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Abstract
Purpose With the intention of extending the perception and
action of surgical staff inside the operating room, the med-
ical community has expressed a growing interest towards
context-aware systems. Requiring an accurate identification
of the surgical workflow, such systemsmake use of data from
a diverse set of available sensors. In this paper, we propose
a fully data-driven and real-time method for segmentation
and recognition of surgical phases using a combination of
video data and instrument usage signals, exploiting no prior
knowledge. We also introduce new validation metrics for
assessment of workflow detection.
Methods The segmentation and recognition are based on
a four-stage process. Firstly, during the learning time, a
Surgical Process Model is automatically constructed from
data annotations to guide the following process. Secondly,
data samples are described using a combination of low-
level visual cues and instrument information. Then, in the
third stage, these descriptions are employed to train a set of
AdaBoost classifiers capable of distinguishing one surgical
phase from others. Finally, AdaBoost responses are used as
input to a Hidden semi-Markov Model in order to obtain a
final decision.
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Results On the MICCAI EndoVis challenge laparoscopic
dataset we achieved a precision and a recall of 91% in clas-
sification of 7 phases.
Conclusion Compared to the analysis based on one data
type only, a combination of visual features and instrument
signals allows better segmentation, reduction of the detec-
tion delay and discovery of the correct phase order.
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Introduction

Over the past decade, the scientific medical community
has been working towards the next generation of intelligent
operating room (OR) [2,6]. This concept includes various
directions such as image-guided and robotic surgical sys-
tems, augmented reality and visualization, sensing devices
and context-aware systems in computer-assisted interven-
tions (CA-CAI). The research of the present work joins the
last direction. The main goal of CA-CAI systems is to ensure
OR situation awareness and assist the surgeon and surgical
team in preventing medical errors. Needed support can be
provided throughmultiple clinical applications, e.g. resource
management [11], surgeon evaluation, detection and preven-
tion of adverse events, aid in decision-making process and
robotic assistance [7].

Creation of a CA-CAI system requires a large informa-
tive learning set of clinical data. A variety of sensors enables
the extraction of diverse information. In the area of sur-
gical workflow detection, the literature describes methods
exploiting data from instruments usage binary signals [16],
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RFID tags and sensors [1], different kinds of tracking devices
(tracking of instruments [8], surgical staff trajectories [14]
and eye motions [9]) or even simple measurements of the
surgical table inclination and lights state [20]. Last but not
least, video data represent a great source of informationwhile
being the most challenging one. The preferable option is
to leverage data coming from sensors already used as part
of the clinical routine, thus not requiring additional equip-
ment installation. It makes endoscopic [13] and microscopic
[5,12] videos ones of the best data providers. Sometimes
multiple data signals are mixed to complete information
lacks [21].

The second important aspect of CA-CAI systems is
recognition of surgical workflow. Depending on targeting
application, this can be done in different granularity levels:
stages, phases, steps, actions or gestures, starting from the
highest going to the lowest [11]. The approach we propose
in this paper is dedicated to surgical phase discovery from
video data and instrument signals. Usually the main strat-
egy of visual-based methods for surgical workflow detection
is to extract visual features such as RGB and HSV his-
tograms, Histograms of Oriented Gradients, optical flow
[17], SIFT/SURF and STIP [5] points or their combinations
[12]. Extracted features are then used to classify images with
machine learning techniques, e.g. support vector machine
(SVM), bag-of-visual-words [12], K-nearest neighbours [5],
Bayesian networks [13] or conditional random fields [17].
Knowing that the surgical procedure is a continuous process,
its temporal aspect can be exploited byHiddenMarkovMod-
els (HMM) and Dynamic Time Warping (DTW) methods
[3,12]. The same strategy can be applied to other sensor
input including surgical tool signals. For instance, interesting
results are provided by a combination of instrument usage
signals with HMM or DTW [16]. Furthermore, the set of

extracted features can be reduced by selecting the most rele-
vant ones, as it was done in [15] using AdaBoost to define the
most representative surgical instruments for phase detection.

The methods for surgical workflow detection described
in the literature have some drawbacks. The most essential
applications of CA-CAI systems require a real-time analysis.
Ahalf of themethods are not suitable for on-line applications,
especially those using DTW which are required to have a
complete sequence. Besides, some of the methods have a
priori assumptions on surgery type, particular instruments or
regions of interest [5,12,17] constricting their application to
a specific intervention only. To resolve these problems our
paper proposes a completely data-driven method working in
real time and independent of surgery type and its specificities.
It takes as input endoscopic, microscopic or operative field
videos and instrument usage binary signals.

Finally, the workflow detection method used in CA-CAI
systems has to be validated. A common way to do that is
to compute accuracy, precision and recall scores. However,
such global scores usually not informative enough and under-
estimate performances as regards to the actual clinical needs.
For such purpose, we propose 3 novel validation metrics and
a new application-dependent approach for error estimation,
and use themwithin the following targeted applications: esti-
mation of remaining time, relevant information display or
device triggering.

Methods

The workflow detection of our approach is performed in
four stages using the data from “Data” section, as shown
in Fig. 1. Firstly, a Surgical Process Model is constructed
as described in “Surgical Process Modelling” section. The

Fig. 1 Scheme of the proposed
four-stage segmentation and
recognition approach, outlining
processing at training and
testing time. D stands for
descriptions of all training
samples, S for signatures of all
training samples, d for test
sample description and s for test
sample signature
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Table 1 Mean values and
standard deviations of phase
durations and of total operation
time (min:s)

P1 P2 P3 P4 P5 P6 P7 Total

Mean 06:30 09:23 02:50 05:36 03:00 06:59 06:31 40:49

SD 03:13 07:16 02:08 01:02 01:58 03:35 04:06 10:21

next stage is to create descriptions from images and instru-
ment signals (see “Data description” section). “AdaBoost
classification” section presents intermediate AdaBoost clas-
sification done in the third stage. The last stage, detailed in
“Hidden semi-Markov Model” section, provides final clas-
sification results. Finally, in “Validation metrics” section we
propose new validationmetrics dedicated toworkflow recog-
nition.

Data

The dataset we used to validate our method comes from the
subchallenge of the MICCAI 2015 EndoVis challenge dedi-
cated to the surgical workflow detection.1 It contains 7 endo-
scopic videos of laparoscopic cholecystectomies. The videos
are in full HD quality (1920×1080) at 25 fps. Additionally,
for each video frame the dataset includes usage informa-
tion about the 10 instruments used during the intervention.
There are 26 possible combinations of their simultaneous
use.

The laparoscopic cholecystectomy operation passes
through 7 phases: (P1) Placement of trocars, (P2) Prepara-
tion, (P3) Clipping and cutting, (P4) Dissection of gallblad-
der, (P5) Retrieving of gallbladder, (P6) Haemostasis and
(P7) Drainage and closing. One operation is executed in lin-
ear order without any comebacks. In the other 6 operations
the phase Haemostasis is performed before the retrieving
phase is completed. Therefore it can pause the phase 5. The
phase 6 is performed again after the end of the phase 5.
Duration statistics are presented in Table 1, where the mean
values and standard deviations were computed on the 7 surg-
eries.

Surgical Process Modelling

The main idea of our approach is to remain generic and inde-
pendent towards the data and apply the same algorithm to
different datasets. To implement this idea we rely on Surgical
Process Modelling [10]. A surgical procedure can be repre-
sented with an individual Surgical Process Model (iSPM)
describing its order of surgical task execution. The union of
several iSPMs gives a generic model called gSPM showing
different possible ways to perform the same procedure. In

1 http://grand-challenge.org/site/endovissub-workflow/data/.

addition, it is possible to extract from the gSPM some useful
information such as a list of all tasks and their durations. In
this work the gSPM is represented in the form of a directed
weighted graph automatically computed from data annota-
tions. To construct it iSPMs are parsed in order to extract
all unique surgical phases which play the role of vertices of
the graph. Then, we derive all edges, meaning transitions
between phases. When the structure of the graph is in place,
we assign an attribute to each edge and vertex. The edge
attributes define the probability of continuing by performing
the phase pointed out by the edge. The vertex attributes indi-
cate phase durations. We use the model and its statistics to
manage the following segmentation and recognition process
in all stages.

Data description

The second stage of the approach is to describe input data.
For this we construct a visual description of each video frame
and a corresponding vector of instrument signals. First, to
maintain the generic aspect of the method, the images from
the videos are described with no attachment to particular
areas or objects and no assumption on surgery type. Only
standard global visual cues are used for that purpose. This
choice is driven by two reasons: 1) standard image descrip-
tors are generally computationally light, and 2) they allow
successful classification of all kinds of images unlike other
more complex descriptors designed for specific goals. Three
main image aspects are examined: colour, shape and texture.
The colour is represented in form of histograms from RGB,
HSV and LUV colour spaces. The shape is described by Dis-
crete Cosine Transform (DCT) and Histograms of Oriented
Gradients (HOG). The texture is transmitted through Local
Binary Patterns (LBP) histograms. The image description is
computed as follows. TheRGBhistogram of the entire image
contains 16 bins and their sum for each colour component.
The same is done for the HSV, except that the Hue com-
ponent has 18 bins. For the LUV colour space we extract
only L component in 10 bins, and we also take their sum.
For the DCT representation only 25 values, corresponding
to the highest frequencies, are taken. We compute 6 HOG
of 9 bins on 6 different areas of the image. Four histograms
are computed from 4 rectangular sectors of equal size going
from the image centre to its corners. The fifth sector of the
same size is focused on the centre of the frame. The last
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sector contains the entire image. For the LBP histogram we
use 58 uniform patterns only. All computed values are con-
catenated into a visual description vector of total 252 values
(3× 16+3× 1+18+2× 16+3× 1+10+1+25+6× 9
+ 58 = 252).

Along with the visual information we incorporate the sig-
nals of instrument usage. Each analysed data sample can be
described as a set of instrument binary signals: 1 if instru-
ment is in use, 0 if not. In this way we have an instrument
vector of length M , where M is a total number of surgical
tools (M = 10 in our case). The visual description vector
and instrument vector are concatenated together to be used
as input for the following AdaBoost classification.

AdaBoost classification

In order to classify each analysed sample into surgical phases,
the third stage of our method relies on AdaBoost classifier
using descriptions from “Data description” section as input.
The boosting approach, underlying concept of AdaBoost, is
a machine learning technique using a great number of weak
classifiers assembled into a cascade to form one strong classi-
fier. TheAdaBoost algorithm [19] finds features that separate
positive data samples from negatives the best. The advantage
of AdaBoost applied to our problem is its capacity to analyse
each data aspect separately to find themost discriminant ones
unlike SVM, for example, which takes all features in a scope.
To be more concrete, visually each surgical phase can pos-
sibly differ from all others only by one or couple of features
(e.g. specific colour component or gradient direction), so it
can have its own particularities. The same is applicable to the
instruments. Thereby, in our case each surgical phase needs
a proper classifier of type one-vs-all distinguishing it from
all others.

During training time, for each surgical phase, we create
a set of positive (i.e. belonging to this phase) and negative
(i.e. belonging to any other phase) samples represented by
description vectors. Then the AdaBoost classifier specific to
this phase is trained on the built set. At the end of the training
we have N AdaBoost classifiers, where N is the number of
surgical phases. For our dataset N = 7, but practically it is
defined by the computed gSPM.

At testing time each sample passes through all classi-
fiers and obtains a signature of 2 × N length consisting of
N positive/negative responses (1 or −1) and N confidence
scores from 0 to 100 indicating classifiers certainty. Each i th
response shows if the i th classifier recognizes the sample as
belonging to its phase or not. The values of the signature con-
taining confidence scores are divided into k intervals. Here
k is empirically set to 20. This is needed to obtain a discrete
signature which is used as input for the next stage of our
method.

Hidden semi-Markov Model

In this final stage we construct a predictive model taking into
account the temporal aspect of the procedure to improve the
detection capacity of our method. Hidden Markov Model is
a powerful tool for modelling time series. Based on observed
data, themodel seeks to recover the sequence of hidden states
that the process comes through. Applicable to surgical work-
flow segmentation, the surgical phases would be the hidden
states we want to discover and the data samples (signatures
from the last stage in our case) would be the observations.
An HMM is formalized as λ = (S, O, A, B, π), where S is a
finite set of states, O is a finite set of observations (sometimes
called vocabulary), A is a set of probabilities of transition
from one state to another, B is a probability distribution of
observation emissions by states, π is a probability distribu-
tion over initial states (see [18] for more details).

Classical HMM has a major drawback: exponential state
duration density due to auto-transitions. This is poorly suited
for modelling of physical signals and processes with various
state durations. An extension of the classical model exists,
and it is called explicit-duration HMM or Hidden semi-
Markov Model (HsMM). An efficient implementation was
presented by Yu in [22]. A state duration probability distrib-
ution P is added to the model λ = (S, O, A, B, π, P), and
the probabilities of all auto-transitions in A are set to zero.

The last stage of our algorithm is HsMM training on sig-
natures made of AdaBoost responses used as observations.
First of all, the gSPM constructed at the first stage automati-
cally defines set of phases S and initializes A, P and π . Then
a finite observation vocabulary O is built from all unique sig-
natures found in the training data. B is initially computed by
counting the number of occurrences of all signatures from O
in each phase. The model is then refined thanks to modified
forward–backward algorithm.

At testing time, the sequence of signatures representing
the surgical procedure is decoded one by one with modified
Viterbi algorithm inspired from [22] in order to get a sequence
of phase labels attributed to each sample as final result.

Validation metrics

In order to validate the performance of our method, we pro-
pose 3 novel metrics and an error estimation approach. These
metrics are less severe, more informative and more represen-
tative of real application-based requirements. The notions
of transitional moment, transitional delay, transition window
and noise mentioned below are illustrated in Fig. 2.

Average transitional delay (ATD) This metric characterizes
the average time delay between the real phase-to-phase tran-
sitional moments TM and predicted ones. ATD is defined as
follows:
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Fig. 2 Examples of transitional moments, negative and positive transitional delays (TD), transitional delay threshold, transition window (TW) and
noise

ATD = 1

s

s∑

k=1

abs(tP(TMk) − tGT(TMk)), (1)

where s is the number of TMs belonging both to the
ground truth sequence GT and to the predicted sequence P ,
tGT(TMk) is the time stamp of k-th TM in GT, and tP(TMk)

is the time stamp of the same closest TM in P . Transitional
delay can be positive which tells that the system is late com-
pared to the ground truth, so the detected transition is made
after the real one. Negative values show that system switches
too early. The average delay is computed from absolute val-
ues. Sometimes some TMs of GT are completely missed in
P , and this is mostly due to a fault of the classification. The
proposed metric, in the other hand, measures the reaction
time of the system. Thereby, ATD does not account for such
skipped transitions.

Noise level (NL) The discovered sequence can contain some
noise, meaning short time separate misclassifications that
create false transitional moments. This metric measures the
rate of noise present in predicted sequences. NL is computed
as NL = N

T , where N is the number of misclassified sam-
ples not belonging to any transitional delay, and T is the total
number of samples in the predicted sequence.

Coefficient of transitional moments (CTM ) This coefficient
is computed as CTM = TMP

TMGT
. It is a ratio of the number of

detected transitionalmomentsTMP in the predicted sequence
to the number of real ones TMGT in the ground truth. It
implicitly reflects the robustness of the workflow recognition
method. For example, predicted sequences with a repeated
high-frequency noise (e.g. high CTM) point to classification
inconsistency.

Application-dependent scores (AD-scores) For some appli-
cations a certain time delay in detection, which does not
influence overall efficiency, can be acceptable. We propose
to re-estimate standard performance scores using acceptable
delay thresholds for transitionwindows.Todo so,we redefine
the notion of “true positives”TP, replacing it by “application-
dependent true positives” TP′. The sample S ∈ TP′ if S ∈
TP or if S ∈ TWtr(i, j) and (label(S) = i or label(S) = j),

where TWtr is one of the transitionwindowswith the allowed
threshold tr, centred on the transitional moment between
phases i and j in the ground truth. The AD-accuracy, AD-
precision and AD-recall are computed as usual but using TP′
instead of TP.

Results

We used metrics from “Validation metrics” section to vali-
date the performance of our approach through three separate
studies using data from “Data” section. In order to estimate
the impact of each data type and to get a better under-
standing of the method capacities we first tested each data
type (i.e. visual and instrumental) separately, and then, their
combination. The first study (VO) estimated method per-
formances given videos as the single data input. During
the second study (IO) instrument usage signals were the
only input. The third study (VI) explored the performances
of the method given the combination of visual and instru-
ment information. Manual annotations were used as ground
truth. The leave-one-surgery-out cross-validation protocol
was used.

The same set of tests was run for all studies. The first test
estimated the standard accuracy, precision and recall scores
using sample-by-sample comparison between the ground
truth and predicted sequences. The second test evaluated
ATD, the third test measured NL, and the fourth estimated
CTM. The results of these tests are presented in Fig. 3 and
“First study: visual information only (VO)”, “Second study:
instrument information only (IO)”, “Third study: combina-
tion of visual and instrument information (VI)” sections.
After that, we re-estimated the standard scores for two
possible applications.Thefirst application (A1) is device trig-
gering and relevant information display. It allows a relatively
small time delay, so we fixed the transitional delay threshold
to 15s, meaning that all misclassifications caused by a transi-
tional delay of 15s or less are counted as good classifications.
The second application (A2) is estimation of remaining sur-
gical time, where a high accuracy is less important than in
other applications. The transitional delay threshold can be
fixed at 1min with no essential impact on the estimation.
Obtained AD-scores are presented in Table 2.
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Fig. 3 Global confusion matrices (in %) and visual representations
of sequences. The confusion matrices are normalized by the ground
truth. For each sequence representation S the ground truth is at the
top, and the prediction is at the bottom. a Confusion matrix for VO

study. bVisual sequences of VO study. cConfusionmatrix for IO study.
dVisual sequences of IO study. eConfusionmatrix forVI study. fVisual
sequences of VI study
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Table 2 Application-dependent
scores (in %) for all
study–application couples

Score VO (A1) VO (A2) IO (A1) IO (A2) VI (A1) VI (A2)

AD-accuracy 71.65 77.96 81.82 84.53 91.59 93.23

AD-precision 75.40 81.00 85.34 87.63 93.54 95.10

AD-recall 74.75 80.34 85.50 87.74 93.70 95.17

Table 3 Standard precision and
recall scores (in %) for all
conducted studies

Score Study P1 P2 P3 P4 P5 P6 P7 Mean ± SD

Precision VO 81.49 76.68 49.74 67.58 74.47 55.87 98.84 72.10 ± 16.39

IO 93.88 70.00 66.11 87.33 84.79 80.85 100.00 82.85 ± 12.75

VI 100.00 76.83 83.69 93.12 93.60 91.05 99.14 91.06 ± 8.29

Recall VO 94.59 68.88 49.67 64.63 72.05 70.26 78.64 71.25 ± 13.64

IO 100.00 84.99 76.24 60.49 81.29 87.11 87.72 82.55 ± 12.15

VI 100.00 91.40 87.74 77.29 92.51 92.64 96.82 91.20 ± 7.28

First study: visual information only (VO)

Standard scores The global accuracy of this method reached
68.10%. Table 3 shows mean precision and recall scores for
all phases and the whole procedure. Mean values were com-
puted from the global confusion matrix (Fig. 3a) constructed
by the addition of confusion matrices of all 7 surgeries.

ATD The average transitional delay, computed from all tran-
sitionalmoments of all surgeries, was 1min 6s (1648 frames)
with a standard deviation of 23s (572 frames) which resulted
in 2.69±0.93%of the total time for amean intervention dura-
tion of 40min 48s.

NL The average noise level in all predicted sequences con-
stituted 16.54% of all analysed samples, which represented
53.53% of all misclassifications. Supposing that there are
only two types of error, more than a half of all misclassifi-
cations were noise and 46.47% were caused by transitional
delays.

CTM Becauseof thenoise presence in all predicted sequences,
none of them had the same workflow (i.e. order of phases)
that the ground truth. This resulted in a relatively high aver-
age CTM equal to 1.70.

Second study: instrument information only (IO)

Standard scores Using surgical tool signals only, the method
achieved a global accuracy of 78.95%, mean precision of
82.85% and mean recall of 82.55% (Table 3). Figure 3c
illustrates the global confusion matrix.

ATD The average transitional delay was twice lower than
in the VO study. ATD was equal to 32s (804 frames) with a

standard deviation of 20s (510 frames), i.e. 1.31±0.83% of
the total time.

NL The noise level stayed relatively high (13.17%). Its part
in the overall detection error was 64.18%. The remaining
35.82% were due to a transitional delay.

CTM The IO method had a high coefficient of transitional
moments equal to 1.95. As in the VO study, no sequence was
correctly predicted in terms of phase order.

Third study: combination of visual and instrument
information (VI)

Standard scores Thanks to the data combination, our
approach gained in predictive capacity and showed a global
accuracy of 88.93%, mean precision of 91.06% and mean
recall of 91.20% (Table 3). The global confusion matrix is
in Fig. 3e.

ATD A slight improvement wasmade in terms of transitional
delay compared to the IO study. The ATD decreased to 26s
(643 frames) with a standard deviation of 21s (535 frames),
or 1.05±0.87% of the total time.

NL The mean noise level in predicted sequences was four
times smaller than in theVO study.On average the noise level
reached only 4.16% of the total classifications and consti-
tuted 53.21% of all errors. Thus, the other part of the errors
(46.79%) occurred when transitioning to the next phase too
early or too late.

CTM In this study, the predicted sequences had less false
transitions. Suchwise, 3 sequences had no noise in them and
had a correct phase order. The average CTM decreased to
1.13, showing an enhancement of robustness.
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Error analysis

In order to better understand the source of misclassifications
we conducted an additional analysis. The results showed that
42.11% of all errors in the VO study occurred because the
HsMMobservation vocabulary constructed from the training
data did not contain signatures of tested samples. In 51.34%
of the errors test samples from different phases had the same
signature. In the IO study, only 4.15% of all errors were
caused by the signature absence and 87.88% by the signa-
tures identity. For the VI study the error distribution was
78.01 and 18.57%, respectively. Other errors were proba-
bly caused by the HsMM itself, when the phase duration in
the test sequence differed a lot from those in the training
sequences.

Discussion

Detection of surgical workflow is an important issue requir-
ing a relevant approach and a rigorous validation. In this
paper we proposed and validated a novel method dedicated
to the real-time segmentation and recognition of surgical
phases. The results of the work are discussed below.

Input data impact

A large set of possible signals collected in theOR can be used
forworkflowdetection.Different signal combinations should
be investigated. In this work we proposed a method based
on visual or/and surgical instrument information. As shown
by our experiments, the union of both data types strongly
enhances the performance of the method. It allows a bet-
ter recognition (i.e. higher accuracy), more homogeneous
detections (i.e. lower standard deviation) and a better predic-
tion of transitional moments significantly reducing the time
delay. This also eliminates a large part of the noise which
gives a more correct sequential order. From “Error analy-
sis” section it is clear that information combination enables
the construction of descriptions better reflecting the differ-
ence between phases (only 18.57% of error are caused by
the descriptions similarity). Video can capture particularities
of each phase which can be expressed in terms of features,
but the transitional moments are hard to recognize due to a
strong resemblance of border frames. That is why the ATD
in the VO study is twice bigger compared to the IO study
(1min 6s vs 32s). Instrument signals enable a better detec-
tion of transitional moments, because the beginning of a new
phase is often defined by a change of employed instruments.
However, use of identical sets of instruments during different
phases leads to false detections. Videos and binary signals of
surgical tools usage turned out to be a complementary infor-
mation correcting weaknesses of each other.

Although the IO method gives better results than VO
(78.85% of accuracy over 68.10%), a small set of possible
instrument combinations and their multiple use in differ-
ent phases limits its individual application regardless of
the chosen classifier. Developing new image features, in
contrast, can extend discriminative force of the method. Fur-
thermore, in case of the IO method the phase classification
result depends on the instrument information validity. In this
work information about instrument use was provided within
manual annotation files, meaning the ground truth. For real
on-line applications it should come from sensors installed on
the instruments, or the surgical tools must be automatically
segmented and recognized from images using approaches
like [4].

Methodology improvements

The data description process has a major impact on the
results. According to our experiments, a global visual
description is not enough (giving a precision of 72% in
the VO study) to confidently classify images from videos
into surgical phases. In this work we applied only standard
visual features allowing fast computation in order to save
the generic side of the approach and real-time speed. More
elaborate features might improve the recognition capacity.
In the case of the IO method, data descriptions in form of
instrument vector are not diverse enough to be solely used as
input. A large part of classification errors (87.88%) is related
to this factor. Thus, the instrument information should be
always complemented with another source of data to create
more complex phase descriptions. The overall approach stays
fairly flexible to be adapted to a new input data type or data
description mechanism. Thereby, other signals from the OR
and their combinations should be tested as well. Moreover,
an enlargement of the training dataset would reduce classifi-
cation errors by expanding the observation vocabulary of the
HsMM. Also, for off-line applications a part of the noise can
be eliminated in post-filtering.

Application to context-aware systems

When developing methods which end-goal is an integrated
use inside the OR, defining a sufficient level of accuracy can
be problematic. Always being able to perform a perfect seg-
mentation is almost impossible knowing that no definite or
objective border between phases exists. The more important
question in this case is “What detection delay is acceptable
for a particular application?”. In our paper we demonstrated
that the performance of the approach could be estimated dif-
ferently depending on the targeted application and existing
needs. This shows how close the system is to a real clinical
application.
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Finally, we would like to emphasize the strongest advan-
tage of this approach: its generality and absence of any a
priori knowledge or assumptions. There is no need to seg-
ment a particular region of interest or anatomical structure. It
requires videos and/or instruments usage signals only, mak-
ing it purely data-driven. Both can be acquired regardless of
the surgery type. The method can be used for on-line detec-
tion as it can deliver a classification decision each second in
real time. All this allows believing that the method could be
applied to any surgical operation as a part of a context-aware
system.

Conclusion

In order to better assist the surgical stuff inside the OR, a
need of context-aware systems, accurately identifying surgi-
cal workflow, appeared. The method proposed in this paper
automatically segments and recognizes surgical phases from
videos and instrument usage signals in real time. It was vali-
dated on endoscopic data using standard performance scores
and novel metrics measuring detection time delay, noise and
coefficient of transitional moments. With visual informa-
tion only the system reached 68.10% of accuracy, whereas
instrument usage signals provided 78.95%. The accuracy
increased to 88.93% when using a combination of both sig-
nals as input. That shows a strong need to combine input
signals in order to improve method performances.

Acknowledgments This work was partially supported by French state
funds managed by the ANR within the Investissements d’Avenir Pro-
gram (Labex CAMI) under the reference ANR-11-LABX-0004.

Compliance with ethical standards

Conflict of interest OlgaDergachyova,DavidBouget,ArnaudHuaulmé,
Xavier Morandi and Pierre Jannin declare that they have no conflict of
interest.

Ethical approval For this type of study formal consent is not required.

Informed consent Not required. Used data were anonymously avail-
able through the MICCAI EndoVis challenge.

References

1. Bardram J, Doryab A, Jensen R, Lange P, Nielsen K, Petersen S
(2011) Phase recognition during surgical procedures using embed-
ded and body-worn sensors. In: IEEE international conference on
pervasive computing and communications, pp 45–53

2. Bharathan R, Aggarwal R, Darzi A (2013) Operating room of the
future. Best Pract Res Clin Obst Gynecol 27(3):311–322

3. Blum T, Feuner H, Navab N (2010) Modeling and segmentation
of surgical workflow from laparoscopic video. In: Medical image
computing and computer-assisted interventions, vol. 6363, pp 400–
407

4. Bouget D, Benenson R, Omran M, Riffaud L, Schiele B, Jannin P
(2015) Detecting surgical tools by modelling local appearance and
global shape. IEEE Trans Med Imaging 34(12):2603–2617

5. Charriere K, Quellec G, Lamard M, Coatrieux G, Cochener B,
Cazuguel G (2014) Automated surgical step recognition in nor-
malized cataract surgery videos. In: IEEE international conference
on engineering in medicine and biology society, pp 4647–4650

6. Cleary K, Kinsella A (2005) Or 2020: the operating room of the
future. J Laparoendosc Adv Surg Tech 15(5):495–497

7. Despinoy F, Bouget D, Forestier G, Penet C, Zemiti N, Poignet
P, Jannin P (2015) Unsupervised trajectory segmentation for sur-
gical gesture recognition in robotic training. IEEE transactions on
biomedical engineering. doi:10.1109/TBME.2015.2493100

8. HoldenMS, Ungi T, Sargent D,McGrawRC, Chen EC, Ganapathy
S, PetersTM,FichtingerG (2014) Feasibility of real-timeworkflow
segmentation for tracked needle interventions. IEEETrans Biomed
Eng 61(6):1720–1728

9. JamesA,VieiraD, LoB,Darzi A,YangGZ (2007) Eye-gaze driven
surgical workflow segmentation. In: medical image computing and
computer-assisted interventions, pp 110–117

10. Jannin P, Morandi X (2007) Surgical models for computer-assisted
neurosurgery. NeuroImage 37(3):783–791

11. Lalys F, Jannin P (2014) Surgical process modelling: a review. Int
J Comput Assist Radiol Surg 9(3):495–511

12. Lalys F, Riffaud L, Bouget D, Jannin P (2012) A framework for
the recognition of high-level surgical tasks from video images for
cataract surgeries. IEEE Trans Biomed Eng 59(4):966–976

13. LoB,DarziA,YangGZ (2003)Episode classification for the analy-
sis of tissue/instrument interaction with multiple visual cues. In:
Medical image computing and computer-assisted interventions, vol
2878, pp 230–237

14. Nara A, Izumi K, Iseki H, Suzuki T, Nambu K, Sakurai Y (2011)
Surgical workflow monitoring based on trajectory data mining. In:
New frontiers in artificial intelligence, vol 6797, pp 283–291

15. Padoy N, Blum T, Essa I, Feussner H, Berger MO, Navab N (2007)
A boosted segmentationmethod for surgical workflow analysis. In:
Medical image computing and computer-assisted interventions, vol
4791, pp 102–109

16. Padoy N, Blum T, Ahmadi SA, Feussner H, Berger MO, Navab N
(2012) Statistical modeling and recognition of surgical workflow.
Med Image Anal 16(3):632–641

17. Quellec G, Lamard M, Cochener B, Cazuguel G (2014) Real-time
segmentation and recognition of surgical tasks in cataract surgery
videos. IEEE Trans Med Imaging 33(12):2352–2360

18. Rabiner LR (1989) A tutorial on hidden Markov models and
selected applications in speech recognition. Proc IEEE 77(2):257–
286

19. Schapire RE (2003) The boosting approach to machine learning:
An overview. In: Nonlinear estimation and classification, pp 149–
171

20. Stauder R, Okur A, Navab N (2014) Detecting and analyzing the
surgical workflow to aid human and robotic scrub nurses. In: The
Hamlyn Symposium on Medical Robotics, p 91

21. Weede O, Dittrich F, Worn H, Jensen B, Knoll A, Wilhelm D,
KranzfelderM, SchneiderA, FeussnerH (2012)Workflow analysis
and surgical phase recognition in minimally invasive surgery. In:
IEEE international conference on robotics and biomimetics, pp
1080–1074

22. Yu SZ, Kobayashi H (2003) An efficient forward-backward algo-
rithm for an explicit-duration hidden markov model. IEEE Signal
Process Lett 10(1):11–14

123

http://dx.doi.org/10.1109/TBME.2015.2493100

	Automatic data-driven real-time segmentation and recognition of surgical workflow
	Abstract
	Introduction
	Methods
	Data
	Surgical Process Modelling
	Data description
	AdaBoost classification
	Hidden semi-Markov Model
	Validation metrics

	Results
	First study: visual information only (VO)
	Second study: instrument information only (IO)
	Third study: combination of visual and instrument information (VI)
	Error analysis

	Discussion
	Input data impact
	Methodology improvements
	Application to context-aware systems

	Conclusion
	Acknowledgments
	References




