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Abstract
Purpose Easy acquisition of surgical data opens many
opportunities to automate skill evaluation and teaching.
Current technology to search tool motion data for surgi-
cal activity segments of interest is limited by the need for
manual pre-processing, which can be prohibitive at scale.
We developed a content-based information retrieval method,
query-by-example (QBE), to automatically detect activity
segments within surgical data recordings of long duration
that match a query.
Methods The example segment of interest (query) and
the surgical data recording (target trial) are time series of
kinematics. Our approach includes an unsupervised fea-
ture learning module using a stacked denoising autoencoder
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(SDAE), two scoring modules based on asymmetric sub-
sequence dynamic time warping (AS-DTW) and template
matching, respectively, and a detection module. A distance
matrix of the query against the trial is computed using
the SDAE features, followed by AS-DTW combined with
template scoring, to generate a ranked list of candidate sub-
sequences (substrings). To evaluate the quality of the ranked
list against the ground-truth, thresholding conventionalDTW
distances and bipartite matching are applied. We computed
the recall, precision, F1-score, and a Jaccard index-based
score on three experimental setups. We evaluated our QBE
method using a suture throw maneuver as the query, on two
tool motion datasets (JIGSAWS and MISTIC-SL) captured
in a training laboratory.
Results Weobserved a recall of 93, 90 and 87% and a preci-
sion of 93, 91, and 88%with same surgeon same trial (SSST),
same surgeon different trial (SSDT) and different surgeon
(DS) experiment setups on JIGSAWS, and a recall of 87, 81
and 75% and a precision of 72, 61, and 53% with SSST,
SSDT and DS experiment setups on MISTIC-SL, respec-
tively.
Conclusion We developed a novel, content-based infor-
mation retrieval method to automatically detect multiple
instances of an activity within long surgical recordings. Our
method demonstrated adequate recall across different com-
plexity datasets and experimental conditions.

Keywords Query-by-example · Stacked denoising autoen-
coder · Asymmetric subsequence dynamic time warping ·
Surgical data indexing · Surgical activity detection

Introduction

Surgical procedures are performed as a sequential compo-
sition of activity segments. These segments are useful for
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Fig. 1 Query-by-example for surgical activity detection. Top row shows one dimension of the kinematic data as a time series, and the bottom row
shows the surgical activities, of the query and the target trial, respectively

evaluation and teaching [10], and may differ in difficulty to
learn and execute them [19]. Advances in techniques such
as laparoscopy or robotic surgery and access to sensor tech-
nology in the training laboratory and in the operating room
have led to availability of large amounts of tool motion and
video data on surgical performance. Manual parsing of these
data to provide targeted feedback and build useful indexed
surgical performance catalogs requires a prohibitive amount
of resources. Automated detection of activity segments of
interest enables effective use of the data through technology
for efficient training of surgeons. For example, automated
activity detection within surgical performances in the train-
ing laboratory and in the operating room can enable learning
through well-indexed libraries and data-driven feedback.

Several techniques have been proposed to automatically
classify (i.e., assign labels to segments with known bound-
aries) and recognize (i.e., identify boundaries and assign
labels) surgical activity segments. The segments are usu-
ally specified based on a semantic understanding of the
surgical activity (e.g., gestures, maneuvers, tasks). Cur-
rently availablemethods to classify or recognize semantically
meaningful activity segments such as gestures include vari-
ants of hidden Markov models [15,18], conditional random
fields [8,16], linear dynamical systems [2,21], and differ-
ent forms of dictionary learning [1,14]. Applications using
these methods to automatically classify or recognize seman-
tically meaningful activity segments are limited by the need
for extensive manual curation and pre-processing. All such
methods are supervised and rely upon learning parameters
for particular models (with necessary assumptions, which
may not be suitable for longer and more complex activity
segments), sometimes using data from the entire signal.

In this paper we describe a novel content-based informa-
tion retrieval method called query-by-example (QBE) and
apply it to automatically detect and retrieve surgical activi-
ties of interest from a database of recordings. QBE has been
applied to zero-resource spoken term detection [7] where
the query (example) is a short acoustic utterance of a word,
and to laparoscopic video indexing [17] where the query

is a video snippet. Our proposed QBE method simultane-
ously detects multiple segments within the long recordings
(trials), whereas traditional QBE detects a single best seg-
ment. Figure 1 illustrates the concept of our QBE approach
to surgical activity detection, where we demonstrate the case
that there are multiple segments within the trial that resem-
ble the input query. We will show that all the segments that
resemble the input query within the long trial can be simul-
taneously detected. In this paper, we applied a nonlinear
feature learning method to obtain a succinct and informa-
tive representation of kinematic data in surgical recordings.
The proposedmethodmay be generalized to other time series
data such as video, with automatically learnt or hand-crafted
features such as HOG [17].

Our contributions in this work include: (1) a QBE
approach to simultaneously detect all segments of interest
within long surgical data recordings; (2) a novel method
called asymmetric subsequence dynamic time warping (AS-
DTW) to enable detection of multiple instances of a query;
and (3) a method to evaluate performance of techniques to
detect multiple instances of a query based on DTW distance
thresholding and bipartite matching.

Methodology

Problem formulation

In the QBE context, data for the query and the target trial
are represented in the same format, for example, via the
same data capture mechanism. Let X ∈ Rm×d denote the
query, and let Y ∈ Rn×d be the target trial, where d is the
dimensionality of the features and m, n denote the number
of temporal frames in X and Y , respectively. The basic QBE
problem can be formulated as:

(a∗, b∗) = argmax
(a,b)∈N ,1≤a<b≤n

S(X,Ya:b) (1)

where Ya:b denotes a substring of Y composed of frames
between time-indices a and b, and S(·, ·) is a similarity met-
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Fig. 2 The pipeline for our QBE framework

ric. (1) aims to find the unique substring in the target trial
that is most similar to the query.

In amore generic formulation of theQBEproblem, detect-
ing multiple substrings in the target trial that resemble the
query may be achieved by either applying a threshold on the
similarity between the candidate substrings and the query, or
by constraining the cardinality of set of end points (ai , bi ),
or by applying both constraints. Let sthr denote the similarity
threshold, and let N denote the number of subsequences to
be found. The QBE problem to detect multiple substrings in
the target trial can be formulated as:
⋃

i

(a∗
i , b

∗
i ) =

⋃

i∈{1,2,...,N }(#1)
argmax

(ai ,bi )∈N ,
1≤ai<bi≤n
bi<ai+1

S(X,Yai :bi )≥s(#2)thr

S(X,Yai :bi ) (2)

where the condition bi < ai+1 ensures no overlap between
the multiple substrings that are detected. Note that in (2) the
conditions (#1) and (#2) correspond to the cardinality and
the threshold constraints, respectively.

Pipeline

Figure 2 shows the pipeline of our QBE surgical activity
detection, which includes four modules:

1. Feature learning, where we used a stacked denoising
autoencoder (SDAE) [20] to learn nonlinear features
from the kinematic data;

2. AS-DTW scoring, where we compute a distance matrix
for query against trial and apply a novel algorithm called
asymmetric subsequence dynamic time warping (AS-
DTW)1 to get a score function for possible substrings
of the trial;

1 The variation of the standard dynamic timewarping problem inwhich
one seeks to align a sequence X with a contiguous subsequence Ya:b of
a long sequence Y has been called subsequence dynamic time warping,
even though it is better described as substring dynamic time warping.
We retain the former name for consistency, even if it is somewhat mis-
leading.

3. Template scoring, where a template generated from the
query is used to score the distance matrix;

4. Subsequence detection, where we determine substrings
by peak detection on a fused score function followed by
backtracking and further refinement.

We will introduce each module in detail in the following
subsections.

Nonlinear feature learning

In this study, the query and target trials are surgical tool
motion or kinematic data, which are composed of positions,
velocities, rotation matrices, angular velocities, and gripper
angles within a coordinate frame attached to the tip of the
manipulators of the da Vinci Surgical System (dVSS, Intu-
itive Surgical Inc, Sunnyvale, CA) [5]. The kinematic data
contain pose (orientations) and velocity information which
are nonlinearly dependent. Therefore, we need a nonlinear
feature extractionmethod to extract succinct and useful infor-
mation from the kinematic data.

We used a stacked denoising autoencoder (SDAE) [20]
to learn nonlinear features from the kinematic data. An
autoencoder (AE) is a type of artificial neural network that
transforms inputs into outputs with the least possible recon-
struction error. By incorporating nonlinear activation func-
tions, AEs decompose the nonlinear dependency between
features and reorganize them to produce a useful represen-
tation. The AEs can be stacked into a deep structure and
trained efficiently using the layer-wise pre-training strategy
[3]. If the last layer of the network has fewer nodes than the
input layer, then the network serves to reduce dimensional-
ity as well. SDAE is a variation of a stacked AE where the
input is first partially corrupted and the network is trained to
reconstruct a clean repaired input. SDAE features are more
robust since they preserve the underlying manifold of the
data [20].

Let x̃ denote the corrupted version of input x, and let
W ∈ Rn×m denote the weight matrix and b ∈ Rm be
the offset, where n,m are the number of nodes in the input
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Fig. 3 Stacked denoising autoencoder for feature learning

layer and the hidden layer, respectively. Let f denote the
forward mapping and g denote the reconstruction mapping,
i.e. f (x) = s(WT x + b) and g(h) = s(Wh + b′), where
s(·) can be chosen as the sigmoid function (nonlinearity).
The objective function for training a DAE is written as

JDAE = L(x, g ◦ f (x̃)) + λ

2
‖W‖2F (3)

where L(·, ·) is a loss function, and the second term serves
to regularize the weights. In this study we used a sigmoid
activation and squared error loss.

The SDAE used in this study has a 3-layer topology with
[836-256-15] number of nodes. We used the implementa-
tion of SDAE in the DeepLearnToolbox [12]. According
to [1], the unit time that the change in human motion can
be observed is approximately 200ms. Thus for the signal
sampled at 50Hz, we constructed the input frame as a con-
catenation of successive kinematic frames within a sliding
window of 11 frames to incorporate temporal context in
the data, and a sliding step of five frames to allow 50%
overlap between consecutive input frames. Our initial exper-
iments with 2, 3, 4 and 5 layers indicate that reconstruction
error was higher with 2 layers; however, there was mini-
mal advantage of using more than three layers. We thus
used a 3-layer topology. The output dimension was prede-
termined since the total degree of freedom of two hands are
14, and we allowed 1 more dimension to help reorganize
the features. Figure 3 depicts our SDAE feature extraction
procedure.

AS-DTW scoring

Distance matrix computation

Our QBE method is a content-based information retrieval
approach to surgical activity detection, which utilizes the
similarity between a query and a target trial. Given the query
X ∈ Rm×d and the target trial Y ∈ Rn×d , the similarity can
be reflected by a distance matrix D(X,Y ) ∈ Rm×n such that
D(i, j) = d(xi , y j ), where xi and y j denote the i-th and

j-th frames of X and Y , respectively, and d(·, ·) is a distance
metric. We used a cosine distance in this study:

d(x, y) = 1

2

(
1 − 〈x, y〉

‖x‖ · ‖y‖
)

. (4)

Note that the distance matrix appears “wide” in shape
because the query X is usually much shorter than the trial
Y . To prevent zero distance that may bias the distance accu-
mulation in later modules, a small amount of noise is added
to the query before computing the distance matrix.

Asymmetric subsequence dynamic time warping (AS-DTW)

We developed a novel method called asymmetric subse-
quence dynamic time warping (AS-DTW), which is applied
on the distance matrix in order to generate a score func-
tion that indicates the multiple candidate substrings of the
target trial that resemble the query. Before we introduce AS-
DTW, we briefly review dynamic time warping (DTW) and
subsequence-DTW.

DTW [13] is an algorithm to find the optimal match
between two sequences. Given two sequences X and Y with
length m and n, respectively, DTW aims to minimize the
overall distance between all frames that are warped onto each
other:

min
[px ,py ]T ∈Φ

Jdtw =
l∑

i=1

d(xpxi , ypyi ) (5)

where Φ is the space of the warping path that satisfies three
constraints: (1) boundary [px1 , py1 ] = [1, 1] and [pxl , pyl ] =
[m, n]; (2) monotonicity i1 < i2 ⇒ pi1 ≤ pi2 ; (3) continuity
[pxi+1, p

y
i+1] − [pxi , pyi ] ∈ {[0, 1], [1, 0], [1, 1]}.

Let DC ∈ Rm×n denote the accumulated distance matrix.
DTW can be implemented by dynamic programming:

DC (i, j) = min{DC (i − 1, j − 1), DC (i, j − 1),

DC (i − 1, j)} + D(i, j) (6)

with the base case DC (0, 0) = 0. The optimal warping path
is found by backtracking [13]. Note that the boundary con-
straints tie together the start frames (and end frames) of X
and Y ; therefore, the algorithm matches the two sequences
in their entirety.

In order to obtain an optimal substring, a variation called
subsequence-DTW [11] was introduced by initializing the
first row of DC to be same the as the first row of D, instead
of accumulation. The initialization can be formally described
as:
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Fig. 4 An example of showing that asymmetric progression finds the
correct warping where subsequence-DTW fails. a Distance matrix D
overlaid with the true path. b Accumulated distance matrix DC and
paths obtained by subsequence-DTW. Multiple paths found but none

are correct. c DC and the path obtained by AS-DTW. Arrows in b and c
indicate back-tracking. Note: the computation retains more significant
digits to preserve precision; only two are shown in the figure

DC (1, 1 : n) = 0, DC (1 : m, 1) =
m∑

i=1

d(xi , y1) (7)

Using subsequence-DTW, a scoring function� is defined
as the last row of DC :

�: [1, n] → R, �(b) := DC (m, b) (8)

�(b) is the minimum warped distance between X and some
substrings ofY ending at theb-th frame. The globalminimum
of�(b) indicates the optimal substring and the local minima
of�(b) suggest candidates for locally optimalmatches. Thus
subsequence-DTW provides a convenient tool to find multi-
ple substrings, which fits our goal.

However, without boundary constraints, the progression
of the warping path in subsequence-DTW is biased by the
length of the path such that a short path is always preferred.
For example, at the location (i, j), according to (6) the pro-
gression of the warping path is determined by the smallest
among {DC (i − 1, j − 1), DC (i − 1, j), DC (i, j − 1)}, cor-
responding to three directions: diagonal, downwards, and
rightwards. Since both (i − 1, j − 1) and (i − 1, j) may
be achieved from the top row within i −1 steps, it is possible
that DC (i−1, j−1) and DC (i−1, j) are the sumof i−1 dis-
tance values. Conversely, the warping path must traverse at
least i steps to reach (i, j−1), resulting in DC (i, j−1) being
the sum of at least i distance values. Consequently, the warp-
ing path favors downward and diagonal progression, which
leads to a biased warping path.

The reason behind this problematic property of length bias
with subsequence-DTW is because the vertical and the hori-
zontal directions are not treated the same. The accumulation
of distance stops at the vertical critical point of i = m, but
there is no such stopping rule for j ; thus, the subsequence-
DTWbreaks the assumption that the twowarped (sub)strings
are similar to each other except some local delay as the warp-
ing path usually deviates locally from the diagonal line.

We propose an asymmetric progressionmethod to remove
the length bias in subsequence-DTW; thus, our algorithm is

referred as asymmetric subsequence dynamic time warping
(AS-DTW). Consider two warping paths p1 and p2, where
p1 contains rightwards progression steps and p2 is composed
of only downwards and diagonal progression steps. It is obvi-
ous that the difference between the lengths of p1 and p2 is
the number of rightwards steps. Hence we need a way to rec-
oncile the extra length introduced by rightwards progression,
and this needs to be treated locally in a dynamic program-
ming framework. Note that whenever there is a rightwards
progression, the length of the warping path will be increased
by 1. Thus we adjust the accumulated distance to be a sum
of equivalent i distance values via multiplying by a factor of
i/ i + 1 after taking a rightward step, where i is the current
row. Formally, the proposed recursive formula ofAS-DTW is

DC (i, j) = min{DC (i − 1, j − 1) + D(i, j),

DC (i − 1, j) + D(i, j)

i

i + 1
(DC (i, j − 1) + D(i, j))}

(9)

Figure 4 shows a toy example to compare AS-DTW and
subsequence-DTW.

In our AS-DTW scoring module, we use a two-way AS-
DTW to smooth the distance matrix D and combine the
smoothed and original distance matrices together for further
AS-DTW. The output of AS-DTW includes a score function
�(b) as defined in (8), and an accumulated distance matrix
with paths information for substrings end at each frame of
Y .

Distance matrix template scoring

In addition to the similarity on the warping path obtained
by AS-DTW, we considered the similarity of the local struc-
ture by studying the distance matrix. Given the query and a
substring of the target trial, let us first define three local dis-
tance matrices: self-distance matrix of the query, denoted by
DQ , self-distance matrix of a substring of the trial, denoted
by DS , and the cross-distance matrix between the query and
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Fig. 5 Self-distance matrix of the query (left), of a substring (right), and the cross-distance matrix between those two (middle)

the substring, denoted by DX , respectively. Figure 5 shows
the three distance matrices.

A desired property is that both DS and DX be similar to
DQ . We use the normalized inner product as the metric to
evaluate the similarity between distance matrices. In other
words, we can take DQ as a template distance matrix, and
score each substring. Although the substrings may be of dif-
ferent lengths, using AS-DTW we can obtain the warping
path for each substring to warp them into the same length as
the query. Let D′

S and D′
X denote the self- and cross-distance

using thewarped substring, then the similarity is computed as

S(DQ, D′
S) = 〈DQ, D′

S〉
‖DQ‖F‖D′

S‖F
. (10)

S(DQ, D′
X ) is defined in the same way.

For each frame b of the trial, there exists an optimal sub-
string (beginning at some frame a < b) that ends at b.
Therefore, we define a score function Γ as

Γ : [1, n] → R, Γ (b) := αS(DQ, D′
S(b))

+βS(DQ, D′
X (b)) (11)

where D′
S(b) and D′

X (b) denote the corresponding distance
matrices of the substring that ends at frame b. α and β are
hyperparameters satisfying α + β = 1. An approximation
of Γ (b) can be computed by taking a fixed length substring
ending at frame b. The rationale behind this approximation
is that the length b−a+1 of the optimal substring is close to
the length of the query. With this assumption, Γ (b) may be
computed (approximately) simply by sliding a fixed window
of length ‖DQ‖ along D, and calculating the score between
DQ and the part of D covered by the window, avoiding the
back-tracking needed to find a. In our experiments, we use
this approximation for computational efficiency, with α = 0
and β = 1.

Substring detection

Given the two score functions�(b) and Γ (b), we select can-
didate endpoints by applying a peak detection algorithm on

the average of the two functions, which finds out the local
maxima of the signal with the constraints of dominance and
separation. These peaks {bi } indicate high similarity both
along the warping path and in local structure. The warping
path, and starting point ai corresponding to each bi , are deter-
mined by back-tracking. The set of substrings {(ai , bi )} is
further refined to eliminate overlapping substrings. Figure 6
shows the evolution of the distance matrices and the scoring
functions along a single trial.

Experiments

Datasets

Weused two datasets captured in the surgical training labora-
tory in this study: the JHU-ISI Gesture and Skill Assessment
Working Set (JIGSAWS) [5] and the JHU Minimally Inva-
sive Surgical Training and Innovation Center—Science of
Learning (MISTIC-SL) datasets [6]. In both cases, data were
captured as surgeons performed on bench-top models on the
da Vinci Surgical System (dVSS; Intuitive Surgical, Inc.,
Sunnyvale, CA) in the laboratory. From both datasets, we
used the tool-tip position, orientation, velocities, and gripper
angles from the surgeon-side and patient-side manipulators
of the dVSS.

JIGSAWS included 39 instances (trials) of a continu-
ous suturing task performed by eight subjects. Each trial
consisted of four suture throws (passing needle across an inci-
sion). MISTIC-SL included 72 trials (49 right-handed trials
used in this study, and 23 left-handed not used in this study)
performed by 15 trainee surgeons. Each surgeon performed
an average of five trials (range=1–15). Each trial inMISTIC-
SL consisted of a suture throw followed by a surgeon’s knot,
eight more suture throws, and another surgeon’s knot. Figure
7 illustrates the bench-top models for tasks in JIGSAWS and
MISTIC-SL. The task composition in MISTIC-SL is more
complex than that in JIGSAWS because it involved tying a
surgeons knot before and after multiple suture throws. Sur-
geons in MISTIC-SL also were required to manage longer
lengths of suture than in JIGSAWS.
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Fig. 6 From top to bottom original distance matrix D; merged distance matrix for the final AS-DTW; accumulated distance matrix DC overlapped
with found warping paths; scoring functions and the detected peaks

Fig. 7 Bench-top models used in JIGSAWS (left) and MISTIC-SL (right)

We evaluated our method using a suture throw maneuver
as the query. The suture throw maneuver begins when the
needle is inserted into the tissue and ends when the needle is
rotated or pulled out of the tissue. A suture throw is a fun-
damental activity that can be observed within most surgical
procedures and is an essential component of most surgical
skills training curricula.

Evaluation method and metrics

The QBE method involves detecting segments in a trial that
are similar to a query. Thus the unit experiment is composed
of a suture throw exemplar X and a target trial Y , and an
output of predicted substrings P = {Pj = (a j , b j ), j =

1, 2, . . . , |P|}, plus the set of ground-truth suture throwsG =
{Gi = (ai , bi ), i = 1, 2, . . . , |G|}. A unit experiment E is
therefore a 4-tuple:

E = (X,Y,G, P) (12)

The evaluation for E is not straightforward since the corre-
spondence between G and P are undetermined. In addition,
the lengths of the detected substrings vary, which also affect
performance of the method. Inspired by [4], we developed
a two-step approach to create a one-to-one correspondence
between P andG that involves DTW-thresholding and bipar-
tite matching.
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We regarded substrings of Y denoted by the predicted and
ground-truth labels as nodes of a graph and thus specified
two sets of nodes by P and G. To determine the edges, we
first computed the DTW distance between each pair of over-
lapping substrings (YGi ,YPj ), then applied a threshold dthr
on the DTW distances to construct an adjacency matrix. A
large threshold admits more matches (high recall), while a
small threshold permits fewer, more accurate matches (high
precision).

The graph is bipartite since all connections are across the
two sets G and P . However, a node in one set may be con-
nected with two or more nodes from the other set. We used
the maximum flow algorithm to find the maximum bipartite
match in the graph. Let G ′ and P ′ denote the resulting bipar-
tite match where P ′

i exclusively corresponds to G ′
i . Given

the one-to-one correspondence of G ′ and P ′ from bipartite
matching, we defined hit = |P ′| = |G ′|. We computed
recall, precision, F1 score to evaluate performance of the
QBE method at the segment level.2

For evaluation at the frame level, we defined an evaluation
metric called J-score which is based on the Jaccard Index [9]:

J (P,G) =
√√√√

|G|∑

i=1

max
j

Gi ∩ Pj

Gi ∪ Pj
(13)

The J-score reflects the extent of overlap between the predic-
tion and ground-truth. The square root rescales the value so
that it is comparable with the metrics we used for evaluation
at the segment level.

Experimental setup

We anticipated that the performance of the QBE method
would be influenced by two factors: (1) whether the query
and target trial were performed by the same surgeon
(proxy for surgeon-specific style variations and technical
skill/expertise), and (2) whether the query and target trial
were performed on the same day/session or on different days
(proxy for surgeons’ level of exhaustion/alertness and learn-
ing effect). Therefore, to evaluate the performance of the
method and to study how the performance will be affected
by the above-mentioned factors, we designed three differ-
ent experiment setups: (1) same surgeon same trial (SSST),
where the query originates from the target trial; (2) same
surgeon different trial (SSDT), where the query originates
from a different trial performed by the same surgeon that
performed the trial being searched; and (3) different surgeon
(DS), where the query and the target trial were performed by
different surgeons.

2 Recall = T P/(T P+ FN ), Precision = (T P/(T P+ FP), F1 =
2T P/(2T P + FN + FP), where T P = hit , FN = |G| − hit and
FP = |P| − hit .

In SSST, we adopted a viewpoint of a one-way analysis
of variance (ANOVA) and assumed that the surgeon-specific
factor is reflected by the mean of each surgeon. Given a trial
containing q queries, we conducted q unit experiments as
defined in (12) and averaged the evaluation metrics for the
trial.We reported the global mean and variance for each eval-
uation metric.

In SSDT, we designed a leave-one-trial-out cross valida-
tion for each surgeon. For surgeon i who performed ni trials,
we sampled a query from a left-out trial j and used trial k
(k �= j) as a target. We created a matrix (for each evaluation
metric) Mi of size ni × ni to denote all the experiments for
surgeon i , whereMi

jk denotes a unit experiment if j �= k, and

Mi
j j (diagonal element) is empty. The average of j-th row

(excluding the diagonal) indicates performance of the QBE
method with queries derived from trial j . The average of k-th
column indicates performance of the QBE method with trial
k as the target. We reported the overall performance in SSDT
by averaging across surgeons.

In DS, we designed a leave-one-surgeon-out cross vali-
dation experiment. A matrix M of size u × u was created
for the cross validation experiment, where Mi j denotes the
experiment of a query from one surgeon i applied to a tar-
get trial from surgeon j . In each experiment, we sampled q
queries from surgeon i , and t trials from surgeon j . The met-
rics for Mi j are averaged over all the q × t experiments. We
reported the performance for each surgeon as the target, and
the overall performance in DS by averaging across surgeons.

Results and discussion

Table 1 shows the overall performance of ourQBEmethod
on JIGSAWS and MISITC-SL. On both datasets, the QBE
method demonstrates a high recall (87–93% on JIGSAWS,
75–87% on MISTIC-SL), which is a more important eval-
uation metric in the surgical teaching context because false
negatives ormisses aremore consequential than false alarms.
The recall is robust to experimental settings on both datasets,

Table 1 Overall performance of QBE method on JIGSAWS (a) and
MISTIC-SL (b)

Setup Recall Precision F1-score J-score

(a) JIGSAWS

SSST 0.93 ± 0.01 0.93 ± 0.01 0.92 ± 0.01 0.76 ± 0.01

SSDT 0.90 ± 0.01 0.91 ± 0.01 0.89 ± 0.01 0.80 ± 0.01

DS 0.87 ± 0.04 0.88 ± 0.04 0.86 ± 0.02 0.73 ± 0.03

(b) MISTIC-SL

SSST 0.87 ± 0.01 0.72 ± 0.01 0.77 ± 0.01 0.68 ± 0.01

SSDT 0.81 ± 0.03 0.61 ± 0.03 0.68 ± 0.03 0.68 ± 0.02

DS 0.75 ± 0.16 0.53 ± 0.15 0.60 ± 0.14 0.56 ± 0.13
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indicating that it is less sensitive to the surgeon-specific style
variations and day/session variations. Precision drops (72–
53%) as experimental settings changes from SSST to DS on
the MISTIC-SL dataset, indicating that our method is sensi-
tive to surgeon-specific style variations in a way that it may
introduce extraneous segments matching the query.

The performance of our QBE method on JIGSAWS is
better than its performance on MISTIC-SL, which may be
explained by differences in task complexity and annota-
tion protocols. The task in JIGSAWS included only suture
throws, whereas the task inMISTIC-SL included both suture
throws and knot-tying. In addition, subjects in the MISTIC-
SL dataset were free to manipulate the camera. The task
complexity and camera movement resulted in a greater vari-
ation in motion in MISTIC-SL compared with JIGSAWS.
Furthermore, the ground-truth inMISTIC-SL sometimes had
missing annotations when a surgeon made an error in perfor-
mance and repeated amaneuver; any suture throw detected in
the unannotated region was deemed a false alarm by default
in our evaluation.

Consistent with observations in previous research on sur-
gical activity detection [2,8,15,16,18,21], surgeon-specific
style variations affected performance of our QBE method.
This is evident from the somewhat lower recall and precision
in DS than in SSST and SSDT for both datasets. The drop in
performance under the DS setup was larger in MISTIC-SL
than in JIGSAWS, perhaps because greater task complexity
in MISTIC-SL led to more surgeon-specific style variations.
Finally, our estimates of evaluation metrics in MISTIC-SL
are less robust because the number of trials per surgeon was
more variable than in JIGSAWS.

Conclusion

In this paper, we described a query-by-example approach to
detect activity segments of interest in surgical motion data
and evaluated its performance. Our QBE method does not
require intensive manual annotation for training the system,
nor does it apply strong modeling assumptions. Thus it is
a flexible tool to efficiently chapter and index activity seg-
mentswithin long surgical data recordings.We also proposed
a novel algorithm for substring search called asymmetric
subsequence dynamic timewarping. Our experiments on sur-
gical maneuver detection on two robotic surgical training
datasets showed that the QBE method has good recall, mod-
erate precision. Performance of our QBEmethod is sensitive
to the complexity of task composition and surgeon-specific
style variations.

Our QBE method may be applied to search for queries
other than surgical maneuvers. It may be applied to other
types of queries such as gestures or tasks, and with queries
and target trials derived from different datasets. In future

work, we will evaluate performance of our QBE method on
different types of queries thatmay ormay not be semantically
meaningful. Future work will also include evaluating perfor-
mance of our QBE method on data captured in the operating
room, and other types of data such as video images or events.
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