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Abstract
Purpose Spatial calibration between a 2D/3D ultrasound
and a pose tracking system requires a complex and time-
consuming procedure. Simplifying this procedure without
compromising the calibration accuracy is still a challenging
problem.
Method We propose a new calibration method for both 2D
and 3D ultrasound probes that involves scanning an arbitrary
region of a tracked needle in different poses. This approach is
easier to perform thanmost alternativemethods that require a
precise alignment between US scans and a calibration phan-
tom.
Results Our calibration method provides an average accu-
racy of 2.49mm for a 2D US probe with 107mm scanning
depth, and an average accuracy of 2.39mm for a 3D US with
107mm scanning depth.
Conclusion Our method proposes a unified calibration
framework for 2D and 3D probes using the same phantom
object, work-flow, and algorithm. Our method significantly
improves the accuracy of needle-based methods for 2D US
probes as well as extends its use for 3D US probes.
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Introduction

Ultrasound (US) is widely used in medical diagnostics and
during therapy as a low-cost, flexible, and real-time imaging
technique. Particularly in fetal medicine, US is both used for
noninvasive diagnostics and to guide surgical interventions,
such as biopsies. 3D ultrasound devices (3D US) introduce
a new range of applications in this domain by enabling the
acquisition of real-time 3D volumes and 4D video.

Pose tracking and calibration of a 3D US probe enhances
its applications to computer-assisted intervention (CAI), in
order to transfer the information from US scans to other
coordinate frames. Large and detailed 3D models can be
built from several 3D US frames [6,25] using pose tracking
instead of 3D model registration. A tracked 3D US probe
enables freehand 4D US [11], i.e., registering both a 3D
volume and its temporal evolution in a single coordinate
system while the probe is being freely moved. Pose track-
ing also allows registration between 3D US data and other
instruments, such as biopsy needles, without requiring seg-
mentation on US volumes [24], while the needle or any other
instrument with known shape can itself be used as a calibra-
tion phantom (Fig. 1).

Although real-time 3DUS is a recent technology there has
been an extensive study of 3D US imagery using 2D probes
(2DUS) using either the freehand3D technique [2] or amotor
swept probe [9]. Freehand 3D US is achieved with a 2D US
probe attached to a pose tracking sensor. Bymoving the probe
while tracking its pose for every scan acquisition one is able
to build a 3D volume from a collection of 2D scans. This is
the most widely studied and cost effective approach so far
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Fig. 1 3D US calibration system: GE Voluson E10 with eM6C probe, Optitrack V120 Trio, and a tracked needle. Example of 3D volume and 2D
slice showing the appearance of a needle in the US field of view

to obtain 3D US imagery but it also has some drawbacks.
This approach is only able to reconstruct 3D volumes if the
scanned region is static during a probe swipe, and therefore it
becomes extremely challenging or inapplicable to dynamic
environments such as obstetrics. The effective use of this
approach must also be preceded by a non-trivial and time-
consuming calibration procedure which is often challenging
to export from the laboratory environment to a real medical
scenario. A second approach to produce 3D volumes uses a
2DUS swept by a controlledmotor. This can greatly simplify
the calibration procedure; however, in most cases the probe
must be fixed during a complete motor swipe, and thus it is
not suitable for a freehand scenario. Real-time 3D US can be
achieved with probes containing a 2D array of US sensors
that enable fully synchronized capture of 3D US volume.
Although these probes make it significantly easier to obtain
3D acquisitions, they are still a costly solution.

Spatial calibration between a 2D US and a tracking sys-
tem is a widely studied topic using a variety of different
phantoms[16]. Proposed solutions include scanning a single
plane [19,21,23], a set of wires, a set of spheres, a sty-
lus/needle [12,17], and also more complex patterns [18].
Most methods require a very careful placement of the probe
in relation to the phantom in order to obtain calibration
measurements, making the procedure very time consuming
and non-trivial for an inexperienced user. Khamene et. al.
[14] proposed a particularly simple calibration procedure
that involves scanning any part of a needle under different
poses; however, thismethod is significantly less accurate than
alternativemethods that require a precise scanning of the nee-
dle/stylus tip [12,17].

There is also previous work on US calibration of swept
motor 3D US using scans of a set of wires [5,15,20], a sty-
lus tip [20], and a single plane [1,3,10]. These calibration

methods are particularly interesting since they work with
3D volumes and thus can in principle also be used to cal-
ibrate a real-time 3D US. However, the 3D US allows for
freehand motion during calibration and therefore allow for
more practical calibration procedures. Spatial calibration of
a real-time 3D US has only been briefly studied [4,13] using
sets of wires/spheres, single plane, and also more complex
multi-object phantoms.

In this paper, we propose a new solution for calibrating
both a 2D US and a 3D US using a needle. In a similar fash-
ion to [14] our method allows to scan any part of the needle
making it easier to use than most alternative methods. In the
case of a 2D US we are able to significantly improve the
accuracy of [12,14]. In the 3D US case we provide the first
solution for this type of method. Additionally we propose a
unified framework for calibrating both a 2D US and a 3D
US, using the same phantom, algorithm, US model, and cal-
ibration work-flow.We show promising calibration accuracy
results for both the 2DUS (2.49mmmean error for a 107mm
scanning depth) and the 3D US (2.39mm mean error for a
107mm scanning depth).

Methods

Calibration procedure

We consider the calibration problem depicted in Fig. 2 com-
posed by a 2D/3D US system and a needle. Both instruments
are attached to markers that track their poses in a stationary
reference frame O. The system is able to perform simulta-
neous acquisition of the US scan, the pose of the US marker
TM→O, and the pose of the needle marker TP→O. In order
to represent the US scans and the needle in the same refer-
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Fig. 2 2D/3D Calibration
procedure. a Schematic of the
2D US calibration problem,
where the needle is measured as
a point by the US scan; b
Schematic of the 3D US
calibration problem, where the
needle is measured as a line
segment by the US scan

(b)(a)

ence frame, both instruments must be calibrated. Calibrating
the needle is achieved by determining two of its points using
a standard stylus calibration. Calibrating the US is done by
determining the transformation TP→O and the scale factors
that convert from pixels in the US image to metric coordi-
nates. The proposed calibration method requires to scan an
arbitrary region of the needle under different poses using the
same workflow as in [14] both for a 2D US or a 3D US.

3D/2D us model

A homogeneous point Xi in a 3D US volume is mapped to
homogeneous metric coordinates Pi in the reference frame
M of the US attached rigid body by means of a scale trans-
formation S followed by a rigid transformation TU→M. The
scale transformationSmaps from pixel tometric coordinates
and generally has the form

S =

⎛
⎜⎜⎜⎝

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

⎞
⎟⎟⎟⎠ (1)

The rigid displacement TU→M maps from the US reference
frame U to the US marker reference frameM and consists of
a translation t and a rotation R

TU→M =
(
R t

0 1

)
(2)

We can finally denote the complete transformation A =
TU→MS such that

Pi = AXi , A =

⎛
⎜⎜⎜⎝

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

0 0 0 1

⎞
⎟⎟⎟⎠ (3)

Although A has 12 parameters, it only has 9 degrees of free-
dom (3 in rotation, 3 in translation, 3 scale factors). In some

special cases, e.g., for some curvilinear probes,Amight have
a single-scale factor (sx = sy = sz) and in this case A has
only 7 degrees of freedom.

Note that this model is also valid for a 2D US probe. We
can consider, without loss of generality, that the 2DUS image

plane is z = 0, therefore Xi = (
xi yi 0 1

)T
and we can think

of the image points as co-planar points in the 3D space. In this
case we also assume that sz = 0 and thus the third column
of A is also zero (A13 = A23 = A33 = 0).

2D US calibration

In each calibration acquisition the tracking system measures
the needle as a 3D lineLi in the reference frameM and theUS
scanmeasures an image pointXi . For several acquisitions the
2DUS calibration problem becomes the registration between
3D co-planar points and 3D lines. Ramalingam et. al. showed
that any 3D registration problem involving 3D planes, lines
and/or points can be re-stated as the registration between
3D planes and 3D points [22]. In our calibration problem,
this can be easily achieved by defining each line Li as two
intersecting planes �i , �∗

i (Fig. 3). Given that Pi = AXi is
contained in both�i and�∗

i , the constraints for each 2D US
acquisition are

�i
TAXi = 0 (4)

�∗
i
TAXi = 0 (5)

For N acquisitions a system of 2N linear equation is built
with the 9 nonzero parameters of A as unknowns. This can
be solved with SVD decomposition.

3D US calibration

In the case of a 3D US the measurements of the needle are
3D lines Bi instead of 3D co-planar points Xi . Following the
strategy proposed in [22], we can define the lines Bi as two
3D points Xi , X∗

i . Therefore, the 3D US calibration problem
is also re-stated as the registration between 3D planes and
3D points in the same way as the 2D US problem. However,
in this case there are two additional constraints
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Fig. 3 Formulating 2D/3D US
calibration as 3D point—3D
plane registration. Each line Li
can be re-defined as two
intersecting planes �i , �∗

i . a
2D US. b 3D US

(a) (b)

�i
TAX∗

i = 0 (6)

�∗
i
TAX∗

i = 0 (7)

For N acquisitions a system of 4N linear equations is built
with the 12 parameters of A as unknowns. Note that this
system is equivalent to a 2D US calibration with twice the
number of acquisitions, where X∗

i adds the extra constraints.

Calibration algorithm pipeline

After the calibration acquisition is performed, the above lin-
ear equations are used within a RANSAC robust estimator
[8] in order to automatically remove outlier acquisitions and
give an initial estimate forA. The transformationsTU→M and
S can be extracted from A, which has the following format

A =
(
A∗ t

0 1

)
(8)

where t is the translation component of TU→M and A∗ is a
3 × 3 matrix containing both the rotation component R of
TU→M and the 3 scale factors of S. These two components
can be extracted with QR decomposition

A∗ = RS∗ (9)

with

S∗ =
⎛
⎜⎝
sx 0 0

0 sy 0

0 0 sz

⎞
⎟⎠ (10)

The QR decomposition guarantees that the rotation compo-
nent is always an orthonormal matrix; however, with noisy
measurements S∗ is not a diagonal matrix but upper trian-
gular instead. Therefore, the non-diagonal elements must
be forced to zero. If the probe is curvilinear, it is usually
more accurate to also force all scale factors to be the same
(sx = sy = sz). Additionally, if the probe is 2D, sz should be
forced to zero.

This initial calibration estimate is then refined using
Levenberg–Marquadt iterative optimization. This final step
aims at finding the calibration solutionwithminimumeuclid-
ean distance between the 3D lines Li and the projected 3D

points from the US image Pi = AXi . The refined solution
is parameterized by 3 translation parameters (t), 3 rotation
parameters (R is represented as a unit norm quaternion), and
either 3 scale factors (3D US) or 2 scale factors (2D US).

For the 2D US the optimization problem is

min
R,t,sx ,sy

N∑
i=1

(
d(Li ,AXi )

2 + d(L∗
i ,AXi )

2
)

(11)

and for the 3D US

min
R,t,sx ,sy ,sz

N∑
i=1

(
d(Li ,AXi )

2 + d(L∗
i ,AXi )

2

+ d(Li ,AX∗
i )

2 + d(L∗
i ,AX∗

i )
2
)

(12)

where d(Li , Pi ) represents the Euclidean distance between
line Li and point Pi .

Experiments

Our calibration method is tested using the setup displayed in
Fig. 2 that includes a GE Voluson E10 machine with a eM6C
probe (3DUS) and a 333 mm longmetal needle. Both instru-
ments are tracked by the infrared camera system Optitrack
V120 Trio, which has sub-millimeter accuracy according to
its specifications. Experiments were conducted in a container
filled with water at room temperature. In each acquisition
both the needle and the US probe were held by clamps, and
thus temporal synchronization between the tracking system
and the US probe was not required.

A sample 3Dmulti-slice acquisition with the eM6C probe
is displayed in Fig. 4a. The image contains two orthogonal
scans, whose intersecting axis is represented on the left scan.
A section of the needle is detected as an ellipse on right
scan. The axis and the needle section are obtained with auto-
matic line and ellipse detectors, respectively, after manually
selecting the broad image region where they are located. The
center of each ellipse defines a point belonging to the nee-
dle. The angle of the intersecting axis can be freely changed,
producing multiple scans of the needle for a single instant.

We use the same probe both for 2D US and 3D US acqui-
sition. In our experiment, a 3D US acquisition contains two
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Fig. 4 Different plane cuts of the 3D US volume acquisition: a 2D/3D
US line segmentation. Multiple slices of the needle (red ellipses) can
be generated by changing the angle of the cutting plane (red lines).

b Example with simulated data showing 2 scan planes and the needle.
c Example with real data showing 2 scan planes and the needle

imageswith different intersecting axes, each of themcontain-
ing a cross section of the needle (Fig. 4b) that corresponds
in our formulation to one of the points Xi , X∗

i . All 3D US
acquisitions are done with the two scan slices forming an
angle between 5 and 15 degrees. When tuning this angle
there is a trade-off between line orientation accuracy (slices
with significant angles between them) and 3D US segmen-
tation accuracy (both slices with close to normal incidence
relative to the needle). 2D US acquisitions are obtained by
maintaining a constant intersecting axis and using only the
information from the right scan of Fig. 4a.

In section “Simulation” we display synthetic results from
a simulated environment that reproduces the set-up described
above, and in section “Real data” we display results from real
data of the eM6C probe. In all cases the calibration procedure
is tested for an increasing number N of input acquisitions.
For each number of acquisitions we perform 20 calibration
trials by randomly selecting N acquisitions from a total of
30.

Simulation

The simulated environment contains a 2D/3D US probe with
a depth range of 107mm, angle range [−50◦, 50◦], and a
single-scale factor sx = sy = sz = 0.24mm/px. The needle
is simulated as a line segment with 400mm length, and is

randomly generated at 30 different positions within the field
of view of the US. The lines are intersected with a single
scan plane (2D US case) or with two scan planes (3D US
case) and generate a set of points in pixel coordinates as the
US measurements. Both the line locations and the US points
are injected with gaussian noise (σ = 2 pixel, σ = 1mm
respectively) in order to simulate measurement errors.

The simulation results are displayed in Fig. 5. We com-
pare calibration trials against ground truth values of rotation
(RGT ), translation (tGT ), and scale factor (sGT ). The rotation
error is measured as the angle displacement of the residual
rotation RTRGT , the translation error as ||tGT − t|| and the
scale error as |sGT − s|. The distributions are presented as
MATLAB boxplots: the central mark is the median, the box
limits are the 25th and 75th percentiles, the whiskers are the
maximum and minimum inliers, and individual crosses are
outliers.

Real data

Overall, the parameters in this experimental setup are close to
the simulated environment, however there are some notable
differences. Unlike in the simulated environment we are not
able to directly control the scale factor parameters (sx , sy , sz)
and thus we test two possible scenarios: in the first the scale
factors are assumed to be different and independent and in the
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Fig. 5 Simulation results for 2D/3D US calibration. Error distribution
relative to ground truth values for 20 simulated trials using an increas-
ing number of acquisitions. Results converge at around 10 acquisitions,

with the 3D US being consistently more accurate than the 2D US for
any number of acquisitions. a 2D US. b 3D US

Fig. 6 Point reconstruction
accuracy on X-shaped wire
phantom. Distribution results for
(20 calibration trials × 10 wire
phantom acquisitions). The
assumption of a single-scale
factor (sx = sy = sz , in red) is
significantly more accurate and
thus represents a better model of
the eM6C probe. Results
converge between 10 and 20
acquisitions. a 2D US. b 3D US
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second case we assume a single-scale factor (sx = sy = sz)
like in the simulated environment. This will affect the num-
ber of estimation parameters in the Levenberg–Marquardt
optimization step (9 parameters for the first case, 7 for the
second case).

To validate the calibration accuracy, we use an x-shaped
wire phantom and measure the projection reconstruction
accuracy (PRA) of the wire intersection point, i.e., the dif-
ference in millimeters between the phantom point location
P measured using the needle and the projection from the US

scan AX. We performed 10 acquisitions of the wire phantom
in order to cover different regions of the US scan. Figure 6
displays the distribution of PRA results for all trials. Each
distribution contains 200 error measurements (20 trials × 10
phantom scans).

Discussion

Both the simulated and real data suggest that the calibration
method converges to a stable solution between 10 and 15

123



Int J CARS (2016) 11:1091–1099 1097

Table 1 2D US
This paper M. & B.

2008 [12]
U. in M. & B.
2015 [19]

U. in M. & B.
2014 [18]

Accuracy (mm) 2.49 ± 1.15 7.75 ± 5.04 1.3 ± 1.0 0.09 ± 0.39

Scan range (mm) 107 30 60 55

Accuracy/range (%) 2.33 25.2 2.1 0.16

Scale factors Variable Fixed Variable Variable

# of acquisitions 20 20 20 65

Phantom type Needle Needle Single plane Multi-plane

Table 2 3D US
This paper Medical imaging 2013 [13]

Accuracy (mm) 2.34 ± 1.07 3.44 2.93 2.84

Scan range (mm) 107 Unknown Unknown Unknown

Accuracy/range (%) 2.23 Unknown Unknown Unknown

Scale factors Variable Fixed Fixed Fixed

# of acquisitions 20 Unknown Unknown Unknown

Phantom type Needle Multi-point Multi-figure Single plane

acquisitions using either 2D or 3D US data. For the same
number of acquisitions, the 3D US calibration is more accu-
rate than 2DUS calibration. This is to be expected since each
3D US acquisition provides four constraints while each 2D
US acquisition provides only two.

With real data, we confirm that the 3 scale factors sx , sy, sz
are equal while using the eM6C probe in a water bath. The
results from Fig. 6 show that for a high number of acquisi-
tions the calibration with 3 independent scale factors (blue)
converges to the same solution with a single-scale factor.
Note that we could test further if there is any skew distortion
by allowing the matrixS from Eq. 1 to be non-diagonal. This
could be done by skipping the projection step described in
section “Calibration algorithm pipeline” and allowing S to
be an arbitrary upper triangular matrix. Although this is not
displayed in this paper due to space constraints, this method
also converges to the format described in Eq. 1 for 20 acqui-
sitions. The single-scale factor is a fair assumption for most
curvilinear US probes, since they usually produce scans with
unitary aspect ratio. Therefore, our further discussion will
only focus on the results provided by this assumption (red
distributions).

Ourmethod starts to converge around10 acquisitions,with
the 3D US accuracy increasing slightly faster than the 2D
US. The PRA stabilizes at 2.49mm for the 2D US and at
2.39mm for the 3DUS.Although it is possible to obtain good
calibrations with as few as 10 acquisitions, there are cases
where the calibration is inaccurate (outliers), which is caused
by the random selection process sometimes including many
acquisitions without significant motions between them. This
can be avoided if the user guarantees that the calibration is
performedwith a significant variety of needle poses, covering

different regions of the US scan. As a general rule, the needle
should be moved along different rotation directions between
each acquisition, aswell as its detection in theUS scan should
cover different regions of the image.

There are very few calibrationmethods that report reliable
results between 10 and 20 acquisitions regardless of the used
phantom. In Tables 1 and 2, we compare our results to the lit-
erature on US calibration. This comparison, however, should
be taken with caution as these methods use different calibra-
tion and validation phantoms, US probes, tracking systems,
and in some cases different accuracy metrics.

For the 2DUS case,we include the state-of-the-artmethod
that uses the same type of phantom as ourmethod [12] aswell
as the best performing methods for a relatively low num-
ber of acquisitions, using planar-based phantoms [18,19].
After taking into account the differences in US depth range,
our method clearly outperforms the alternative needle-based
method. Note as well that the results reported in [12] assume
that scale factors are already known before calibration, which
makes ourmethodmore flexible in practice. The single-plane
method is slightly more accurate than ours. The multi-plane
method is significantly more accurate, however, results are
only reported for 65 acquisitions while all the other meth-
ods report results for 20 acquisitions. Overall, our method
maintains the usability advantages of needle-based methods
described in [12] while decreasing its main drawback (poor
accuracy),making it a competitive alternative to planar-based
methods.

For the 3D US case, we compare our results with the
methods described in [13]. Our absolute performance is bet-
ter, however, [13] does not provide information about the
depth range of the 3D US probe or the number of calibration
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acquisitions, making it very difficult to draw significant con-
clusions. Although the results of our method are promising,
further research is required to compare it with other 3D US
calibration methods described in the literature.

Conclusions

We presented a new method for 2D/3D US calibration that
relies on scanning an arbitrary region of a needle or another
straight instrument. This method is easy to perform as it does
not require any specific alignment between the US probe and
the phantom. In the 2DUScase the experiments show that our
method improves the current state-of-the-art in needle-based
methods, with very similar accuracy to recent single-plane
methods. Results reported on 3D US calibration literature
are still not detailed enough to establish any strong com-
parisons between our method and other types of phantom.
However, our results indicate that accurate 3D US calibra-
tion is possible with 10–20 acquisitions, with more stable
results than in the 2D US case. Since all calibrations and val-
idations have been performed in water and without temporal
synchronization, ourmethod still needs to be tested on amore
realistic set-up. Regarding our geometric formulation, some
additional gains in accuracy can be obtained by simultane-
ously solving the linear system and enforcing the structure of
Eq. 1, however, this requires to solve a more complex system
of nonlinear equations. Additionally, our formulation is suit-
able for registration between any combination of plane, line,
and/or point correspondences, and thus the same algorithm
can be extended to other calibration phantoms with different
geometry, which calls for further study.
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