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Abstract
Purpose This paper presents the results of a large study
involving fusion prostate biopsies to demonstrate that tempo-
ral ultrasound can be used to accurately classify tissue labels
identified in multi-parametric magnetic resonance imaging
(mp-MRI) as suspicious for cancer.
Methods We use deep learning to analyze temporal ultra-
sound data obtained from 255 cancer foci identified in
mp-MRI. Each target is sampled in axial and sagittal planes.
A deep belief network is trained to automatically learn the
high-level latent features of temporal ultrasound data. A sup-
port vector machine classifier is then applied to differentiate
cancerous versus benign tissue, verified by histopathology.
Data from 32 targets are used for the training, while the
remaining 223 targets are used for testing.
Results Our results indicate that the distance between the
biopsy target and the prostate boundary, and the agreement
between axial and sagittal histopathology of each target
impact the classification accuracy. In 84 test cores that are
5 mm or farther to the prostate boundary, and have consistent
pathology outcomes in axial and sagittal biopsy planes, we
achieve an area under the curve of 0.80. In contrast, all of
these targets were labeled as moderately suspicious in mp-
MR.
Conclusion Using temporal ultrasound data in a fusion
prostate biopsy study, we achieved a high classification accu-
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racy specifically for moderately scored mp-MRI targets.
These targets are clinically common and contribute to the
high false-positive rates associated with mp-MRI for prostate
cancer detection. Temporal ultrasound data combined with
mp-MRI have the potential to reduce the number of unnec-
essary biopsies in fusion biopsy settings.
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Introduction

Prostate cancer (PCa) is the second leading cause of cancer-
related death in North American men. According to the
American and Canadian Cancer Societies, PCa accounts for
24 % of all new cancer cases and results in 33,600 deaths
per year in North America.1 The PCa-related death rate
has declined significantly (almost 4 % per annum) between
2001 and 2009 due to improved testing and better treat-
ment options. The majority of the cases diagnosed today are
the early-stage disease where several treatment options are
available, including surgery, brachytherapy, thermal ablation,
external beam therapy and active surveillance. Early detec-
tion and accurate staging of PCa are essential to the selection
of optimal treatment options, hence reducing the disease-
associated morbidity and mortality [25].

The current standard of care for diagnosis of PCa is the
histopathological analysis of biopsy samples acquired under
transrectal ultrasound (TRUS) guidance. The sensitivity of
conventional systematic biopsy under TRUS guidance, for
detection of PCa, has been reported to be as low as 40 %

1 Canadian cancer society: http://www.cancer.ca/, and American can-
cer society: http://www.cancer.org/.
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[5,9,25]. Significant improvement of TRUS-guided PCa
biopsy is required to decrease the rate of over-treatment
for low-risk disease while preventing the under-treatment of
high-risk cancer [16]. Several methods that enable patient-
specific targeting have been proposed to improve the detec-
tion rate of PCa. Ultrasound (US)-based tissue typing tech-
niques for characterization of PCa include analysis of single
radio-frequency (RF) US frame data [8,22,27], elastogra-
phy [18,21,24] and Doppler imaging [23,30]. A shortcoming
of these methods that have limited their clinical uptake
is the challenge of identifying a globally effective, tissue-
associated threshold that can reliably identify cancerous
tissue in the analyzed images, and be ubiquitously gener-
alized to prospective patient data. For instance, determining
such preset threshold for separation of cancer from benign
tissue has been difficult for shear wave elastography, one
of the most advanced imaging methods to date with large
clinical feasibility studies [3]. Magnetic resonance (MR)
imaging, an emerging approach for performing targeted biop-
sies, uses co-alignment of multi-parametric MRI (mp-MRI)
and TRUS and has reported negative predictive values as
high as 94 % [26]. It has been shown that mp-MRI improves
the detection of aggressive PCa, but it is not as sensitive for
detection of low-grade cancers and smaller sizes of high-
grade cancer. Moreover, mp-MRI leads to a high number of
false positives and hence unnecessary biopsies [16,26].

Recently, temporal US data captured from a stationary
tissue location have been proposed for tissue characteriza-
tion in our group. In this technology, a series of US frames
is obtained from a stationary tissue position without any
intentional mechanical excitation. This approach is a signifi-
cant departure from traditional US tissue typing techniques.
Features extracted from the temporal US data have been
used in a machine learning framework to predict labels pro-
vided by histopathology as the ground truth. This approach
has been used successfully for depiction of cancerous and
non-cancerous prostate tissue in ex vivo [19,22] and in
vivo [12–15,20] studies.

In previous implementations of temporal RF data tech-
nology, features were heuristically determined from spectral
analysis of US image sequences, rather than through a sys-
tematic approach [1,12,14,15]. Recently [1], we proposed an
automatic feature selection framework for analyzing tempo-
ral US signals of prostate tissue. We addressed the so-called
cherry picking of the features [15] by a deep learning-based
feature selection framework. This framework exploits deep
belief networks (DBN) [2] to automatically learn a high-
level latent feature representation of the temporal US data.
We demonstrated that this approach is an effective method
in identifying both benign and cancerous biopsy cores in
TRUS-guided biopsy [1] in a preliminary study containing 36
biopsy cores. In this paper, in our largest clinical study to date
involving 255 TRUS-guided biopsy cores, we investigate the

factors that affect the classification accuracy within a targeted
biopsy interface. Furthermore, we demonstrate that tempo-
ral US data can be used to accurately classify tissue labels
that were identified in mp-MRI as suspicious for cancer. Our
results indicate that temporal US analysis can complement
mp-MR imaging and together they can be an effective tool
for cancer detection.

Materials

Data acquisition

The study was approved by the ethics review board of the
National Cancer Institute, National Institutes of Health (NIH)
in Bethesda, Maryland, and all subjects provided informed
consent to participate. One hundred and fifty-eight subjects
were enrolled in the study where they underwent preopera-
tive mp-MRI examination with three pulse sequences: T2-
weighted, diffusion-weighted imaging (DWI) and dynamic
contrast-enhanced (DCE) imaging. Prior to biopsy, suspi-
cious lesions in mp-MRI were identified and scored by two
independent radiologists, according to a previously published
protocol [15,29]. In this protocol, an overall score in the range
from 1 (no cancer) to 5 (aggressive cancer) is assigned to a
suspicious area. Scores are grouped into three descriptors of
“low” (score of ≤ 2), “moderate” (score of 3) and “high”
(score of ≥ 4) and referred to as the MR suspicious level
assigned to the area. Using the UroNav MR/US fusion sys-
tem (Invivo Inc., a subsidiary of Philips Healthcare), targeted
biopsy was performed with the identified mp-MRI lesions
registered to the real-time 3D TRUS images [17,31]. The
clinician navigates the prostate volume to identify the labeled
target for acquiring a core and holds the TRUS transducer
steady for about 5 s to obtain 100 frames of temporal US
data. Two biopsies are then taken from a target, one in the
axial imaging plane and one in the sagittal imaging plane.
For each subject, temporal US data are collected from either
one or two MR-identified targets only in the axial plane to
minimize the disruption to the clinical work flow. Temporal
US data were collected from 255 biopsy cores of 158 subjects
for this study. Tissue biopsy is followed by histopathology
analysis, and results are used as the ground-truth labels for
evaluation of cancer detection as described below (Fig. 1).

Histopathology and ground-truth labeling

The Gleason grade scale, ranging from 1 (resembling nor-
mal prostate tissue) to 5 (aggressive cancerous tissue), is the
most common system to describe the level of abnormality
for prostate tissue. The Gleason score (GS) is reported as
the summation of the two most common Gleason grade pat-
terns in a specimen. Following histopathology examination
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(a) (b)

Fig. 1 a Training data set: 32 biopsy cores from 27 patients used for model generation. b Test data set: 223 biopsy cores from 138 patients used
for analysis of the temporal US approach

of the 255 collected cores, 83 were cancerous and their GS
were as follows: 26 GS of 3 + 3, 26 GS of 3 + 4, five GS of
4 + 3, 21 GS of 4 + 4, and five GS of 4 + 5. The remaining 172
cores were non-cancerous with histologies including fibro-
muscular tissue, chronic inflammation, atrophy and prostatic
intraepithelial neoplasia (PIN). As mentioned above, for each
MRI-identified target in a patient, two biopsies are obtained
from the axial and sagittal TRUS planes, respectively. For
some cores, the histopathology reported from the two planes
were not in agreement. Taking this into account, we only con-
sidered the histopathology of the axial plane for generating
the ground-truth labels, the same plane as that of temporal
US imaging. Among 255 cores from 158 patients, 55 cores
from 45 patients have mismatches between axial and sagittal
histopathology, where one biopsy is reported as benign and
the other as cancerous tissue.

Data for model generation and testing

The reported registration accuracy for the Philips UroNav
MR/US fusion system is 2.4 ± 1.2 mm [31]. However, mis-
registration is usually more prominent for targets close to the
segmented boundary of the prostate. For biopsy cores taken
far away from the boundary, we assume that the target is in
the center of the core. However, clinicians normally adjust
the needle penetration depth for targets that are close to the
boundary, especially in the anterior region, so that the core
sample is not taken beyond the prostate. To generate our
model, we aim to use homogeneous prostate tissue regions
with reliable ground-truth labels. Therefore, we select cores
for training if they meet all of the following three selection
criteria, similar to our previous work [1]: (i) located more
than 3 mm distance to the prostate boundary in TRUS images;
(ii) have matching histopathology labels between axial and

sagittal biopsies; and (iii) have a tumor length larger than
7 mm if cancerous. We select 32 cores from 27 patients,
which fulfill the above criteria, and use the temporal US data
from them to generate our model. These 32 training cores
are labeled as dataset D1, where 13 cores are cancerous and
19 cores are benign. The distribution of the histopathology
labels of this data is presented in Fig. 1a.

The remaining 223 biopsy cores (distributed as presented
in Fig. 1b) are divided into three subgroups based on the
distance of the target to prostate boundary and agreement
between axial and sagittal histopathology labels: (1) dataset
D2 − A, consisting of 156 cores from 150 patients whose
target distance to prostate boundary (d) is ≥ 3 mm; (2) dataset
D2 − B, consisting of 117 cores from dataset D2 − A that
also have agreement in histopathology labels of axial and
sagittal biopsy cores; and (3) dataset D3, consisting of 67
cores whose target distance to prostate boundary is <3 mm.
A flowchart summarizing the training and test data is shown
in Fig. 2.

Region of interest

We define regions of interest (ROI) in the TRUS image to
associate histopathology of each biopsy core to temporal US
data. Each ROI is an area of 2 × 10 mm2 in the lateral and
axial directions, respectively, along the projected needle path
centered on the biopsy target. The width of this area is close to
the width of the biopsy core, but the length is approximately
half of the typical biopsy core length. Given the very large
variability of biopsy core lengths in histopathology, selection
of ROI length was based on a reasonable assumption that the
center of a cancerous tissue reported in histopathology should
be close to the target identified in MR. The selected area is
divided into 20 ROIs of size 1 mm2, resulting a total of 5100
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Fig. 2 Flowchart of data division to training data and four subgroups of test data

ROIs from all biopsy cores. To build the feature extraction
and classification model, we used 640 ROIs from 32 training
cores in the dataset D1. The number of RF samples within an
ROI varies between 90 and 480 due to scan conversion and
the depth of biopsy cores, while the length of temporal RF
data is 100 time points. Therefore, each ROI can be thought of
as 90–480 signals each with 100 time samples. We analyze
the spectral component of the temporal US data in order
to determine the characteristics of the non-cancerous and
cancerous cores. To generate features for each ROI, we take
the Fourier transform of the time course signals in the ROI,
normalized to the frame rate. For each ROI, we generate
50 positive frequency components by averaging the absolute
values of the discrete Fourier transform (DFT) of the zero-
mean temporal US data [1,15].

Method

Figure 3 shows a schematic diagram of our method. In this
framework, we use deep belief networks (DBN) [2] to auto-
matically learn a high-level latent feature representation of
the temporal US data that can detect prostate cancer. We then
use the hidden activations of the DBN as the input features to
a support vector machine (SVM) classifier to generate a can-
cer likelihood map. Details of the training and testing have
been described previously [1].

Automatic feature learning

For automatic feature learning, we first pre-train a DBN
using our training dataset, D1, by performing a greedy
layer-wise unsupervised pre-training approach [2]. Initially,
we set our DBN structure including the number of hidden
layers and nodes configuration, as well as the numerical
meta-parameters according to the default values of the DBN
library [28]. We then heuristically searched for the number
of hidden layers and node configuration so that lowest recon-
struction errors with the default library parameters were
obtained in the training data. Using trial and error, and the
guidelines provided by [10,32], we can determine the meta-
parameters [10] of the deep network such as the learning
rate, the momentum, the weight cost, the size of mini-batch
and the number of passes to achieve lower reconstruction
error in the training data. The finalized pre-trained DBN
is composed of a real-valued visible layer with 50 units,
and three hidden layers consist of 100, 50 and 6 hidden
units, respectively. The learning rate is fixed at 0.001, mini-
batch size is 5 and the number of passes is 100 epochs.
The momentum and the weight cost do not change from
the default values (0.9, 2 × 10−4). This unsupervised pre-
training guides learning to better generalize from training
data [6]. Using standard training schemes based on ran-
dom initialization, the AUC for the test dataset, D2 − B,

Training Dataset

Feature
Extraction

Learned Features

Ground truth LabelsHistophatology

Training
Testing

Trained DBN Trained SVMLearned Features

Feature
Extraction

SVM Classi�ier

Testing Dataset

Temporal Ultrasound Data Spectral Components

Spectral ComponentsTemporal Ultrasound Data

Training DBN

Fig. 3 An illustration of the proposed framework for prostate cancer detection using temporal US data
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is dropped to 0.53, which suggests that we are unable to
effectively learn the model. This model also leads to poor
generalization.

Following the pre-training step, we perform a fine-tuning
step using the same training set in a supervised manner. The
fine-tuning is done by stacking another output node as the last
layer of the DBN. This node is used to represent the class
label of the input data. For supervised fine-tuning, we use
contrast divergence approximation [11] to learn the weighted
mixture of activations. The numerical meta-parameters are
optimized according to reconstruction error. In the supervised
fine-tuning step, we ran 70 epochs with a fixed learning rate
of 0.01 and a mini-batch size of 10. After completion of the
learning procedure, the last hidden layer of the DBN produces
the latent feature representation.

An essential point in using DBN is to build models that
generalize well to unseen data. The greedy layer-wise learn-
ing algorithm is a powerful tool that enables us to identify
the parameters of our model fast, even in this deep network
configuration [11]. Bengio et al. [2] report that using this
approach, weights are initialized near a good local optimum,
leading to a better generalization of the model. The key con-
cept is to train one layer at a time and to use the representation
of the previous hidden layer as the input to the next hid-
den layer. Following fine-tuning through back propagation,
the weights of the deep network are optimized to their final
values.

In order to test the generalization of the trained DBN,
we make certain that testing data are never used to pre-
train or fine-tune the network parameters. In addition, we
visualize the activation of hidden neurons in different lay-
ers [32] after training (see “Results and discussion” section).
If only a small fraction of the connections is active, then we
can indicate that our network requires few parameters for
classification.

Classification

We use training dataset D1 to obtain the learned features from
the last hidden layer of the trained DBN. Then, we use these
features as inputs to a nonlinear SVM classifier. We have six
learned features corresponding to the activations of the six
hidden units in the last hidden layer. The SVM classifier uses
a radial basis function (RBF) kernel; we determine the para-
meters of the classifier through a grid-search approach [15].
Following training, we use the SVM classifier on the test data
to derive the tissue type labels for each ROI.

Feature visualization

To determine the characteristics of the non-cancerous and
cancerous cores in the temporal US data and their correla-
tion with learned features, we propose a feature visualization
approach (Fig. 4). This approach is used to identify the most
discriminative features of the time series (i.e., frequency
components as introduced in “Region of interest” section), as
learned by the classifier. We implement feature visualization
for both training and testing data. First, data are propagated
through the trained DBN and the activations of the last hid-
den layer, i.e., the learned latent features are computed. To
examine the significance of an individual learned latent fea-
ture, the activations of all other hidden units in the third layer
are set zero. The activation of the nonzero learned feature
is back-propagated to the input layer. The resulting signal,
displayed in the input layer as a series of frequency com-
ponents, highlights those components that contribute to the
activation of the nonzero learned feature. By comparing the
components activated for benign and cancerous cores, we can
identify those frequency ranges that are different between
two tissue types. This process is performed for all latent
features.
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Fig. 4 An illustration of the proposed feature visualization method
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Results and discussion

To assess the performance of our method, sensitivity, speci-
ficity and accuracy were calculated. We also report the overall
performance using the area under the receiver operating
characteristic curve (AUC). To define the sensitivity and
specificity, we consider cancerous cores as the positive class
and the no-cancerous cores as the negative class. The sensi-
tivity or recall is the percentage of cancerous cores that are
correctly identified as cancerous, and the specificity is the
percentage of non-cancerous cores that are correctly clas-
sified. The accuracy is the proportion of true results (both
true positives and true negatives) among the total number
of cores. Receiver operating characteristic curves (ROC) are
two-dimensional graphs in which sensitivity is plotted on
the y-axis and (1-specificity) is plotted on the x-axis. An
ROC graph depicts relative trade-offs between sensitivity
and specificity, where accuracy is reported based on a specific
threshold. The maximum AUC is 1, where larger AUC values
indicate better classification performance [7]. Table 1 shows
the classification results for test dataset D2. Our results indi-
cate that dataset D2−B has consistently higher classification
results than dataset D2 − A across all MR suspicious levels.
A closer look at cores in dataset D2 − A also shows that
for those samples that are farther from the prostate bound-
ary (at least 5 mm away) and have moderate MR suspicious
level (53 cores), we achieve AUC of 0.89, irrespective of
mismatch between axial and sagittal histopathology. In com-
parison, only 26 % of those cores are identified as cancerous
after biopsy which means our approach can effectively com-

plement mp-MRI to reduce the number of false positives for
those targets with moderate MR suspicious level.

We also perform similar analysis for dataset D3, where we
achieve AUC of 0.36. There are various factors that may have
contributed to this drop in classification accuracy, includ-
ing higher registration error among mp-MRI, TRUS and
histopathology for targets close to the segmented prostate
boundary, and the inclusion of US signal from tissue outside
the prostate. Moreover, based on the clinical protocol, for tar-
gets that are close to the prostate boundary, the biopsy core
is not centered on the target location to minimize the pene-
tration of needle in tissue surrounding the prostate. A more
accurate ground-truth data needs to be obtained to further
validate our approach on targets that are close to the prostate
boundary.

Moreover, we perform analysis on dataset D2−A without
the elements of D2 − B. This analysis was done on 39 cores
from 34 patient whose target distance to the boundary is more
than 3 mm and has the disagreement in histopathology labels
of axial and sagittal biopsy cores. Our results show that by
using axial plane histopathology as the ground-truth label,
we achieve an AUC of 0.73. On the other hand, by using
sagittal plane histopathology as the ground-truth label, we
obtained an AUC of 0.60. One of the factors that may have
contributed to this performance is the fact that temporal US
data, which carries tissue typing information, are obtained
from the axial plane.

We also investigate the performance of our model on
dataset D2 − A and D2 − B across various Gleason scores
(Fig. 5). Results show that 59/83 of benign cores and 26/34

Table 1 Model performance for
classification of testing cores in
datasets D2 − A and D2 − B for
different MR suspicious levels

MR suspicious levels Dataset D2 − A Dataset D2 − B

Number of cores AUC Number of cores AUC

All MR suspicious levels 156 0.73 117 0.77

Moderate MR suspicious level 110 0.75 84 0.80

High MR suspicious level 23 0.78 16 0.84

(a) (b)

Fig. 5 Performance of the proposed method across Gleason scores in dataset: a D2 − A, b D2 − B
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Fig. 6 Cancer probability maps overlaid on B-mode US image, along
the projected needle path in the temporal US data and centered on the
target. The ROIs for which the cancer likelihood are more than 70 %
are colored in red; otherwise, they are colored as blue. Green boundary

shows the segmented prostate in MRI projected in TRUS coordinates,
dashed line shows needle path and the arrow pointer shows the target:
a correctly identified benign core; b correctly identified cancerous core

Table 2 Model performance in
the fold validation analysis for
testing cores in datasets D2 − A
and D2 − B

Evaluation Dataset D2 − A Dataset D2 − B

Leave-one-out cross-validation 0.71 0.73

Threefold cross-validation 0.71 0.73

13-fold cross-validation 0.70 0.72

cancerous cores in dataset D2 − B are correctly identified.
Most importantly, all cases of clinically aggressive cancer
grades with GS of 4 + 5 are correctly labeled. The accuracy
of our method in detection of lower grade cancer with GS of
3 + 4 and 3 + 3 is 82 % in dataset D2 − B. It should be noted
that in some GS categories there is not a sufficient number
of samples for definitive conclusion.

Figure 6 shows examples of the cancer likelihood maps
from dataset D2− B, derived from the output of SVM, over-
laid on B-mode US image. We use the approach described in
our earlier publication [22] for this purpose. In the colormaps,
red regions belong to ROIs for which the cancer likelihood
are more than or equal 70 %. We found that with this thresh-
old, the visualized maps demonstrated all the major tumors
in the dataset without a large number of false positives.

To investigate the effect of the size of the tumor on our
detection accuracy, we analyze the AUC against the greatest
length of the tumor in MRI (ranging from 0.3 to 3.8 cm) for
D2 − B. We obtained average AUC of 0.77 for cores with
MR tumor size smaller than 1.5 cm and average AUC of 0.93
for cores with MR tumor size larger than 2 cm. The results
show our method has a higher performance for larger tumors.

We also performed an additional sensitivity analysis by
permuting the training and testing data. To create new train-
ing and testing sets, in each permutation, we exchanged a
randomly selected cancerous or benign core in the training
and testing data. The cores are selected from dataset D2−B.
This resulted in 32 different permutations given the distrib-
ution of cores in our training data. On average, we achieved
AUC, accuracy, sensitivity and specificity of 0.70, 71, 68,
and 70 %, respectively. In another experiment, to ensure that
the classification model does not over-fit to the training data,

we trained our SVM classification model using dataset D2
in a fold validation manner. We obtained AUC of 0.71 for
D2 − A and AUC of 0.73 for D2 − B in a leave-one-out
cross-validation analysis. We also obtained AUC of 0.71 and
0.70 for D2 − A in threefold and 13-fold cross-validation
analysis, respectively. The averaged AUC of leave-one-out
cross-validation analysis follows our previous performance
results, which supports the generalization of the classification
model (Table 2).

We visualize the hidden activation of neurons in different
layers in the testing dataset. As seen in Fig. 7, only a small
fraction of the connections (less than 10 %) in the first and
second hidden layers of the deep network are highly probable
to be activated.

For the feature visualization experiment, by subtracting
the distributions of benign and cancerous tissue in the input
layer as discussed in “Feature visualization” section, we
found that feature six, corresponding to hidden activity of
the sixth neuron of the third layer, along with features one
and four, is those that maximally differentiate cancerous and
benign tissue, especially in lower frequency range. Figure 8
shows the visualization of distribution differences for can-
cerous and benign tissue related to the first and sixth learned
features of the third hidden layer, back- propagated to the
input layer.

Conclusion and future work

In this paper, we presented an approach for accurate clas-
sification of tissue labels obtained in MR-TRUS-guided
targeted prostate biopsy using temporal US data. We uti-
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Fig. 8 Differences of distributions between cancerous and benign tis-
sue back projected in the input neurons: a corresponds to the first neuron
in the third hidden layer; b corresponds to the sixth neuron in the third
hidden layer. Results are shown in the frequency range of temporal ultra-

sound data analyzed in this paper. It is clear that frequencies between
0 and 2 Hz provide the most discriminative features for distinguishing
cancerous and benign tissue

lized a DBN [1] for systematic learning of discriminant
latent features from high-dimensional temporal US features
for characterizing prostate cancer. We then applied an SVM
classifier along with the activation of the trained DBN to
characterize the prostate tissue. In our largest clinical study
to date, in 255 TRUS-guided biopsy cores, we identified two
important factors that affect our classification performance:
(i) distance of the target to the segmented prostate bound-
ary which is correlated with the registration error between
mp-MRI, TRUS, and histopathology, and (ii) disagreement
between the axial and sagittal histopathology results.

We built our classification model using a fixed training
data set consisting of temporal US data of 32 biopsy cores
assessed the performance of the model on the remaining
223 biopsy cores. The latter is divided into three subgroups
according to the distance of the target to the prostate bound-
ary and agreement between axial and sagittal histopathology

labels. We achieved an AUC of 0.73 for D2 − A and 0.77
for D2 − B. For cores from targets with moderate MR sus-
picious level in D2 − B, we achieved AUC of 0.80, where
mp-MRI has low positive predictive value. Our results show
that analysis of temporal US data is a promising technology
for accurate classification of tissue labels that were identified
in mp-MRI as suspicious and can potentially complement
mp-MRI for TRUS-guided biopsy.

While the physical phenomenon governing temporal ultra-
sound/tissue interaction is the subject of ongoing investiga-
tion in our group, several hypotheses have been explored so
far. It has been proposed that the acoustic radiation force of
the transmit US signal increases the temperature and changes
the speed of sound in different tissue types [4]. It has also
been suggested that a combination of micro-vibration of
acoustic scatters in microstructures and the density of cells
play a role [21]. Our results showed a consistently high clas-
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sification accuracy in a large dataset in this paper. These
results suggest that the phenomenon is consistent for the
two independent training and test datasets in clinical settings.
Interestingly, the range of frequencies that we have identified
as most discriminative between cancerous and benign tissue
(0−2 Hz in Fig. 8) is also consistent with the ranges we have
observed in our previous independent studies [14,15]. Cur-
rently, we are performing controlled laboratory experiments
to further investigate this phenomenon.

Since DBN is a computationally expensive method, we
plan to use graphics processing unit (GPU) parallelization
to optimize our proposed method for real-time display of
cancer likelihood maps. Currently, the execution time for
generating a cancer probability map overlaid on a B-mode
US image using an Intel Core i7 CPU with 16 GB RAM is
approximately 6 minutes. Integration with the UroNav tar-
geted biopsy interface is also underway to run a prospective
clinical study for cancer localization.
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