
Int J CARS (2016) 11:1143–1152
DOI 10.1007/s11548-016-1405-4

ORIGINAL ARTICLE

In vivo validation of spatio-temporal liver motion prediction from
motion tracked on MR thermometry images

C. Tanner1 · Y. Zur2 · K. French3 · G. Samei1 · J. Strehlow4 · G. Sat2 ·
H. McLeod3 · G. Houston5 · S. Kozerke6 · G. Székely1 · A. Melzer3 · T. Preusser4,7

Received: 12 February 2016 / Accepted: 24 March 2016 / Published online: 12 April 2016
© CARS 2016

Abstract
Purpose Magnetic resonance-guided focused ultrasound
(MRgFUS) of the liver during free-breathing requires spatio-
temporal prediction of the liver motion from partial motion
observations. The study purpose is to evaluate the prediction
accuracy for a realistic MRgFUS therapy scenario, namely
for human in vivo data, tracking based on MR images rou-
tinely acquired during MRgFUS and in vivo deformations
caused by the FUS probe.
Methods In vivo validation of the motion model was based
on a 3D breath-hold image and an interleaved acquisition
of two MR slices. Prediction accuracy was determined with
respect to manually annotated landmarks. A statistical pop-
ulation liver motion model was used for predicting the liver
motion for not tracked regions. This model was individu-
alized by mapping it to end-exhale 3D breath-hold images.
Spatial correspondence between tracking and model posi-
tions was established by affine 3D-to-2D image registration.
For spatio-temporal prediction, MR tracking results were
temporally extrapolated.
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Results Performance was evaluated for 10 volunteers, of
which 5 had a dummy FUS probe put on their abdomen.
MR tracking had a mean (95%) accuracy of 1.1 (2.4)mm.
The motion of the liver on the evaluation MR slice was
spatio-temporally predictedwith an accuracy of 1.9 (4.4)mm
for a latency of 216 ms. A simple translation model per-
formed similarly (2.1 (4.8)mm) as the two MR slices were
relatively close (mean 38 mm). Temporal prediction was
important (10% error reduction), while registration effects
could only partially be assessed and showed no benefits. On
average, motion magnitude, motion amplitude and breathing
frequency increased by 24, 16 and 8%, respectively, for the
cases with FUS probe placement. This motion increase could
be reduced by the spatio-temporal prediction.
Conclusion The study shows that tracking liver vessels on
MR images, which are also used for MR thermometry, is a
viable approach.

Keywords Focused ultrasound · Respiration · Motion
prediction · Tracking

Introduction

To enable focused ultrasound (FUS) therapy of the liver
during free-breathing, it is important to have accurate infor-
mation about the position of the structures of interest during
therapy. Purely tracking the tumor is not sufficient for FUS,
where absorbing and reflecting structures (e.g., bones, gas)
can cause thermal injury to neighboring tissue [18,27,32].
Observation of the motion for these structures requires
real-time 4D image acquisition and processing, which is cur-
rently impossible. Hence prior knowledge about the expected
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Fig. 1 Main components for
respiratory organ motion
prediction based on population
model, 3D image before and
partial observations from
tracking during therapy, see
“Methods” section

motion is required to complement the partial observations
acquired during therapy.

Subject-specific [3,7,11,13,14,16,36] and population-
based [2,6,9,12,17,19,20,34] respiratory motion models
have been proposed for this purpose [15,29]. Population
models are built by gathering 4D data from a number of
subjects. Subsequently, the common structures within dif-
ferent subjects are registered and their motion correlates are
learned. Figure 1 illustrates the usage of such a population
model. Themodel is individualized by spatiallymapping it to
the subject using a 3D image. During therapy, the individual-
ized model predicts from partial motion observations (from
tracking structures on an MR or US image slice) the motion
of unobserved regions. In contrast, a subject-specific model
approach adapts to a subject by using 4D data of this sub-
ject. For 4D-CTs only very few breathing cycles are observed
to avoid excessive radiation. More information can be gath-
ered with 4D-MRI, allowing the observation of variations in
breathing states. Yet long 4D-MRIs (>20min), for observing
also non-periodic long-termmotion phenomenon (drift) [34],
are impractical.Hence subject-specificmodels basedon short
4D-MRIs need combining with a population drift model or
regularly updated with 3D observations.

Of these various motion models [15,29], only one model
was realistically in vivo validated for abdominal organs dur-
ing respiration [20] and this was based on US tracking. How-
ever such an MR/US approach requires an MR-compatible
US device, a lengthy setup and synchronization of the US
imaging and FUS transmissions. Motion has previously
been tracked on MR slices acquired for MR thermome-
try [21–23,27,28] or on other types of MR slices [5,10].
Yet experiments included mostly periodic, simple motion of
phantoms, with the exception of [5,10,21,22]. Few of these
studies, which use MR tracking, included temporal predic-
tions [5,27] and none spatio-temporal prediction. This study

evaluates for the first time the in vivo spatio-temporal pre-
diction accuracy of a motion model being driven by tracking
structures on the thermometry magnitude MRIs during free-
breathing. Furthermore, the sensitivity of the predictions to
deformations induced by a FUS probe is analyzed. This is an
important step toward translating MRgFUS in the liver into
the clinic, which is the aim of the TRANS-FUSIMO project.
It builds on the integrated model-based software developed
during FUSIMO [26]. Themotionmodel is based on [25,31].
Initial results of this validation, for a spatio-temporal model
built from 12 subjects, were included in [26] without provid-
ing much details.

Material

Images for validation study

For the validation study, 14 volunteers were scanned in
Dundee. The MR sequence was first optimized on 4 vol-
unteers and then fixed for the remaining 10 volunteers
(V1–V10). Five of these were scanned with a dummy FUS
probe in place. All volunteers were imaged in supine position
with the GE Signa 1.5T HDX Echospeed MR scanner, using
a 8-channel cardiac array.

– 3D breath-hold MRIswere used for mapping the popula-
tionmotionmodel to the subject’s therapy position. A 3D
FIESTA sequence with 48 sagittal slices of 4 mm thick-
ness was used. Its scan parameters were TE = 1.3ms,
TR = 3.3ms, flip angle 80◦, FOV 40 cm and 256 × 256
acquisition matrix, see Fig. 2a, c. As the slice acquisition
time was 1.75 s, the acquisition was divided into 4 parts
of 12 slices to reduce breath-holding time to 21 s.

– Dynamic two-slice MR sequences were used for motion
tracking and for capturing motion observations for eval-
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Fig. 2 Example images (a–d) without and (e–h) with dummy FUS probe. a, c, e, g Zoomed in breath-hold slice closest to (b, d, f, h) dynamic
slice. (a, b) V3, lateral, (c, d) V3, medial, (e, f) V8, lateral, (g, h) V8, medial

uation. These were based on echo-planar imaging (EPI),
since the phase EPI images are used for MR thermome-
try during FUS therapy, while the magnitude EPI images
provide anatomical information for vessel tracking. The
sequence was tuned for good vessel contrast (see Fig. 2b,
d) and minimum acquisition time (72 ms per slice). Its
scan parameters were TE=23.4 ms, TR=144 ms, flip
angle 50◦, FOV 260mm and 128×90 acquisitionmatrix.
The 2 sagittal slice locations were planned on a coronal
image of the liver, to ensure a reasonable gap between
the two slices (range [33.2,44.1]mm) for avoiding inter-
ferences and testing spatial prediction ability. The liver
vessel appearance on the selected slices was visually
inspected. The sequence iterated between the two slices
and each slice location was repeated 300 times, giving a
scan time of 46 s. This was repeated 6 times, resulting in
a total scan time of 4.6 min. The volunteer was told to
breathe normally throughout the scan.

– Images with dummy FUS probe To study the influence
of the FUS probe positioning on the liver motion during
respiration, MRIs were obtained for five volunteers with
a dummy probe in place using the same MR protocols,
see Fig. 2e–h. Initially the dummy probe was too uncom-
fortable for the volunteers to tolerate. Therefore the probe
was fittedwith a newmembrane,which allowed for better
filling and thus provided almost a cushion effect. Better

support padding was also utilized. The volunteers were
able to tolerate the probe, but still found it particularly
uncomfortable.

Images for motion model creation

For the motion model, 4D-MRIs were acquired in Zurich for
16 healthy volunteers. An interleaved sagittal 2D sequence
was used, where slices covering the liver were alternated
with a navigator slice placed at the center of the right liver
lobe [33]. After capturing many breathing cycles, the slices
were retrospectively sorted based on the liver position on
the navigator to form 3D volumes. MRIs were acquired
on an 1.5T Philips Achieva whole body MR system using
a balanced steady-state free precession sequence, SENSE
factor 1.7 and halfscan (flip angle = 70◦, TR = 3.1ms,
TE = 1.5ms). The images had a spatial resolution of
1.33 × 1.33 × 4−5mm3 and a temporal resolution of 2.6–
2.8Hz. For the first 12 volunteers, the right liver lobe was
imaged and a 4-channel cardiac array coil was used. For
the remaining 4 volunteers, the whole liver was imaged
with the same MR protocol and a 32-channel cardiac array
coil.

The validation images and 25% of the 4D-MRIs were not
used in [2,19,20,33,34].
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Methods

The motion prediction concept is illustrated in Fig. 1. It con-
sists of 6 steps as described next, of which steps S4 to S6 are
done repeatedly during therapy.

S1 Individualization of motion model The off-line-created
population motion model [25,31] (for completeness
described in “Appendix”) is individualized by mapping
it to the subject’s liver captured on a 3D breath-holdMRI
in therapy position, see “Inter-subject correspondences”
section.

S2 Registration of 3D breath-hold to 2D dynamic slices To
relate the MR observations to the motion model, spa-
tial correspondence between the 3D FIESTA breath-hold
image and the EPI reference slices needs to be estab-
lished. The 3D images were registered to the slices by
using 3D affine transformations and minimizing the dif-
ference in normalized gradientmagnitudewithin the liver
to cope with differences in image appearance (Fig. 2).
This similarity measure was favoured over mutual infor-
mation to reduce runtime.

S3 Automatic detection of liver vessels Bright blood ves-
sels, which are used as landmarks, were automatically
detected on the reference slices with an optimized algo-
rithm based on their shape, size and brightness. Usually
10–15 landmarks are detected.

S4 MR tracking The bright blood vessels in the liver were
tracked with subpixel resolution on the EPI images using
a tracking method inspired by [35]. After the detection of
the vessels in step S3, the location of each landmark over
time is determined using an autocorrelation algorithm.
Due to pulsatile flow in the large arteries, not all ves-
sels can always be tracked reliably. An algorithm detects
the reliability of each landmark and reports it by a binary
flag (“valid”, “invalid”). Themotion of the “invalid” land-
marks was set to themeanmotion of the other landmarks.

S5 Temporal prediction To compensate for latency Δ in the
therapy system, motion needs to be predicted for a future
time point. This was done by first temporally extrapolat-
ing the tracking results (st → st+Δ) and then using st+Δ

as input for the spatial predictionmodel.We evaluated the
temporal prediction methods from [30] (adaptive linear
(LIN), second-order (POLY2) prediction, support vec-
tor regression (SVR), kernel density estimation (KDE),
median of these 4methods (MED)) for an input sampling
time (150 ms) and latency Δ (75 ms, 150 ms) similar to
the EPI image sequence on an independent dataset. The
best-performingmethodwas then selected for themotion
model validation.

S6 Spatio-temporal prediction The extrapolated tracking
results st+Δ are then used as partial observations (sur-

rogates) to predict the liver motion Δpt+Δ via the
population liver motion model [25,31] using Eqs. (3, 4).

Validation strategy

The key for the motion model validation is the acquisition
of an interleaved two-slice EPI sequence, such that one slice
can be used forMR tracking and the other slice for evaluation
of the prediction accuracy.

Liver vessel positions t j,0, j = 1, . . . , J and vk,0, k =
1, . . . , K were automatically detected (during step S3) in the
reference image of the tracking and validation EPI sequence,
respectively. Tracking of t j,0 (S4) provided position t j,t
at time t , and spatio-temporal prediction (S6,7) estimated
vk,t+Δ.

All vessel locations vk,0 were annotated on a randomly
selected subset of 5% of all time frames by one observer
(C. T.). Unreliable annotations were marked as “invalid”.
Landmarks were annotated with subpixel resolution without
accessing tracking results and before availability of pre-
diction results. The mean (95%) intra-observer annotation
accuracy, determined by redoing 20% of the previous anno-
tations, was 0.6 (2.1)mm.

The prediction error per landmark and image frame was
quantified by the Euclidean distance Ek,t+Δ = ||vk,t+Δ −
gk,t+Δ|| for “valid” manual annotations gk,t+Δ. The error
statistics was summarized by first determining the mean and
the 95% of Ek,t+Δ for all annotated image frames t + Δ of
vessel k (denoted as Ēk , E95

k resp.) and then by calculating
the mean of Ēk and E95

k over all vessels k = 1, . . . , K and
volunteers. The process was repeated after reversing the role
of the tracking and validation slice.

Results

Individualization of motion model

The liver in the breath-hold image was manually segmented,
anatomical landmarks were selected, and the liver uni-
formly meshed to achieve inter-subject correspondences, see
“Inter-subject correspondences” section. Some difficulties in
following structures across slices were experienced for few
images when insufficient breath-hold repeatability caused
misalignments.

Registration of 3D breath-hold to 2D dynamic image

Figure 2 shows the closest slice from the 3D FIESTA breath-
hold image to the EPI dynamic slice. Large differences in
image appearance can be appreciated. The effect of reg-
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Fig. 3 Example of 3D–2D registration result for (left) lateral and (right) medial EPI slice of V3. a, d Gradient magnitude (GM) of slice from 3D
image a before and d after registration. b, e GM of EPI slice within liver region. c, f Overlay of a, b and d, e

Fig. 4 Detected vessels (magenta) on EPI MR reference slice. a V3, lateral. b V3, medial. c V8, lateral. d V8, medial

istering the breath-hold image to the dynamic slice when
employing a 3D affine transformation can be seen in Fig. 3.
An improved alignment of the image feature due to regis-
tration can be observed, while some misalignments are still
visible. After registration, the reference and tracked vessel
positions are spatially transferred to the breath-hold image
and hence mapped to the motion model.

Automatic detection of liver vessels

Figure 4 shows example reference slices and the automat-
ically detected vessels. Almost all of these locations are
clearly located at vessel cross sections.

MR tracking

Example MR tracking results are shown in Fig. 5. It can be
observed that themotion is larger in SI (mean standard devia-
tion (SD): 3.2mm) than in AP direction (mean SD: 2.0mm),
and that the breathing pattern can be irregular. The motion

patterns of the various vessels are highly correlated per slice
(R > 0.94 lateral and R > 0.82 medial) and across slices.

The manual annotations used for the motion model
validation were also used for assessing the MR tracking per-
formance. Overall the mean (95%) motion is reduced from
4.9mm (14.2mm) to 1.1mm (2.4mm) byMR tracking. Sim-
ilar tracking performance was achieved for the two EPI slices
[lateral: 1.1mm (2.3mm), medial: 1.2mm (2.5mm)] and for
the volunteers with and w/o the dummy FUS probe [1.1mm
(2.4mm) for both]. More vessels were marked as “invalid”
for the medial than the lateral slice (35 vs. 26%) and for
images with dummy FUS probe than without (33 vs. 26%).
The variation in respiratory motion for the volunteers can be
seen in Fig. 6a. MR tracking reduced this to a similar mean
accuracy (range 0.9–1.4mm), see Fig. 6b.

Temporal prediction

The temporal prediction results for 25 resampled US liver
vessel motion traces [30] are listed in Table 1 and compared
to assuming that no motion has occurred during latency Δ
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Fig. 5 MR tracking results showing superior–inferior (SI) and anterior–posterior (AP) position of the automatically detected vessels over time.
Black dots mark low confidence results. a V3, lateral, SI. b V3, lateral, AP. c V3, medial, SI. d V3, medial, AP

Fig. 6 Boxplots showing distribution of initial motion, MR tracking error, spatio-temporal prediction error for 216-ms latency. The mean values
are marked by green stars. a Motion. b MR tracking. c Spatio-temporal prediction

Table 1 Mean RMS error (in mm) of temporal prediction for sampling rate of 150 ms and latency Δ ∈ {75, 150} ms

Δ Prediction method → NON LIN POLY2 SVR KDE MED

75 Optimized parameters 1.4 0.3 0.3 1.0 1.1 0.5

ms Median parameters 1.4 0.3 0.3 4.0 1.6 0.8

150 Optimized parameters 1.9 0.6 0.6 1.1 1.1 0.6

ms Median parameters 1.9 0.6 0.6 3.4 1.1 0.7

Method parameters were either subject-specific optimized or set to the median population value. The two lowest values per row are marked in bold

(NON). The linear adaptive filter (LIN) performs best for
these relatively short latencies. As before, subject-specific
optimization of the parameters (over first 10 breathing cycles)
is not required, since the median parameters provide a sim-
ilar performance for the best two methods when applied to
the remaining data. Applying the LIN method to the motion
traces extracted by MR tracking for a latency of 72 (216)
ms resulted in a mean root-mean-square (RMS) error of 0.4
(1.1)mm, while no prediction (NON) results in 0.6 (1.6)mm.
Note, LIN could only be applied after sufficient (180) sam-
ples were observed.

Spatio-temporal prediction

In accordance with [31], the model parameters were 99%
cumulative PCA energy, K = 5 nearest models, history
length O = 300 and regularization weight η = σ 2

N/K where

σN = 1mm. Each model was trained on T = 2000 time
steps regularly sampled from up to 850 breathing cycles. The
latency Δ was 72 or 216 ms, as two EPI slices were acquired
within 144 ms. Prediction performance was assessed with or
w/o 3D affine registration, with or w/o temporal prediction
and with mean translation or exemplar model.

Table 2 summarizes the prediction accuracy for all
sequences for 10 volunteers. Predictions were compared to
MR tracking results (311863 samples) or manual annota-
tions (4934 samples). Results are statistically significantly
improved with temporal prediction, but similar with and w/o
registration. Using the mean translation was on average 4.0
(8.4)% worse for Δ (72) 216 ms. Runtime states the average
time for predicting the liver position excluding MR track-
ing, while including 3D affine registration. The variation in
prediction accuracy across volunteers is shown in Fig. 6.
A tendency of increased breathing motion (5.7 vs. 4.6mm)
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Table 2 Mean and 95th percentile error (in mm) w.r.t. reference position over time and then averaged for all vessel locations

Δ Method w.r.t. MR tracking w.r.t. manual annotation RT (ms) CC1 (%) CC2 (%)

Mean 95% Mean 95% Mean

n/a No prediction (motion) 4.9 15.4 5.0 14.9 n/a n/a n/a

72 Translation 1.6 4.0 1.9 4.5 8 8 48

Temporal+ translation 1.5 3.9 1.8 4.2 16 −6 48

Spatial 1.5 3.8 1.9 4.3 30 17 46

Temporal+ spatial 1.5 3.7 1.7 4.0 49 3 48

Reg.+ spatial 1.5 3.7 1.9 4.3 53 21 47

Reg.+ temporal+ spatial 1.5 3.6 1.7 4.0 65 8 48

216 Translation 2.0 4.9 2.4 5.9 8 32 43

Temporal+ translation 1.7 4.2 2.1 4.8 16 −9 39

Spatial 1.9 4.6 2.4 5.7 34 37 43

Temporal+ spatial 1.6 4.0 1.9 4.4 49 −1 43

Reg.+ spatial 1.9 4.6 2.4 5.8 50 39 44

Reg.+ temporal+ spatial 1.6 3.9 1.9 4.4 65 5 44

Last columns show runtime (RT), correlation coefficient between mean error and plate distance (CC1) and between mean error and motion (CC2).
The two lowest values per column for each latency Δ are marked in bold. Per latency, the median of the best method (temporal+ spatial) was
statistically significantly different at the 0.005 level (Wilcoxon signed-rank test) to all other methods apart from ‘reg.+ temporal+ spatial’

was observed with FUS dummy probe placement (V6–V10).
Motion prediction reduced this difference (2.0 vs. 1.8mm).

Summary and discussion

This study shows that the liver motion during free-breathing
can be predictedwith amean (95%) accuracy of 1.9 (4.4mm)
for a latency of 216 ms by the population model based on
individualization using a 3D breath-hold image and tracking
liver vesselmotion on 2DMR thermometry images. This per-
formance is similar compared to the other existing realistic
in vivo validation, which is based on US tracking (2.4mm
mean 3D accuracy for Δ = 200 ms) [20]. They also use a
population-based statistical motion model, but partial obser-
vations from US tracking, a neural network for temporal
prediction, a single PCAmodel for spatial prediction, simul-
taneous 4D-MR and US acquisition for evaluation, and do
not investigate the influence of abdominal deformations.

Using the observed mean translation for spatial prediction
performed similar due to the closeness of the MR tracking
and validation slice. However it will not extrapolate well to
greater distances (increase of 95% by 1mm for the whole
liver in leave-one-subject experiments similar to [31]) and
cannot make the most of additional observations. The errors
of the individual system components are clearly not additive,
withmean errors forMR tracking (1.1mm) and temporal pre-
diction (0.9mm) already adding up to 2.0mm. Application
of a FUS probe increased on average breathing frequency
and magnitude probably due to discomfort and the anterior
motion restriction.

The study was limited by not capturing out-of-plane
motion, which should be small, and by having no ground
truth for the image registration. Acquiring an EPI slice dur-
ing the same breath-hold would avoid this registration. The
misalignments of the breath-holds had likely a small impact
as displacement fields are smooth and the EPI slices lied to
50% in the same acquisition block.

Main aspectswhich should improve the prediction include
tracking vessels on both MR slices (no need for a validation
slice), individualization based on 3D motion observations
from breath-holds [31] and automatic registration by acquir-
ing the tracking reference slice within in the same breath-
hold. In conclusion, a spatio-temporal model of the liver
motion during free-breathing driven by MR motion obser-
vations was in vivo validated and provided an encouraging
mean accuracy close to the initial clinical requirement of
2mm.
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Appendix: Population 4D motion model

Liver registration

An intensity-based non-rigid registration [8,24] was used to
quantify the liver motion captured by the 4D-MRIs. The reg-
istration parameters were iteratively adjusted such that visual
inspection showed misregistrations below one pixel [33].
To cope with the sliding boundaries between the liver and
the abdominal wall, the B-spline transformation parameters
were optimized to maximize normalized cross-correlation
only within the reference liver region.

Inter-subject correspondences

We used the approach from [34] to define inter-subject cor-
respondences. First a fine surface mesh was extracted from
the liver segmentation. Then sagittal slices were identified,
which include the most lateral liver location (slice num-
ber S1), the inferior liver tip (S2), the bifurcation of the
inferior vena cava (IVC) (S3) or the portal vein (S4), with
S1 < S2 < S3 < S4. Four mechanically relevant landmarks
(dorsal and ventral point where the liver joins the ribcage,
and most inferior dorsal and ventral point) were manually
identified on slices S2 + 1 to S3 − 1. A point on the liver tip
replaced the two inferior landmarks for slices S1 to S2. An
additional landmark was selected on the IVC for slices S3 to
S4. The landmarks belonging to one location were connected
by a B-spline. A prototype of the right liver lobe (46 trian-
gles) was then mapped to the liver by aligning its four edges
with the marked delineations. Finally this coarse mesh was
gradually refined by a fixed number of regular subdivisions to
fit to the fine surfacemesh. The resulting liver meshes consist
of N = 290 points, where pn

t = [pnSI t pnAPt
pnLRt

] denotes
the position of the nth point at time step t in the superior–
inferior (SI), anterior–posterior (AP) and left–right (LR)
direction. The mesh position at time step t ∈ {1, 2, . . . , T }
was described by pt = [p1

t . . . pN
t ]T ∈ R

3N×1 and its
motion by Δpt = pt − pref where pref denotes the posi-
tion in the reference end-exhale image. Mesh interpolation
via Barycentric coordinates was used for defining correspon-
dences for any position in the mesh.

Creation of motion model

We used the robust exemplar model [25,31], which has
shown improved performance over a principle component
analysis (PCA) model for the whole population. It is based

on creating subject-specific PCA models and combining
their predictions according to their closeness to the tracking
results.

Subject-specific model

Assuming that Δpt , t ∈ 1, 2 . . . T , belong to a 3N -
dimensional Gaussian distribution Δpt ∼ N (μ,Σ), the
prediction task is to find the most probable vector Δp̂t ∈
R
3N×1, given a subset of its elements st ∈ R

S×1, called sur-
rogates. Decomposing all displacementsΔpt and their mean
μ, and covariance matrix Σ into the components relating to
surrogates st and to the rest of the points (rt ), we get ΔpT

t =
[

sTt rTt
]
,μT = [

μT
s μT

r
]
, andΣ =

[
Σss Σsr

Σrs Σrr

]
. The con-

ditional distribution Δpt |st ∼ N (
μΔpt |st ,ΣΔp|s

)
[1], with

its meanμΔpt |st = μ+
[

Σss

Σrs

]
Σss

−1(st −μs) providing the

most probable Δp̂t given st .
PCA was employed for dimensionality reduction to the

M eigenvectors associated with the highest eigenvalues λ̂2

leading toΣ ≈ ÊΛ̂ÊT where Ê ∈ R
3N×M and Λ̂ ∈ R

M×M .
Finally by extracting the submatrix of eigenvectors of the
surrogates s, i.e., Ês ∈ R

L×M , the most probable prediction
is given by

Δp̂t = μ + ÊΛ̂ÊT
s (ÊsΛ̂ÊT

s )−1(st − μs). (1)

Model regularization

Regularization of the model [4,19] was used to compensate
for tracking errors. Equation (1) provides the most probable
PCA coefficients ct which minimize ||Qct − (st − μs)||2
where Q = Êsdiag(λ̂i ). Using ridge regression, we want to
minimize instead

argmin
ct

||Qct − (st − μs)||2 + η||c||2, (2)

where η scales the regularization. Equation (2) can be solved
by applying singular value decomposition (SVD) to get Q =
UQDQVT

Q, with DQ = diag(dQ,i ) and

ct = VQdiag

(
dQ,i

d2Q,i + η

)

UT
Q(st − μs)

Δp̂t = μ + Ê diag(λ̂i )Qct . (3)

Robust exemplar model

To create an exemplar model [25,31] for a population, a
subject-specific PCAmodel M j was built for each subject j .
Then the distance d j

t between surrogates st and model M j
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was calculated by d j
t = (μSt −μ

j
s )

TΣ
j

ss
−1

(μSt −μ
j
s ), where

μSt estimates the mean of the surrogate distribution from the

last O ≤ t observations St = [sTt−O+1 . . . sTt ] to make d j
t

robust to noise. To predict Δpt for a new subject given st ,
predictions Δp̂ j

t are obtained for the K closest models by
Eq. (3) and combined by

Δp̂t =
∑

j

w
j
t Δp̂ j

t , w
j
t = 1/(d j

t + ε)
∑J

k=1 1/(d
k
t + ε)

with εsome very small positive value. (4)
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