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Abstract
Purpose Propose a fully automatic 3D segmentation frame-
work to segment liver on challenging cases that contain the
low contrast of adjacent organs and the presence of patholo-
gies from abdominal CT images.
Methods First, all of the atlases are weighted in the selected
training datasets by calculating the similarities between the
atlases and the test image to dynamically generate a subject-
specific probabilistic atlas for the test image. The most likely
liver region of the test image is further determined based
on the generated atlas. A rough segmentation is obtained by
a maximum a posteriori classification of probability map,
and the final liver segmentation is produced by a shape–
intensity prior level set in the most likely liver region. Our
method is evaluated and demonstrated on 25 test CT datasets
from our partner site, and its results are compared with two
state-of-the-art liver segmentation methods. Moreover, our
performance results on 10 MICCAI test datasets are submit-
ted to the organizers for comparison with the other automatic
algorithms.
Results Using the 25 test CT datasets, average symmetric
surface distance is 1.09 ± 0.34 mm (range 0.62–2.12 mm),
root mean square symmetric surface distance error is 1.72±
0.46 mm (range 0.97–3.01 mm), and maximum symmetric
surface distance error is 18.04 ± 3.51 mm (range 12.73–
26.67 mm) by our method. Our method on 10 MICCAI test
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data sets ranks 10th in all the 47 automatic algorithms on the
site as of July 2015.Quantitative results, aswell as qualitative
comparisons of segmentations, indicate that our method is a
promising tool to improve the efficiency of both techniques.
Conclusion The applicability of the proposed method to
some challenging clinical problems and the segmentation of
the liver are demonstrated with good results on both quanti-
tative and qualitative experimentations. This study suggests
that the proposed framework can be good enough to replace
the time-consuming and tedious slice-by-slice manual seg-
mentation approach.

Keywords Active shape model · Statistical shape model ·
Expectation maximization · Atlas-based segmentation ·
Level set segmentation

Introduction

Segmentation of the liver is regarded as a primary and essen-
tial step in liver quantitative analysis and may help clinician
assess the progress of liver diseases [1]. However, liver seg-
mentation from CT images is still a challenging task due to
the low contrast of adjacent organs, the presence of patholo-
gies, and the highly varying shapes between subjects [2,3].
Thus conventional segmentation techniques are often insuf-
ficient to segment liver from a CT dataset.

Previous work on liver segmentation can be roughly
classified into two categories. The first approach segments
liver by considering pure image information, e.g., threshold-
ing [4], region growing [5], and clustering [6]. The main
limitation of these methods is the tendency to leak into
neighboring organs with similar intensity values to liver
tissue.
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The second approach is basedonmodel-basedmethods for
liver segmentation. The basic idea behind these algorithms
is to incorporate local and global liver shape prior knowl-
edge for overcoming the limitation of the aforementioned
methods [4–6]. They can be further divided into: (1) active
and statistical shape models [7–9], (2) atlas-based segmenta-
tion [10,11], and (3) level set-based segmentation [9,11,12].

Active shape model (ASMs) was first proposed by Cootes
et al. [13]. Since its publication, active shape models have
become one of the most active and successful research areas
in medical image segmentation. In ASM-based approach,
statistical shape models (SSMs) are usually employed to
learn the shape prior models [8–10]. However, SSMs tend
to overly constrain the shape deformations and overfit the
training data due to the small size of training samples. These
approaches result in shape prior models that have low gen-
eralization ability, that is, they cannot be adapted accurately
to the finer local details of shapes in new images.

Atlas-based segmentation was first applied to abdominal
organ segmentation by Park et al. [14]. They constructed
probabilistic atlas (PA) of organ location formulti-organ seg-
mentation. Okada et al. [15] statistically analyzed the shape
of organs and constructed hierarchical multi-organ statistical
PAs.Oda et al. [16] divided an atlas database into several clus-
ters to generate multiple PAs of organ location. Shimizu et
al. [17] proposed a PA-guided segmentation algorithm with
a post-process of an expectation maximization (EM) algo-
rithm to segment 12 organs simultaneously. Since PA was
constructed prior to the segmentation process in most of the
previous works, all target images shared the same PA for the
segmentation process. In recent work, patient-specific PA-
based methods have been proposed [18]. Different from the
previous works, patient-specific PA is dynamically gener-
ated by registering multiple atlases to each new target image
dynamically.

Level set methods are also used in medical image seg-
mentation [18–21], and they take into account the local
gradient features or/and region features.Gradient-based level
set methods are popular for detecting regions of interests
when the boundaries are relatively distinct from neighboring
structures, for example, in the lungs and pelvis [18]. Oliveira
et al. [19] proposed a gradient-based level set model with a
new optimization of parameter weighting for liver segmen-
tation. Region-based level set models are often applied to
segment detailed anatomical structure such as liver and its
vessels [20]. Li et al. [21] suggested a combination of gradi-
ent and region properties to improve level set segmentation.

Nevertheless, each of the existing techniques in the liter-
ature has limitations when used on challenging cases. The
main challenges may be outlined as follows:

(i) Liver tissues and neighboring organs (e.g., kidney, heart,
gallbladder, stomach, and the muscles) have similar gray

levels. This is particularly challenging for automatic liver
extraction.

(ii) Liver tissues containing severe pathological abnormali-
ties are more difficult to handle. In such situations, a false
segmentation might occur.

The existing methods cannot be used straightforwardly
to achieve satisfactory segmentation result in the afore-
mentioned cases, since challenges involved are different.
Alleviating the above difficulties is exactly what we are con-
cerned with in this paper.

We develop a fully automatic framework to segment liver
from abdominal CT images. It starts by calculating the simi-
larities between all atlases and the test dataset to dynamically
generate a subject-specific probabilistic atlas, and followed
by determining the most likely liver region (MLLR) of the
test image based on the generated atlas. Amaximum a poste-
riori (MAP) classification of probability map is described to
perform the rough segmentation, and a shape–intensity prior
level set is presented to produce the final liver segmentation
inside theMLLR. Ourmethod is evaluated and demonstrated
on 25 test CT datasets, and its results are compared with two
closely related approaches [12,22]. Moreover, our perfor-
mance results on 10 MICCAI test datasets are submitted to
the organizers for comparison with the other automatic algo-
rithms.

Methods

In this section,wedescribe the proposed segmentation frame-
work in detail. It is a multistep approach that gradually
accumulates information until the final result is produced.
The flowchart of the segmentation framework is depicted in
Fig. 1. It is subdivided into a training and test phase. In the rest
of this section, we further describe its individual steps and
explain how to segment the liver automatically from abdom-
inal CT images combining probabilistic atlas and probability
map constrains.

Preprocessing of CT datasets

The preprocessing stage contains three steps. All the pre-
processed steps are applied to both training and test datasets.
First, all volumes are regularized by rotating based on the
centers of mass of lungs to reduce the individual change with
respect to the body pose and position. The lung regions are
extracted automatically from each image by thresholding and
connected component analysis. Second, a 3D anisotropic dif-
fusion filter introduced by [23] is utilized for reducing noise
while preserving liver contour. Third, all the volumes are
resampled in the transverse direction to the same number of
slices using trilinear interpolation scheme since the princi-
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Fig. 1 Flowchart of the proposed framework subdivided into training
and test phase. Processing modules are displayed in rectangular boxes.
The subsequent are combined by arrows. The kind of used prior knowl-
edge in the several steps is indicated by standardized parallelograms
as data input modules

pal component analysis (PCA) input vector requires a fixed
number of elements.

In the next section, we will present the segmentation
scheme, which consists of three major steps. The first step
describes the determination of the most likely liver region
(MLLR) of the test image based on the generated atlas,
as shown in Fig. 2a. The second step illustrates the rough
segmentation strategies based on the MAP classification
of probability map, as shown in Fig. 2b–d. The third step
provides a procedure for refining the rough boundary by
using shape–intensity prior level set method, as shown in
Fig. 2e, f.

Determination of most likely liver region
by subject-specific weighted PA

For an input test dataset, the patient-specific weighted proba-
bility atlas (PA) is dynamically generated using the following

Fig. 2 Illustration of liver segmentation steps. aThemost likely region
(MLLR) generated by the patient-specific weighted probabilistic atlas
(PA). After constructing the patient-specific weighted PA for the input
dataset, one binary mask is generated by thresholding the PA image to
represent themost likely region. bThe intensity histogram generated by
the samples of the trained masks of each class. To generate probability
map, we divide the CT intensities inside the MLLR into five classes:
heart, liver, right kidney, spleen, and bone excluding the background.
c Liver probability map in the MLLR of the selected slice. High proba-
bilities are shown inwhite.dThe segmented liver region after discarding
erroneous subvolumes. e Image of initial contour voxels overlaid on
original image. Initial contour is used for subsequent constrained level
set evolution. f Final liver contour obtained by the constrained level
set

steps.We first compute image similarities between all atlases
and the test dataset, and sort the atlases in ascending
order with respect to the similarities. The image similarity
is evaluated by normalized cross-correlation (NCC) [16],
and a weighted PA is calculated by the previous method
[11].

After constructing the patient-specific weighted PA for
the input dataset, one binary mask is generated by threshold-
ing the PA image to represent the region of interest (ROI)
for liver parenchyma. This ROI is the most likely liver
region (MLLR see Fig. 2a). To reduce the estimation error
of MLLR as much as possible, we perform a morphologi-
cal dilation with a size of 5 × 5 × 5 spherical structuring
element.
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Rough segmentation based on the MAP classification of
probability map

To generate probability map, we divide the CT intensities
inside the MLLR into five classes ht (heart), lr (liver), rd
(right kidney), sn (spleen), and be (bone) excluding the
background, because we limit the region to be processed
from voxels in the vicinity of the liver parenchyma mask
where the prior probability of liver is greater than zero.
The intensity histogram of each class is generated by the
samples of the trained masks of each class in the train-
ing phase (see Fig. 2b). Likelihood function for each class
p(I (x)|l)(l = ht, lr, rd, sn, be) is estimated convolving the
intensity histogram of each class with a Gaussian kernel
(SD of 2.5), where I (x) is the CT intensity at a position
x = (x, y, z). p(I (x)|l)= ∑Imax

s=Imin
h(s)/H × gσ (I (x) −

s), gσ (y)= exp(−y2/(2σ 2)), H = ∑Imax
s=Imin

h(s), with h(s)
denoting the histogram of the observed intensities and s ∈
[Imin, Imax]. Figure 2c shows a generated liver probability
map.

After the probability map generation step, the current
MLLR volume may be split into several subvolumes, where
each subvolume belongs to one of the aforementioned five
classes. The liver parenchyma class calculated by a MAP
classification of probability map P(lr) may contain erro-
neous segmentations since liver and its adjacent organs, such
as heart and right kidney show similar intensities in the CT
datasets. Based on the fact that the liver is the biggest abdomi-
nal organ, hence by an additional morphological filling-holes
operation, we determine the liver part by connected compo-
nent analysis. In this way, some subvolumes that are wrongly
classified as liver are discarded (Fig. 2d).

Refinement of the rough segmentation by
shape–intensity prior level set method

MAP framework with shape–intensity prior

Considering a target image I that has an object ϕ of interest,
aMAP framework can be used to realize image segmentation
combining shape information and image intensity informa-
tion. Our main concern is the segmentation of the object ϕ̂,
so we assume that the synthetic image Iϕ is very close to the
real image I , thus Iϕ ≈ I , and we can obtain the following
equation:

ϕ̂ = argmax
ϕ

p(I |ϕ, Iϕ≈I )p(ϕ, Iϕ≈I )

= argmin
ϕ

[− ln p(I |ϕ, Iϕ ≈ I ) − ln p(ϕ, Iϕ ≈ I )] (1)

where p(I |ϕ, Iϕ) is the image intensity information based
term. p(ϕ, Iϕ) is the joint density function of shape ϕ and

image intensity I . Assuming intensity homogeneity within
the object, we use the following imaging model:

p(I |ϕ, Iϕ) =
∏

inside(ϕ)

1
√
2πσ 2

1

exp
[
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(
2σ 2

1

)]

×
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outside(ϕ)
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2πσ 2
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× exp
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2/
(
2σ 2

2

)]
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where c1 and σ1 are the average and variance of I inside ϕ;
c2 and σ2 are the average and variance of I outside ϕ but
also inside a certain domain Ωϕ that contains ϕ. p(ϕ, I ) is
the joint density function of shape ϕ and image intensity I .
It contains the shape prior information, the intensity prior
information, as well as their relation.

Shape–intensity prior model

Consider a training set of n aligned images {I1, I2, . . . , In},
with an object of interest in each image. The boundaries of
the n objects in the training set are embedded as the zero
level sets of n separate higher-dimensional level set func-
tions {Ψ1, Ψ2, . . . , Ψn} with negative distances assigned to
the inside and positive distances assigned to the outside of
the object. We use vector [Ψ T

i , ITi ]T as the representation of
the object and intensity values. Each of the Ii andΨi is placed
as a column vector with N1 × N2 × m elements where m is
the number of slices and N1 × N2 is the number of pixels
in each slice. Thus, the corresponding shape–intensity train-
ing set is {[Ψ T

1 , IT1 ]T, [Ψ T
2 , IT2 ]T, . . . , [Ψ T

n , ITn ]T}. Using the
technique developed in [20], we compute the mean shape–
intensity pair [Ψ̄ T, ĪTi ]T = ( 1n )

∑n
i=1[Ψ̄ T

i , ĪTi ]T. To extract
the shape–intensity variabilities, [Ψ T, IT]T is subtracted
from each of the training set and the result is placed as a col-
umn vector in a N ×n matrix S (where N = 2N1× N2×m).
An estimate of the shape–intensity pair [Ψ T, IT]T can be
represented by k principal components and a k-dimensional
vector of coefficients α (where k < n):

[
Ψ̃

Ĩ

]

=
[

Ψ̄

Ī

]

+ Ukα (3)

where Uk is a N × k matrix consisting of the first k columns
of matrix U .

Under the assumption of a Gaussian distribution of a
shape–intensity pair represented by α, the joint probability
p(ϕ, I ) of a certain shape ϕ and the related image intensity I ,
is incorporated to add robustness against noisy data pB(ϕ),
can be represented by
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p(ϕ, I )= p(α) · pB(ϕ)

=
(

1
√

(2π)k |�k |
exp

[

−1

2
αT�−1

k α

])

·
(
e−μ

∮
ϕ ds

)

(4)

where μ is a scalar factor. Substitute Eqs. (2) and (4) into
Eq. (1), we derive ϕ̂, which is the minimizer of the following
energy functional E(ϕ) shown below

E(ϕ) = − ln p(I |ϕ, Iϕ) − ln p(ϕ, I )

= − ln p(I |ϕ, Iϕ) − ln p(α) − ln pB(ϕ)

= λ ·
∫

inside(ϕ)

[

− ln
1

σ1
+ |I (x) − c1|2

2σ 2
1

]

dx

+λ ·
∫

outside(ϕ),inside(Ωϕ)

[

− ln
1

σ2
+ |I (x) − c2|2

2σ 2
2

]

dx

+ω · αT�−1α + μ ·
∮

ϕ
ds (5)

This minimization problem can be formulated and solved
using the level set method.

Level set formulation of the model and surface evolution
with probability map constrained

In the level set method, ϕ is the zero level set of a higher-
dimensional level set function φ, i.e., ϕ = {x|φ(x = 0)}. The
evolution of the boundary is given by the zero-level surface
at time t of the function φ(t, x). We define φ to be positive
outside ϕ and negative inside ϕ.

For the level set formulation of our model, using the tech-
nique developed in [7], we replace ϕ with φ in the energy
functional in Eq. (5) using regularized versions of the Heavi-
side function H and the Dirac function δ, denoted by Hε and
δε:

E(φ) = λ ·
∫
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[
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δε(φ(x))|∇φ(x)|dx (6)

where Ω denotes the image domain, Ωϕ denotes the region
of bounding box of MLLR, G(·) is an operator to form the
column vector of a matrix by column scanning. Hε and δε

are defined by Chan et al. [7]. The mean and the variance are
given by

c1(φ) =
∫
Ω

I (x) · [1 − H(φ(x))]dx
∫
Ω

[1 − H(φ(x))]dx
(7)

σ 2
1 (φ) =

∫
Ω

[I (x) − c1]2 · [1 − H(φ(x))]dx
∫
Ω

·[1 − H(φ(x))]dx
(8)

c2(φ) =
∫
Ωϕ

I (x) · H(φ(x))dx
∫
Ωϕ

H(φ(x))dx
(9)

σ 2
2 (φ) =

∫
Ωϕ

[I (x) − c2]2 · H(φ(x))dx
∫
Ωϕ

H(φ(x))dx
(10)

We set up p(α) from the training set using the prin-
cipal component analysis. Given the surface φ at time t ,
we first compute the constants c1(φt ), σ1(φ

t ), c2(φt ), σ2(φ
t )

and then update φt+1. This process is repeated until conver-
gence. An example of the final converged result is shown in
Fig. 2f.

Experimental results

Twenty clinical volumes with reference segmentations from
the training set of the MICCAI’s 2007 workshop [24] are
used to construct liver shape intensitymodels. Our test exper-
iments are divided into three parts. In the first part, 25 hepatic
CT cases from our partner site were used for evaluating the
segmentation accuracy. These 25 selected datasets include
two difficult situations: (1) 10 cases containing small liver
tumors (tumor volume being <20 % of the whole liver vol-
ume; 4 at the border, 6 inside; 8 homogeneous intensity, 2
heterogeneous intensity); and (2) 15 cases having neighbor-
ing organs with similar gray values. Note that tumor volume
estimations are made by segmenting the tumor region [25]
and counting the number of voxels of the tumor region.

In the second part, 7 hepatic CT cases with large liver
tumors were used for showing the influence of the tumor size
on the segmentation result. These tumor volume percentages
(ratio of tumor volume/liver volume) ranged from 23.2 to
47.3 %. In these two stages, CT images were generated by a
Brilliance 64 of the PhilipsMedical Systems. All the patients
were imaged by a common protocol (120 kV/Auto mA, heli-
cal pitch: 1.35/1). The image size varied from512×512×210
to 512 × 512 × 540 voxels, with pixel sizes varying from
0.51 to 0.87 mm and interslice distance ranging from 0.8 to
3.0 mm.

In the final part, our method is tested on 10 MICCAI test
datasets, and its results are compared with the other auto-
mated algorithms on the site as of July 2015. Parameters
used in our experiment are all set to be the following values:
λ = 0.2, ω = 0.8, μ = 0.0001 × 255 × 255.
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Test on 25 hepatic CT cases

In this section, our method is evaluated using three qual-
ity measures: average symmetric surface distance (ASD),
root mean square symmetric surface distance (RMSD), and
maximum symmetric surface distance (MSD) [26], and its
results are compared with two related methods (Linguraru’s
and Wolz’s methods). Moreover, we demonstrate further
visual segmentation results of three different methods (Lin-
guraru’s, Wolz’s and our methods) on some challenging
datasets. These datasets include two difficult situations: (1)
liver tissue containing severe pathological abnormalities; and
(2) liver tissue having neighboring organs with similar gray
values.

Quantitative analysis of segmentation accuracy

Figure 3a shows the ASD error using 25 datasets for each
of three different segmentation methods. The average ASD
is 1.57 ± 0.34 mm (range 1.12–2.57 mm) by Linguraru’s
method, 1.48 ± 0.35 mm (range 1.02–2.47 mm) by Wolz’s
method, and 1.09 ± 0.34 mm (range 0.62–2.12 mm) by our
method.

Figure 3b shows the RMSD error using 25 datasets for
each of three different segmentation methods. The average
RMSD error is 2.33 ± 0.47 mm (range 1.57–3.48 mm) by
Linguraru’s method, 2.23 ± 0.46 mm (range 1.46–3.41 mm)
by Wolz’s method, and 1.72 ± 0.46 mm (range 0.97–
3.01 mm) by our method.

Figure 3c shows theMSD errors using 25 datasets for each
of three different segmentation methods. The average MSD
error is 21.11 ± 4.6 mm (range 14.81–33.01 mm) by Lingu-
raru’s method, 20.1 ± 4.45 mm (range 13.39–31.37 mm)
by Wolz’s method, and 18.04 ± 3.51 mm (range 12.73–
26.67 mm) by our method.

Quantitative results show that the proposed method
achieved the highest segmentation accuracy among the three
approaches. This is because Linguraru’s andWolz’s methods

are actually an atlas-based method, and they require a large
amount of training data for obtaining a satisfactory segmen-
tation result. In the present study, 20 clinical volumes with
reference segmentations from theMICCAI’s 2007 workshop
are used as the training set. These limited training data cannot
present all possible shape variations. Conversely, our method
does not need a large amount of training data for obtaining a
satisfactory segmentation result. Because the weighted prob-
abilistic atlas was used for obtaining a rough liver region, a
constrained active contour model is proposed to refine the
segmentation.

Visual segmentation results on hepatic cases containing
severe pathological abnormalities

Figure 4 shows the 2D images of segmentation results
obtained from the three methods (Linguraru’s, Wolz’s and
our methods) on three representative cases containing severe
pathological abnormalities. Our method produced the liver
segmentations that have level of variability similar to those
obtained from themanual segmentation. It is observed that in
comparison with our method, Linguraru’s and Wolz’s meth-
ods gave the under-segmentation of the livers due to the
influence of tumors.

Figure 5 depicts the 3D visual results of the proposed
method for the same segmentation seen from the third col-
umn of Fig. 4. The 3D visualization of errors is based on
the average ASD error between our segmentation result and
manual segmentation (ground truth segmentations). In the
figure, the ASD distance errors were 1.31, 1.22 and 1.46 mm
for the three datasets (from left to right), respectively.

Visual segmentation results on hepatic cases having
neighboring organs with similar gray values

In Fig. 6, we demonstrate the 2D visual segmentation results
of three differentmethods (Linguraru’s,Wolz’s andourmeth-
ods) on five challenging datasets. In these difficult cases, the

Fig. 3 Quantitative comparison results for three different segmentation approaches using 25 datasets. aAverage symmetric surface distance (ASD).
b Root mean square symmetric surface distance (RMSD). c Maximum symmetric surface distance (MSD)
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Fig. 4 2D images of segmentation results on three representative liver
tissues containing tumor. The first row, the second row and third row
illustrate three different liver cases with tumor, respectively. First col-
umn shows the Linguraru’s segmentation, the second column shows the
Wolz’s segmentation, and the third column shows our segmentation.
The segmentation results obtained from each of computational meth-
ods (Linguraru’s, Wolz’s and our methods) and manual segmentations
(ground truth segmentations) are shown in blue and red, respectively.
The black arrows indicate liver tumors

Fig. 5 3D visual representation of livers segmented by our method
on three representative liver tissues containing tumor. 3D views of our
segmentation results are of the same segmentation seen from the third
column of Fig. 4. Graphs indicate the ASD error between liver surface
segmented byourmethod andground truth segmentation.Color bars are
in mm. Red and green indicate large and small ASD errors, respectively

liver tissue has to be separated from neighboring organs with
similar intensity values, which include the kidney (Fig. 6a),
the heart (Fig. 6b), the gallbladder (Fig. 6c), the stom-
ach (Fig. 6d) and the muscles (Fig. 6e), respectively. As
shown in Fig. 6, Linguraru’s and Wolz’s methods easily
leaked into these neighboring organs with similar inten-
sity values and over-segmented the live tissue, while our
method successfully excluded them and achieved the higher
accuracy.

Figure 7 shows the 3D visual results of the proposed
method for the same segmentation seen from the third col-
umn of Fig. 6. Segmentation of the image data demonstrated
the ASD errors between our segmentation result and ground
truth segmentations in five cases, the ASD errors of the five
cases ranged from 0.71 to 1.25 mm (mean 0.92 ± 0.28
mm).

Fig. 6 2D images of segmentation results on five representative cases
that liver tissue is adjacent to the other organ. Linguraru’s segmentation
is in the first column, the second column shows theWolz’s segmentation,
the third column shows our segmentation. The segmentation results
obtained from each of three computational methods and the ground
truth segmentations are shown in blue and red, respectively. a Liver
being adjacent to the kidney. The black arrows indicate the kidney.
b Liver being adjacent to the heart. The black arrows indicate the heart.
c Liver being adjacent to the gallbladder. The black arrows indicate the
gallbladder. d Liver being adjacent to the stomach. The black arrows
indicate the stomach. e Liver being adjacent to the muscles. The black
arrows indicate the muscles

Influence of the tumor size on the segmentation result

Seven hepatic CT cases with large liver tumor were used for
showing the influence of the tumor size on the segmentation
result. These tumor volume percentages (ratio of tumor vol-
ume/liver volume) ranged from 23.2 to 47.3 %. One of these
cases and its visual comparisons among three methods are
shown in Fig. 8.

We also calculated theASD,RMSDandMSDerrors using
seven datasets with large liver tumor for each of three dif-
ferent segmentation methods, respectively (Fig. 9). We find
that when the tumor volume is 35 % or more, three methods
introduce large segmentation errors. The reason for this is
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Fig. 7 Visual representation of 3D livers segmented by our method on
five representative cases that liver tissue is adjacent to the other organ.
3D views of our segmentation results are of the same segmentation seen
from the third column of Fig. 6. Graphs indicate the ASD error between
liver surface segmented by our method and ground truth segmentation.
a Liver being adjacent to the kidney. b Liver being adjacent to the heart.
c Liver being adjacent to the gallbladder. d Liver being adjacent to the
stomach. e Liver being adjacent to the muscles. Color bars are in mm.
Red and green indicate large and small ASD errors, respectively

because large tumor changes the internal homogeneity and
CT intensity value of liver tissue considerably. Thus, our
method cannot evolve correctly toward the desired contour.
Moreover, Linguraru’s and Wolz’s methods require highly

accurate intensity-based registration, which may be itself a
difficult task.

Evaluation on 10 MICCAI test datasets

Evaluation of MICCAI test data was performed by the orga-
nizers of the “SLIVER07”Web site. These organizers applied
the same tools and scoring system that they used in the MIC-
CAI workshop for liver segmentation in 2007, and this tool
calculates the same five measures as “SLIVER07.” The eval-
uation framework consists of three categories that describe
the amount of user interaction required: Automatic method,
methods with minimum user interaction (semi-automatic)
and interactive methods. Our evaluation results are summa-
rized in Table 1 with an average overall score of 74.9, which
ranks 10th in all the 47 automatic algorithms on the site as
of July 2015.

Discussion

We improved the level set method by taking account into
the statistical model information as shape energy. The sign
distance functionwas applied to represent the implicit surface
representation which allowed the PCA construction without
the need of landmark correspondence.

Fig. 8 2D images of segmentation results on one representative cases that tumor size accounts for about 42 %. The segmentation results obtained
from each of three computational methods and ground truth segmentations are shown in blue and red, respectively. a Linguraru’s result. b Wolz’s
result. c Our result

Fig. 9 Quantitative comparison results for three different segmentation approaches using seven cases of different tumor size. a Average symmetric
surface distance (ASD). b Root mean square symmetric surface distance (RMSD). c Maximum symmetric surface distance (MSD)
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Table 1 Evaluation of the proposed method based on 10 MICCAI testing datasets which was obtained by the organizers of “SLIVER07” Web site

Test case VOE VD ASD RMSD MSD Total score

(%) Score (%) Score (mm) Score (mm) Score (mm) Score

1 8.01 68.7 −0.88 95.3 1.32 67 2.26 68.7 20.1 73.5 74.7

2 7.27 71.6 −1.42 92.4 1.05 73.8 1.81 74.9 17.64 76.8 77.9

3 6.32 75.3 −1.77 90.6 1.27 68.3 2.04 71.6 22.33 70.6 75.3

4 9.22 64 0.48 97.5 1.68 58 2.85 60.4 24.41 67.9 69.6

5 6.59 74.3 1.00 94.7 1.23 69.4 2.36 67.2 24.86 67.3 74.6

6 8.88 65.3 −5.43 71.1 1.44 63.9 2.22 69.2 14.46 81 70.1

7 6.63 74.1 −4.8 74.5 1.01 74.8 1.85 74.2 21.8 71.3 73.8

8 6.95 72.9 −0.11 99.4 1.1 72.4 1.72 76.2 11.4 85 81.2

9 7.4 71.1 −2.87 84.7 0.96 76 1.62 77.5 17.72 76.7 77.2

10 8.41 67.1 −2.49 86.7 1.27 68.1 2.11 70.6 15.94 79 74.3

AVG 7.57 70.4 −1.83 88.7 1.23 69.2 2.08 71.1 19.07 74.9 74.9

SD 0.96 3.77 2.02 9.06 0.21 5.19 0.35 4.80 4.18 5.50 3.27

VOE volume overlap error, VD volume difference, ASD average surface distance, RMSD root mean square distance, MSD maximum symmetric
absolute surface distance, SD standard deviation

All the methods have been programmed with MAT-
LAB R2010a in an Intel (R) Core (TM) i7-4770 computer,
3.40GHz, 16GRAM. The processing timewill be a little less
in Microsoft Visual C++ compiler environment than that in
MATLAB environment. However, for an experienced radi-
ologist it is required to take more than 2 h to segment the
liver from abdominal CT images manually in a scan with
slice by slice, so our approach is fast and suitable for med-
ical application. In our experiments, the execution time for
performing automatic segmentation on a personal computer
was <7 min in MATLAB environment, which was mainly
exhausted on the minimization problem solved by suing the
level set method. The processing time for the 25 patient
datasets was about 2 s per slice.

Probabilistic atlas-based methods were introduced to
describe and capture more a priori information on the inten-
sity distribution, shape, size, or position of abdominal organs
and brain regions [27,28]. The probabilistic atlas provides
prior statistical information as partial prior knowledge under
the Bayesian framework. However, some liver tissues are
affected by hepatic diseases that may change its shape, so
it is difficult to construct atlas of liver tissue with diseases.
For example, the morphological change in cirrhosis is exten-
sive, and a partially transplanted liver does not have a regular
shape. Therefore, constructing such an atlas may lose some
possible shape variations.

To overcome this problem, Okada et al. [8] used both a
probabilistic atlas (PA) and a statistical shape model (SSM).
Voxel-based segmentation with a PA is first performed to
obtain a liver region, and then the obtained region is used
as the initial region for subsequent SSM fitting to 3D CT
images. Li et al. [28] propose a new joint probabilistic model
of shape and intensity to segment multiple abdominal organs

simultaneously. The model is based on the hypothesis that
the shape distribution and intensity distribution of a spe-
cific type of organ can be statistically modeled as finite
Gaussian distributions. This model is estimated by using
maximum a posteriori (MAP) under a Bayesian framework.
The variations of the object are captured through an implicit
low-dimensional PCA. Li et al. use the probabilistic princi-
ple component analysis (PCA) optimized by EM to estimate
the variations from a large number of training datasets based
on the signed distance function representation of volumetric
data.

In the present study, the most likely liver region is deter-
mined based on a subject-specific probabilistic atlas, and a
MAP classification of probability map is performed to obtain
a rough liver region in the most likely liver region. In the sub-
sequent step, to capture the shape variations, we define a joint
probability distribution over the variations of the object shape
and the gray levels contained in a set of training images. By
estimating the MAP shape of the object, we formulate the
shape–intensity model in terms of level set functions. The
shape–intensity joint prior information constrain is incorpo-
rated into an active contour model based on the level set
method to steer the surface evolution. The contour evolves
both according to the shape–intensity joint prior information
and the image gray level information.

Conclusion

This paper proposed a shape–intensity prior level set method
for liver segmentation from abdominal CT images using
probabilistic atlas and probability map constrains. The
applicability of the proposed method to some challeng-
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ing clinical problems and the segmentation of the liver are
demonstratedwith good results on both quantitative andqual-
itative experimentations; our segmentation algorithm can
delineate liver boundaries that have level of variability simi-
lar to those obtained manually.

In future, we plan to test our algorithm on a larger database
and extend our work to multi-organ segmentation.
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