as well as brachytherapy or tissue ablation [1]. The latter
requires the insertion of a needle to locally treat cancer-
ous lesions, as an alternative or complement to traditional
approaches such as surgery, radiotherapy, or chemotherapy.
In the case of radiofrequency (RF) ablation, unresectable
malignant lesions are destroyed by heating them with an
electrical current produced by a radio wave [2]. Cryoabla-
tion uses hollow needles (cryoprobes) through which cooled
thermally conductive fluid is circulated to freeze and destroy
neighboring tissue. Beyond cryoablation for prostate can-
cer, it is a potential treatment for lung, liver, kidney, bone,
and soft tissue tumors [3]. These procedures are mostly per-
formed under fluoroscopic or ultrasound (US) guidance, in
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which the RF needle or cryoprobe is placed into the vicin-
ity of the target region. Although it is strongly dependent on
the operator, US is preferred due to its noninvasive nature,
low cost, high frame rate, and lack of radiation. It further
allows real-time monitoring of patient motion and treatment
progression. The outcome of the treatment depends not only
on the analytic skills and the dexterity of the medical expert
when handling the needle, but also on his experience with the
US device, including appropriate pressure applied to the soft
tissue and orientation relative to needle and target. Indeed,
accurate needle placement remains challenging in cases with
poor target visibility, if the tumor is located in a location dif-
ficult to access, if a multifocal disease has to be treated, or if
the US imaging plane has to be placed out of the axis of the
needle.

The development of an ultrasound-guided robotically
assisted percutaneous needle placement framework, possi-
bly combined with Computed tomography (CT) or magnetic
resonance (MR) to ultrasound image fusion could not only
improve the clinical outcome but could also reduce radiation
dose, when compared to fluoroscopic or CT-guided needle
insertions, or improve simplicity, when compared to MR-
guided insertions [4]. The increasing complexity in these
approaches drives the development for robotic solutions to
support physicians in successfully performing targeted abla-
tion and to extend the approach to other pathologies. Robotic
systems equipped with an RF needle or cryoprobe and an
ultrasound probe, applying constant pressure from a desired
angle, and maintaining visibility of the needle in the ultra-
sound frame throughout the intervention, could allow for
accurate needle placement.

Some aspects of such a robotic framework, consisting of
imaging and action components, have already been studied.
On the one hand, robotic manipulators can be employed to
acquire real-time imaging in the interventional setting.While
nuclear detectors such as gamma cameras do not require skin
contact [5], special control strategies are required for robotic
ultrasound imaging [6,7].

Research on ultrasound-guided robotic needle insertion
has becomeof great interest to the scientific community in the
past decade. Using a fixed ultrasound transducer, a robotic
needle insertion technique has been presented by Hong et
al. [8]. That early work required the needle to be aligned
with the ultrasound transducer, and the robotic component
was designed to insert the needle along the ultrasound B-
mode plane to target a region of interest in the image. Similar
robotic needle insertion and steering conceptswere presented
for brachytherapy [9], soft tissue insertion [10], or obstacle
avoidance [11]. While strongly focusing on the needle tra-
jectory, the cited publications did not incorporate a moving
(robotic) ultrasound acquisition. Therefore, they are limited
by the field of view of the ultrasound transducer, and they
possibly require a manual repositioning.

To enable 3D needle steering, movement of the transducer
may be required, as demonstrated in [12]. That proposed
framework is valuable and worked well for the performed
experiments, but it may be difficult to apply the methodology
in a clinical scenario due to the robot kinematics (linear stages
might not be sufficient to cover patient motions realistically)
and lack of force sensing.

In this paper, we present a system to combine planning,
imaging, and action, aiming to provide a proof of concept
for developments toward dedicated clinical applications. The
proposed solution incorporates two lightweight robots (i) to
autonomously acquire ultrasound images with one arm and
place the transducer so that (ii) a needle can be inserted accu-
ratelywith the other arm based on a preoperative definition of
the region of interest and an intended needle target position.

Materials and methods

System overview and workflow

To achieve robotic ultrasound-guided needle insertion based
on preoperative imaging, several tasks need to be performed,
which can be organized into three phases: initialization, ultra-
sound volume acquisition and processing, and ultrasound-
guided needle insertion. The following paragraph refers to
the workflow depicted in Fig. 1.

During the initialization phase (red boxes), medical
experts review preoperative images and define the region of
interest (A). The robot–robot calibration (B) is performed
once the robots are positioned in the intervention room,
before the patient arrives. In the secondphase, an autonomous
ultrasound volume acquisition is performed using the first
robot (blue boxes). This phase includes a 3D surface scan
and planning of the ultrasound acquisition (1), ultrasound
acquisition and volume compounding (2), and the registra-
tion of the preoperative images with the ultrasound volume
(3). At this point, the region of interest is transferred to the
robot coordinate system. In the third phase, the ultrasound-
guided needle insertion is performed using the second robot
(green boxes). Based on the ultrasound volume and preop-
erative imaging, the needle trajectory is planned. Then, the
ultrasound transducer mounted on the first robot is automat-
ically positioned to enable the simultaneous observation of
the needle and the region of interest (4). We define the ideal
transducer position so that the needle moves within the imag-
ing plane, as it is desired to observe the needle during the
entire injection process. Following an automatic initializa-
tion of the needle position close to the point of entry to allow
a final safety check, the second robot slowly inserts the rigid
needle (5). Visual servoing allows the update of the needle
trajectory based on the live ultrasound images, the tracked
target anatomy, and the needle tip detected therein (6). The
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Fig. 1 The workflow is organized in three phases: the initialization phase (red boxes), ultrasound volume acquisition (blue boxes), and the
ultrasound-guided needle insertion (green boxes)

Fig. 2 The transformations
flange-to-camera C{1,2}TF{1,2},
flange-to-needle tip NTTF2, and
base-to-base B2TB1 need to be
calibrated, while the
transformations base-to-flange
F{1,2}TB{1,2} are provided by the
robot
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required steps for each of the three phases are explained in
detail in the following sections.

Initialization: robot and camera calibrations

In this section, we explain how to obtain the unknown trans-
formations. Figure 2 illustrates the chain of transformations
in our dual-robot framework, where each robot is equipped
with a RGB-D camera, robot 1 holds the ultrasound trans-
ducer, and the needle is mounted on robot 2.

We use classical pivot calibration to compute the trans-
formation flange-to-needle tip NTTF2 (see, e.g., [13]). The
transformations C{1,2}TF{1,2} are obtained through hand-eye
calibration [14], where {1, 2} refers to robots 1 and 2. For one
robot at two poses h and h + 1, the chain of transformations
can be defined as:

C1h+1TC1h
C1TF1 = C1TF1

F1h+1TF1h , (1)

where the camera centers for pose h and h + 1 are obtained
by tracking a checkerboard [15]. Finally, Eq. (1) needs to
be solved for C1TF1. The calibration for the second robot is
performed analogously. The known design of the transducer
mount is used to initialize the standard ultrasound-to-tracking
calibration [16]. The Tool Center Points (TCP) are defined

to be the ultrasound transducer apex and needle tip. After
flange-to-camera calibrations are performed for both robots,
the base-to-base transformation B2TB1 is obtained by observ-
ing one common target, such as a checkerboard (CB):

B2TB1 =F2 T−1
B2

C2T−1
F2

CBT−1
C2

CBTC1
C1TF1

F1TB1, (2)

where CBTC{1,2} are the transformations from camera center
to checkerboard (CB) obtained as presented in [15].

The final base-to-base transformation B2TB1 is calculated
by averaging the base-to-base transformations computed at
different robot poses.

It is assumed that during the procedure B2TB1 is not
changed, therefore only one depth camera is used in the
experimental setup. Due to the rigid mount of the camera,
US transducer, and the needle, all calibration steps are per-
formed only once; therefore, they do not to be carried out for
each intervention by the clinical staff.

Ultrasound volume acquisition and processing

3D surface scan To obtain a 3D scan of the patient’s sur-
face, one robot ismanually positioned in an observation pose.
Using the RGB-D camera mounted to the end-effector, the
real-time RGB-D data are visualized and presented to the
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operator for interactive selection by drawing a rectangle of
the region of interest (ROI) containing the relevant part of
the patient’s surface. To acquire optimal ultrasound images
of the selected ROI, the transducer needs to be placed per-
pendicular to the surface. Therefore, surface normal vectors
are computed using a kNN-based approach [17].

Trajectory planning and execution The trajectory is planned
by projecting the ROI onto the patient’s surface, and optimiz-
ing for the coverage of the target volume [6]. This includes
a principal component of the ROI, which allows to compute
a trajectory along its main axis to optimize ROI coverage.
Before the ultrasound is acquired, the operator applies suf-
ficient ultrasound gel to achieve acoustic coupling and is
prompted to verify the planned trajectory. Two-dimensional
ultrasound images are then recorded simultaneously with
the mechanical tracking data provided by the robotic sys-
tem. After the data are recorded, the ultrasound volume is
compounded using a quadrilateral interpolation for a good
trade-off between computational performance and image
quality [18].

During the entire procedure, the impedance control mode
is used for achieving compliant robot behavior. The motion
model is based on virtual springs and dampers, whose ten-
sions vary based on the measured and specified position of
the TCP. The robot exerts constant force onto the patient’s
surface, enabling a continuous contact between the ultra-
sound transducer and the patient surface. In combinationwith
the previously applied ultrasound gel, this ensures sufficient
acoustic coupling. The impedance controller is described in
detail in [19].

Registrationof preoperative and intraoperative imagingDur-
ing the initialization phase, the physician selects the ROI in
preoperative images, such as ultrasound, CT, or MRI vol-
umes. To obtain the position of this target in the robot coordi-
nate system, the ultrasound volume and preoperative images
are registered. Using the LC2 similarity measure [20,21] and
a nonlinear optimizer, such as BOBYQA [22], the volumes
can be aligned. In the current scenario, we expect the tissue
deformation to primarily be caused by the pressure applied
by the transducer. Therefore, we perform the registration by
estimating an affine transformation to find the target within
the ultrasound volume.

Ultrasound-guided needle insertion

Robot positioning and planning The needle insertion point
and trajectory are computed under the constraint that the
ultrasound transducer is positioned perpendicular to the
patient’s surface, and the needle and target appear on the same
image plane. For safety reasons, the needle is only allowed to
traverse tissue that has already been imaged during the ultra-
sound volume acquisition, allowing the avoidance of critical
anatomical structures.

Fig. 3 While one robot holds the ultrasound transducer, the second
robot injects the needle. The point of injection is computed by inter-
secting the image plane with the patient’s surface. Additional constrains
arise from collision avoidance and needle length. Needle tracking (yel-
low line) within the needle neighborhood (diagonal gray rectangular),
as well as target tracking (red circle) under consideration of the tar-
get neighborhood (gray square) is explained in Sect. 2.4. The adaptive
planned needle trajectory is visualized in red

The imaging plane is defined by the patient’s surface, the
target, and thefirst principal component of the ultrasoundvol-
ume. This reduces the free configuration of the second robot,
as the needle injection point now needs to be along a curve
defined by the intersection of the image plane and patient’s
surface (see Fig. 3).We aim at a needle path inside the patient
as short as possible, which limits the damage inflicted to the
tissue and minimized the possibility of needle bending. By
solving the kinematics of the robots under consideration of
collision avoidance and minimal safety distances, the nee-
dle injection point is determined and visualized within the
previously acquired ultrasound volume.

Target tracking for visual servoingThe visual error is directly
determined by performing intensity-based registration of
ultrasound images [7]. First, an initial target neighborhood
Ω0 is defined based on the region of interest, which was pre-
viously transferred fromdiagnostic imaging to the ultrasound
image “Ultrasound volume acquisition and processing” sec-
tion. To guarantee sufficient overlap for intensity-based reg-
istration, while minimizing the computational effort, the size
of the target neighborhood is suggested to be approximately
10% of the image width. The initial target neighborhood Ω0

is confirmed by the users.
Then, the movement of the target neighborhood can be

determined frame-to-frame by registration of the neighbor-
hood Ωt−1 to the current ultrasound image It using NCC as
similarity measure and BOBYQA as optimizer. Because the
deformation between two frames is assumed to be very small,
a rigid transformation can be used. In terms of target track-
ing, we are interested in the position of the target relative to
the ultrasound apex which corresponds to the TCP. Knowing
the original pose of the target at t = 0, the result can be
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described as transformation USTTarget which represents the
position of the target in the current image It relative to the
ultrasound origin (US).

Needle tracking for visual servoing The needle appears in
the image as a thin, high-intensity line. The point of nee-
dle injection and planned trajectory are known. Furthermore,
speed and approximate trajectory of the needle are known,
which allows the reduction in the search space to a region
which we will refer to as needle neighborhood Θ . Using a
RANSAC-based approach with Kalman filtering [23], the
needle can be detected and tracked in real time. At each time
t , the changes in Θ are determined by simple subtraction
ΔΘt = |Θt − Θt−1|.

A set of candidate pixels are detected by thresholding
using Otsu’s method [24]:Wt = {wi,t ∈ Θt |ΔΘt ≥ TOtsu,t }.
Later, artifacts from ultrasound speckles are removed using
a median filter, resulting in a reduced candidate set Ŵt . At
each time t , the needle is modeled by a polynomial curve
Ct of degree n with n control points Pt = {pm,t |pm,t =
[xm,t , ym,t , zm,t ]}nm=1. The k polynomial curves are fit to the
reduced candidate set Ŵt using the RANSAC algorithm [25],
and the best fit is determined by computing the distance
between the points in the candidate set and the polynomial
curve.

However, in real tissue or realistic phantoms, this approach
is prone to fail due to tissue structures occluding the needle or
appearing too similar. We introduce knowledge based on the
previous needle path and current shape such as to consider
new candidate points only in a ROI around the estimated
needle tip. For each candidate pixel, p(x, y), at the current
image frame, k, we calculate the minimum Euclidean dis-
tance d to the second-degree polynomial curve, Ct . After
finding the solutions of the cubic equation, its first solution
WRk = argminW d(p,Ct (W )) is used to update the weight
map at that pixel location byWk(p) = Wk−1+WRk . Only the
pixels above a weight threshold are considered as candidate
points in the RANSAC polynomial fitting.

Using an extended Kalman filter [26], the update of the
control points is performed based on the tracking information
provided by the robot performing the needle injection and
the needle tracking algorithm. This filtering step significantly
improves the localization stability and results in a transforma-
tion from the observed needle tip (oNT) to the ultrasound ori-
gin USToNT. Finally, the visual error between expected (based
on mechanical tracking) and observed (based on RANSAC
and Kalman filter) needle tip positions can be computed:

oNTTNT =US T−1
oNT

USTF1
F1TB1

B2T−1
B1

F2T−1
B2

NTT−1
F2 . (3)

Visual control law and needle trajectory update The visual
control law now determines the new needle trajectory under
consideration of the transformations provided by the robot

holding the ultrasound transducer F1TB1 (constantly updated
as movement is possible, while it remains in impedance con-
trol mode), the target tracking algorithm USTTarget, and the
needle tracking algorithm oNTTNT. TheTCPpose (the needle
tip and orientation) can now be updated according to:

NTTF2
F2TB2 =oNT TNT

UST−1
Target

USTF1
F1TB1

B2T−1
B1 . (4)

Target tracking and needle detection are continuously exe-
cuted, allowing the visual servoing to be performed in near
real time. All trajectories are generated using cubic polyno-
mials with via-points. The maximum force applied is set to
5 Newton.

Experiments and results

Experimental setup

For both intraoperative and preoperative imaging, we use an
Ultrasonix® SonixTableTM system together with a curvi-
linear transducer C5-2/60 to obtain the ultrasound images
(Ultrasonix Medical Corp., Richmond, BC, Canada). The
acquisition rate, frequency, depth, and gain are set to 32 Hz,
5.0 MHz, 90 mm, and to 32%, respectively. Using the Ultra-
sonix® API, the images are transferred via Ethernet to the
image processing computer. The needle is a standard 18
gauge needle for seed placement. The RGB-D camera is an
Intel® RealSenseTM F200 3D camera, which provides RGB
data at 1920×1080 pixels at 30 frames per second and depth
images at a resolution of 640 × 480 pixels at 60 frames per
second. The observable depth range is 0.2–1.2m. To mount
the ultrasound transducer, needle, and RGB-D cameras to
the robots, custom adapters were designed and 3D printed.
For experiments, we use two identical KUKA LBR Intelli-
gent Industrial Work Assistant (iiwa) 7 R800 robots (KUKA
Roboter GmbH, Augsburg, Germany). Each robotic system
is comprisedof a 7-joint armwith corresponding control units
and consequently enables one redundant degree of freedom
(7 in total). As a result of this design, the robot provides
dynamic movement and flexible adaption of trajectories to
the working environment.With respect to robotic ultrasound,
the incorporated high-accuracy torque sensors in every of
the seven joints are evenly important, as a robotic ultrasound
framework has to be fully compliant to both patient and staff.
Detailed specifications can be found in [27]. The experimen-
tal setup is shown in Fig. 4.

Implementation details

The image processing computer runs the ImFusion Suite
(ImFusion GmbH, Munich, Germany) for which we have
designed and implemented additional modules to acquire
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Fig. 4 The experimental setup is comprised by two KUKA iiwa,
holding the needle and ultrasound transducer. After calibration of the
base-to-base transformation, visual servoing is performed to place the
needle in the target, which is observed in the ultrasound image

the RGB-D point clouds, allow user interaction, trajectory
planning, and real-time ultrasound visualization. The imple-
mentation uses parallelization on Graphics Processing Units
(GPUs) for fast and efficient processing.

The robots are controlled by a driver software using the
KUKA SmartServo. Command messages are sent from the
image processing computer via an OpenIGTLink connec-
tion. KUKA SmartServo can currently process commands at
a rate of 50Hz. TheEuclidean positions of the robot are trans-
ferred via the Fast Research Interface (FRI) [28], from the
robot controller to the image processing computer at a rate
of 250Hz, which outperforms any commonly used clinical
tracking system.

Target tracking accuracy validation

The target tracking experiments include the two robots,
where one operates the ultrasound transducer and the other
onemoves the phantom by a series of translations (±20mm).
Over a time of 180 s, the transducer was robotically moved
to follow the motion of the target. As shown in Fig.5, the reg-
istration results indicate reliable tracking, even considering
drift over time. The overall translational accuracy for N =9
experiments is 0.6 ± 0.1 mm. The registration to the initial
US image took around 500 ms.

The spatial transformation USTF1 from the origin of the
ultrasound image to the transducer apex is determined by
using the PLUS library [29] and a calibration phantom. The
mean calibration error is 0.56± 0.20 mm. The mean calibra-
tion error of the needle tip to robot flange (NTTF2) is 0.55 ±
0.11 mm. We then performed two sets of experiments, using
two different types of phantoms. The first type of phantom
is a 260 × 190 × 135 mm box filled with water. The tar-
get is a 7 mm sphere which is submerged at around 80 mm
below the surface. Awater bath allows easy ultrasound imag-
ing, but the impedance controller cannot be used. The other
phantom is made by filling a 240 × 150 × 120 mm box with
7 weight percent (wt%) 300 bloom pork gelatin as suggested
in [30,31], to achieve acoustic tissue-mimicking properties.
Different organic spherical objects with diameters between
7 and 17 mm were then submerged at different depths below
the surface. For our tracking accuracy experiments, we again
used a 7 mm sphere, around 80 mm below the surface. The
user defines the desired target position, which is illustrated
as red circle in Fig. 6. The target positions are set to be on
the surface of the sphere in all our experiments. During the
gelatin phantom tests, all movements are executed using the

Fig. 5 During needle
placement, the target ROI is
continuously co-registered
between two sequential images
to compensate for its motion. a
The red overlay displays the
target in its initial position and
the blue overlay after
translational movement of ±20
mm. b The final registration
result is shown

ba

Fig. 6 Needle tracking while
approaching a target, in which
the yellow line represents the
fitted polynomial. The tracked
tip (blue) and the user-defined
target (red) are visible

needle tip 

needle shaft with  
control points 

target needle tip target 

needle shaft with  
control points 
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Table 1 Average distances between needle tip and targets for experi-
ments with visual servoing

# Phantom
type

Angle Avg. errors
5 mm/s [mm]

Avg. errors
3 mm/s [mm]

Avg. errors
1 mm/s [mm]

1 Water 30◦ 1.19 ± 0.12 1.30 ± 0.16 1.29 ± 0.09

2 Water 45◦ 1.14 ± 0.09 1.07 ± 0.14 0.90 ± 0.11

3 Gel 30◦ 0.87 ± 0.16 0.97 ± 0.15 0.82 ± 0.12

4 Gel 45◦ 0.87 ± 0.14 0.93 ± 0.20 0.81 ± 0.19

Each line summarizes five experiments

impedance controller. Similar to a common clinical scenario,
we used a needle of 100 mm length and observed the target
area with 90× 70× 90 mmUS volume which is not station-
ary during insertion , namely following a patient motion of
±20mm.For eachphantom,wehave performedneedle inser-
tion with two different angles, 45◦ and 30◦ with respect to
the base plane of the box, and three different needle insertion
velocities: 5, 3, and 1 mm/s. The needle insertion has been
performed five times in each test case, resulting in a total of
60 evaluated needle insertions. We evaluated the robustness
of the needle tracking by placing a finger in the vicinity of
or even touching the needle shaft (as shown in Fig. 3), such
as to create additional signal and movement in the image.
We evaluated the needle tracking algorithm by recording the
detected needle tip at different instances of time, as shown in
Fig. 6. When the robot reached the planned end point of the
trajectory, we calculated the distance between the detected
needle tip and the desired target position in the ultrasound
image and, using the known calibration, the metric error. The
computational time for the needle tracking is around 32 ms.
The results are summarized in Table 1.

Discussion and conclusion

In this work, we presented a framework for robotic needle
placement under robotic ultrasound image guidance. In par-
ticular, we demonstrated the first use of a dual-robot system
that takes advantage of impedance control for ultrasound
imaging and allows for a consistent representation of the
workspace. In comparison with systems with a needle guide
or device attached to the ultrasound transducer [9], using a
second robotic arm for the needle insertion retains the full
versatility with respect to meaningful acoustic windows for
imaging and anatomically possible needle insertion paths. In
our experiments, we have demonstrated that our framework
is able to successfully and robustly hit targets of 7 mm in
diameter, as required in a wide range of clinical scenarios
[3,32].

Our framework encompasses state-of-the-art ultrasound
image compounding techniques for representing the targeted

domain, as well as needle tracking techniques suitable for
real-time operation. This work combines the advantages of
previous approaches, namely the preoperative planning, the
real-time tracking of the needle, and the trajectory update.All
our techniques are efficiently implemented using GPU par-
allelization, allowing for the use of the full image resolutions
at high frame rates.

We demonstrated needle placement in a simplified set-
ting using two different types of phantoms (water and
gel). We obtained order of 1 mm targeting accuracy when
considering a target point submerged in the above phan-
toms, irrespective of the needle orientation and speed. As
shown in Table 1, we have noticed that the water bath
experiments had slightly higher needle tracking inaccuracies
compared to the tissue-mimicking gel phantom. This is due
to the mechanical vibration of the robot, which causes slight
vibration of the needle itself in mechanically unconstrained
environments.

The obtained tracking errors support the suitability of the
proposed approach in a range ofmore realistic operating con-
ditions. For instance, more extensive evaluation considering
physically representative tissue (e.g., soft biological tissues)
will be necessary. In a more realistic scenario, flexible needle
deformation in soft tissue should be also considered. More-
over, as an intermediate step toward improving the platform
we also plan to develop an automatic robot-to-robot calibra-
tion scheme which will further simplify preclinical setup.
Indeed, most of the technical details that are related to the
current developmental stage (and that must be therefore doc-
umented in this first study on the dual-robot framework) will
be hidden in a later version of the user control interface, so
as to foster usability by the clinical staff.

By identifying the technical requirements and the nec-
essary methodology using currently available hardware, we
establish the imaging and control software as the basis for a
clinically deployable system in the future.

Nonetheless, in order to adapt size and optimal robot setup
we need to further analyze the clinical environment and
workflow of the intervention, as well as adapt it to patient
and culture of the department. Therefore, this proof of con-
cept is an important initial step toward clinical applicability.
With the development of dedicated domain-specific robotic
systems, purchase and maintenance of such manipulators
come into the clinically and economically expedient range,
in particular in the light of the current cost-effectiveness of
relevant clinical applications such as RF ablation and cryoab-
lation [33].

While we presented a fully automatic framework for
needle placement, cooperative robots as in [5] might be
employed for a particularly dedicated clinical application,
rather supporting the physician in positioning and insert-
ing the needle himself. Our work, focused on determining
the reachable targeting accuracy and validating the whole
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dual-robot system, paves the way for more specific usage of
the proposed interventional framework. We will address its
potential integration into the workflow of additional applica-
tions (e.g., RF ablation or cryoablation), by considering the
corresponding clinical constraints.
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