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Abstract
Purpose Despite great advances in medical image segmen-
tation, the accurate and automatic segmentation of endo-
scopic scenes remains a challenging problem. Two important
aspects have to be considered in segmenting an endoscopic
scene: (1) noise and clutter due to light reflection and smoke
from cutting tissue, and (2) structure occlusion (e.g. vessels
occluded by fat, or endophytic tumours occluded by healthy
kidney tissue).
Methods In this paper, we propose a variational technique
to augment a surgeon’s endoscopic view by segmenting
visible as well as occluded structures in the intraoperative
endoscopic view. Our method estimates the 3D pose and
deformation of anatomical structures segmented from 3D
preoperative data in order to align to and segment corre-
sponding structures in 2D intraoperative endoscopic views.
Our preoperative to intraoperative alignment is driven by,
first, spatio-temporal, signal processing based vessel pulsa-
tion cues and, second, machine learning based analysis of
colour and textural visual cues. To our knowledge, this is the
first work that utilizes vascular pulsation cues for guiding
preoperative to intraoperative registration. In addition, we
incorporate a tissue-specific (i.e. heterogeneous) physically
based deformation model into our framework to cope with
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the non-rigid deformation of structures that occurs during the
intervention.
Results We validated the utility of our technique on fifteen
challenging clinical cases with 45% improvements in accu-
racy compared to the state-of-the-art method.
Conclusions A new technique for localizing both visible
and occluded structures in an endoscopic view was proposed
and tested. This method leverages both preoperative data,
as a source of patient-specific prior knowledge, as well as
vasculature pulsation and endoscopic visual cues in order to
accurately segment the highly noisy and cluttered environ-
ment of an endoscopic video. Our results on in vivo clinical
cases of partial nephrectomy illustrate the potential of the
proposed framework for augmented reality applications in
minimally invasive surgeries.
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Introduction

Minimally invasive surgeries (MIS) are appreciated for their
many advantages over traditional open surgery including
decreased risk of infection due to minimal incisions, and
faster recovery times for patients [15]. The shortcomings of
MIS are mainly associated with the loss of direct 3D view of
the surgical scene as well as cumbersome and non-intuitive
tool manipulation. With the advent of robotic MIS systems,
many of these shortcomings have been alleviated. Greater
precision, improved dexterity and enhanced 3D immersive
visualization for surgeons are three important advantages of
robotic over traditional MIS.
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One of the application areas in which robotic MIS
is being expanded is partial nephrectomy. Approximately
208,000 new cases of kidney cancer are diagnosed in the
world each year [10]. The goal in partial nephrectomy, an
effective treatment for localized renal cancers, is to excise
only the cancerous regions and spare as much healthy
tissue as possible to preserve kidney function. Accord-
ing to Gill et al. [14], a partial nephrectomy procedure
is organized into five main stages: (1) bowel mobiliza-
tion; (2) Hilar dissection and control; (3) identification and
demarcation of tumour margins; (4) resection of tumour;
and (5) reconstruction of the kidney (renorrhaphy). Among
these, hilar dissection and tumour demarcation stand out as
two critical and daunting stages requiring significant exper-
tise.

Hilar dissection allows the surgeon access to the renal
hilum, where the flow of blood into and out of the kidney
is controlled by clamping the vessels. Improper vessel con-
trol due to overlooked accessory renal vessels can cause
significant bleeding during resection [28]. The identifica-
tion and demarcation stage is also critical as, during this
stage, the surgeon localizes the tumour mass and identi-
fies the resection margins. Proper demarcation speeds up
the succeeding stage of tumour resection, improves the
preservation of kidney function by sparing as much healthy
tissue as possible, and avoids tumour recurrence by cor-
rectly delineating all of the cancerous tissue from the healthy
ones.

Both of these two stages are complex tasks. In the hilar
dissection and vessel clamping stage, some vessels might be
accidentally missed due to substantial variability in patients
vasculature and the amount of fat which surrounds the kid-
ney and hides the vessels [31]. Tumour identification and
demarcation is difficult due to noise associated with clutter
such as bleeding or smoke from cutting, poor endoscopic
image colour/texture contrast between different structures,
occluding surgical tools, and limited 3D visibility of the
structures of interest where only surfaces are observable
from the camera feed. If the surgeon’s level of experi-
ence is limited, the incidence of missed vessels or incorrect
demarcation may significantly jeopardize the surgical out-
come.

To minimize mistakes during the operation, surgeons typ-
ically rely on previously viewed preoperative 3D scans, e.g.
computed tomography (CT), and mentally reconstruct loca-
tions of various structures during surgery. Transferring this
mental abstraction from 3D to 2D data is an error-prone
procedure especially if the surgeon’s level of experience
is limited. To facilitate this, many efforts have been made
towards augmenting the endoscopic views. These methods
vary from directly segmenting the endoscopic scene (e.g.
using level sets) to registering the preoperative data onto the
intraoperative endoscopic scene.

Related works

Reducing the difficulty of intraoperative navigation has been
attempted by various approaches that rely on multi-modal
registration to align the preoperative data onto the intra-
operative view by, for example, fusing a 3D preoperative
image volume with 2D intraoperative ultrasound [11], intra-
operative MR [16], or 2D X-ray [25,33]. In this work, we
focus on augmenting the endoscopic video as it remains the
staple modality in MIS. Some recent works ignored pre-
operative data and segmented the endoscopic view using
active contour-basedmethods [12,13] or parameter-sensitive
morphological operations and thresholding techniques [21].
Since these approaches rely only on colour/intensity infor-
mation, they often fail due to noise and clutter from bleeding
and smoke. In addition, these methods focused on segment-
ing only one object in an endoscopic scene.

Other techniques proposed to register 3D preoperative
data on 2D intraoperative view(s) manually, e.g. by using
invasive fiducials and performing tracking [17,18,26,27,29].
While the registration in these methods is performed man-
ually, the methods proposed in Yim et al. [32] and Merritt
et al. [20] are able to automatically find the 3D pose. Yet,
noneof the aforementionedmethods canhandle the free-form
deformation of tissues that usually happens due to respira-
tory motion and/or surgical intervention. Furthermore, these
techniques are unable to segment critical occluded structures,
e.g. vessels covered by fat.

To account for non-rigid tissue deformation, Agudo et
al. [1] exploited the well-known FEM model analysis and
proposed an online framework to model the non-rigid defor-
mations of shapes in a video sequence. However, their
method has been designed for a single camera setting. In
our previous work [23], we incorporated generative statisti-
cal shape models of tissues in their 3D pose tracking and
endoscopic video segmentation framework. Although the
statistical model used is capable of encoding non-rigid defor-
mations, these deformations are based on a heterogeneous
training population and are not patient-specific. In addition,
our previous method required manual 3D–2D registration
for the first frame of the video and is incapable of localizing
hidden vessels.

To localize vessels in the endoscopic view, different
methods have been proposed. These methods include both
hardware solutions, such as near infrared fluorescence imag-
ing [30], and algorithmic methods based on colour/intensity
information from the endoscope that highlight vasculature
based on perfusion models [8]. However, due to sensitiv-
ity to the dose administered and the cost involved, hardware
solutions are not widely used. Moreover, none of these meth-
ods [8,30] are able to identify occluded vessels that are
hidden under thick layers of fat. A detailed survey of such
vessel localization techniques was presented in our recent

123



Int J CARS (2016) 11:1409–1418 1411

paper [2]. In our recent works [2,3] we proposed a purely
image-based method for labelling occluded vasculature by
detecting minute pulsatile vessel motion. Feedback from our
clinical collaborators revealed that the raw visualization of
our fuzzy labels alone are not ideal for guidance as (1) they
are susceptible to noise, (2) they cannot identify parts of the
vasculature that are deeply hidden under other tissue, and (3)
the visualizations are not easy to interpret compared to meth-
ods based on pre- to intra-operative alignment. This provided
the motivation for us to integrate the complimentary advan-
tages of our previously proposed techniques in [2] and [23]
into a single framework.

Two important aspects have to be considered in segment-
ing an endoscopic video: noise/clutter due to light reflection
from uneven tissue surfaces and smoke from cutting tissue,
and structure occlusion either by tools or other tissues (e.g.
vessels occluded by fat, or endophytic tumours occluded by
healthy kidney tissue). In this paper, we address these two
problems by proposing a variational technique to augment

the endoscopic surgical view. Our framework estimates the
3Dpose and deformations ofmultiple structures in the preop-
erative data and uses that to aid the segmentation of multiple
visible and occluded structures in an endoscopic scene. Our
key contribution in this work is how we leverage vessel pul-
sation and endoscopic visual cues to guide 3D preoperative
to endoscopic intraoperative alignment. Our surgical image
guidance system combines signal processing and machine
learning cues. The first performs spatio-temporal colour
waveform analysis to detect vessel pulsation, and the second
uses randomdecision forests (RF) to learn colour and textural
visual patterns of tissue types in endoscopy. The above con-
tributions are used to guide a multi-structure, preoperative to
intraoperative alignment process that allow for both rigid and
heterogeneous physically based, patient-specific non-rigid
deformations. Table 1 presents a detailed summary of the
capabilities of state-of-the-art methods compared to our pro-
posed technique. To demonstrate the potential utility of our
method to surgeons, we evaluated our method with a ret-

Table 1 Categorization and comparison between state-of-the-art methods for intraoperative guidance and our proposed method

Organ Data Method Cues Multiple obj. Biomechanical
deformation

Occluded
obj.

Auto. pose
estimation

Pre-op. Intra-op.

Figueiredo
et al. [12]

C × EN Active contour CO � × × –

Figueiredo
et al. [13]

C × EN Active contour CO × × × –

Mewes et al.
[21]

S × EN Thresholding GO, TX, CH × × × –

Estépar et al.
[11]

K/CA CT US LEPART ED � × × ×

Gill et al. [16] P MR MR 2D–3D reg. IN × × × �
Pickering et al.
[25]

T/F CT FL 2D–3D reg. IN × × × �

Zikic et al. [33] H CBR FL 2D–3D reg. IN × × × �
Pratt et al. [26] K CT EN 3D–3D (stereo) reg. ML � × × ×
Yim et al. [32] VF CT EN 3D–2D reg. IN × × × �
Merritt et al.
[20]

L CT EN 3D–2D reg. IN × × × �

Puerto et al.
[27]

K CT EN Feature tracking AL � × × ×

Tobis et al. [30] K × EN Fluorescence imaging C × × × –

Teber et al. [29] K CT EN 3D–2D reg. ML � × × ×
Amir-Khalili
et al. [2]

V × EN Motion segmentation PL × × � –

Nosrati et al.
[23]

K CT EN 3D–2D reg. CH,TX � × × ×

Our method K CT EN 3D–2D reg. CH, TX, PL � � � �
LEPART low-pass spectral phase correlation with harmonic selection. op operative. obj object. reg registration. Auto automatic. Data:CT computed
tomography, US ultrasound, MR magnetic resonance, EN endoscopy, FL fluoroscopy, CBR cone beam reconstruction. Organs: K kidney, CA
coeliac-aorta, P prostate, T /F tibia/femur, H head, C colon, S stomach, V vasculature, VF vocal folds, L Lung. Cues: ED edge IN intensity, CO
colour, CH colour histogram, TX texture,ML manual landmark, AL automatic landmark, PL pulsation
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rospective study of fifteen challenging robot-assisted partial
nephrectomy (RAPN) clinical cases.

Method

Problem statement and notation

Given 3D preoperative data, let Spre = {S1, . . . , SN } be the
set of N segmented structures of interest in the preoperative
spatial domain Ωpre ⊂ R

3, where Si represents the surface
of the i th structure. Having M camera views of the surgical
scene, let Im : Ωm

2D ⊂ R
2 → R

3 represent the 3-channel
RGB image of mth camera view. We adopt the 3D geometry
defined by first camera (m = 1) as the reference domain of
the surgical scene, Ωsrg ⊂ R

3. Our objective is to augment
the surgical intraoperative view by localizing and visualiz-
ing the N structures of interest in the 2D endoscopic images
(I1, . . . , IM ). To do so, we transform and deform the objects
of interest in 3D such that their projections onto the 2D cam-
era views (e.g. their silhouettes) align with the corresponding
structures in I1, . . . , IM . Figure 1 illustrates the overview of
our pipeline.

We implicitly represent the boundary of each structure in
Im by a level set function φi

m : Ωm
2D → R such that

⎧
⎪⎨

⎪⎩

φi
m(x) > 0, x is inside the i th structure in Im

φi
m(x) = 0, x is on the boundary of the i th structure

φi
m(x) < 0, x is outside the i th structure in Im .

(1)

Let Ppre,i
� = (Xpre,i

� ,Y pre,i
� , Zpre,i

� ) ∈ Si be the coordinates
of the �th point on Si . The level set φi

m is calculated as:

φi
m(x) = SDM

(

∂
(
Pm

(
T (Ppre,i );πm

))
)

, (2)

where T is a spatial transformation consisting of two parts:
a non-rigid component and a rigid component that maps
the 3D models (Ppre) from Ωpre to the reference surgical
domain Ωsrg. Pm : Ωsrg → Ωm

2D is the projection from the
surgical scene frame of reference to Ωm

2D given the corre-
sponding camera parameters π = {π1, . . . , πM }, ∂ is the
spatial 2D derivative of the projected model (i.e. result-
ing in the boundary of the structures), and SDM(.) is the
signed distance map. In less technical terms, we position and
deform the segmented 3D model (using T ), virtually image
(or project) the 3D model using the camera parameters (π),
detect the boundary of the projected image (using ∂), and
finally represent the boundary using level sets. We define
T as:

T (Ppre,i ) = R
(
Ppre,i + Ψ iui

)

[3×ni ] + t, (3)

where the columns of Ψ i are the i th tissue-specific modes
of vibration and ui are the corresponding weights that are
used to non-rigidly deform the segmented preoperative mod-
els Ppre,i (see “Patient-specific heterogeneous deformation
model” section for more details). R and t are the rotation
matrix and translation vector in 3D space, respectively, giv-
ing the rigid component of transformation T . Note that the
number of elements in Ppre,i is 3 × ni (ni is the number of
points in Si ); however, they are stacked as a long 3ni × 1
column in (3). The subscript (. . .)[3×ni ] is the reshaped ver-
sion of (Ppre,i + Ψ iui ) from 3ni × 1 to 3 × ni . Also, note
that Ψ iui deforms the whole i th tissue (or object Si ) and not
just a single point on Si . We emphasize that R, t , and ui

in (3) are the same for the 3D models regardless of which
viewpoint of the M cameras is considered. Having N struc-
tures appear in M camera images, we define and minimize
the following energy functional E to simultaneously align
the preoperative models with the intraoperative images and
segment them:

Intraoperative endoscopic video

Preoperative volume (e.g. CT)

Phase-based pulsation analysis using (6)

Visual cues analysis using random forest

3D segmentation

Augmented endoscopy with  projections 
of aligned preoperative data using (2) and (4)

Kidney
Tumour

Vein
Artery

Kidney

Tumour

Vessels

Fig. 1 Our surgical image guidance system leverages vessel pulsation and visual appearance cues to guide the 3D preoperative to endoscopic
intraoperative alignment
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E(T ,U,Φ; Ppre, I1, . . . IM ,π)

=
N∑

n=1

M∑

m=1

∫

Ωm
2D

(2ρn
m − 1)(x) H(φn

m(x))dx, (4)

where H(.) is the Heaviside function, ρn
m(x) are the regional

terms that provide the cues towards which the level set
is moved during the optimization and measure the agree-
ment of the image pixels x with the learnt statistical
models (see “Data terms: appearance of structures in endo-
scopic images” section) of the nth structure in Im , Φ =
{φ1

1 , . . . , φ
N
1 , . . . , φ1

M , . . . , φN
M }, and U = {u1, . . . , uN }.

The above energy function is similar to the Chan–Vesemodel
[7] with the main difference lying in the optimization; where
in the Chan–Vese method, the energy function is minimized
with respect to the level set functionφwhereas in our case,we
optimize E with respect to the pose and shape parameters.
To find the optimum pose and deformations of structures,
we optimize E with respect to T and U (with Φ is updated
accordingly).

The success of the proposed optimization depends on how
accurate we model the 3D non-rigid deformation and how
wellwe identify candidate pixels belonging to different struc-
tures in the endoscopic scenes. Some structures are hidden
(e.g. occluded vessels), while others have complicated visual
appearance. In the following sections, we explain how we
choose our data terms [ρn

m in (4)] and how we generate the
structures’ deformation and the final segmentation.

Data terms: appearance of structures in endoscopic
images

In RAPN, the focus is on three organs: the vasculature (v),
kidney (k), and tumour (t). In this context, we set the number
of objects N = 3 in (4). The regional term of vessels, kidney,
and tumour are represented with ρ1 = ρv , ρ2 = ρk , and
ρ3 = ρt , respectively.

Vascular pulsatile motion

Computing the regional term ρv by appearance alone is diffi-
cult as blood vessels are typically hidden under a layer of fat.
These regions may, however, be identified by their character-
istic pulsatile motion, which is detectable but invisible to the
naked eye. This regional term is computed by first extract-
ing pulsatile motion features from local phase information
using our method proposed in [3]. In this section we briefly
describe the framework for extracting these features and the
corresponding data term used to drive our segmentation.

A video frame captured from camera m denoted as
Im(x, t) that maps the given pixel x ∈ Ωm

2D at time t to
an intensity value can be represented as function of local dis-
placements d(x, t)with respect to the first frame of the video

Im(x, 0) = f (x) such that Im(x, t) = f (x + d(x, t)). Our
regional term ρv is extracted from the local motions speci-
fied by d(x, t) and to approximate these motions from the
video, we perform a wavelet decomposition of the video into
sub-bands such that

Im(x, t) = f (x + d(x, t)) ≈
∞∑

ω=−∞
Aωe

iω(x+d̂(x,t)), (5)

with each sub-band representing a complex sinusoid Sω(x, t)

= Aωeiω(x+d̂(x,t)) at spatial frequency ω and d̂(x, t) is
our approximation to the local motion. The local phase
of each sub-band is defined as Φω(x, t) = arg(Sω) =
ω(x + d̂(x, t)). Since the local ωd̂(x, t) is the only motion
related component of the phase that varies with time, we can
isolate it from the zero-frequency componentωx by applying
a mean-free temporal bandpass filter

H(x, t) = 2BH sinc(2BH t) − 2BLsinc(2BLt), (6)

where BL and BH are the low and high frequency cut-off,
respectively. The response of the temporal bandpass filter is
denoted by Bω(x, t) = Φω ∗ H = ωd̂H(x, t), where d̂H
are components of the motion that are in the passband of the
filter. The passband of the filter is tuned to the typical heart
rate of a patient so that we can isolate components of the local
motion that are synchronous with the heart rate and hence to
vascular pulsation.

The bandpassed phases Bω are then denoised and com-
bined across scales and orientations using the methods
outlined in [2] to obtain fuzzy labels

L = 1

C

∑

∀ω

|Q̃ω|
2πω

, (7)

whereC is a normalizing factor and Q̃ is the denoised Bω. To
attenuate these false positives and obtain better visual cues of
the hidden vessels, we process L in a temporal window (i.e.
2 s video) by summing L in time and denoising the results
with a spatial median filter. We denote the resulting denoised
fuzzy labels by Lavg. Then, we calculate the probability of a
pixel belonging to a pulsating vessel (artery and vein) as:

Pv(x|Lavg) = 1

2
+ 1

π
arctan

(
Lavg(x) − 0.3

ε

)

, (8)

where we chose ε to be 0.1. The above equationmaps Lavg to
the probabilistic range of [0, 1]. The value 0.3 in (8), chosen
empirically, intensifies any value more than 0.3 and discards
small values in Lavg. The data term corresponding to vessels
is defined as ρv = − log(Pv(x|Lavg)).
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Fig. 2 Patch selection and initialization. a Patch selection (blue back-
ground/tools, yellow kidney, green tumour). b Probability map of
background, kidney and tumour. c Initial pose (before convergence).
d Recovered pose and shape (after convergence)

Learning of tissue appearance

To calculate the data term of a visible structure, we extract a
variety of image features (Am) from each image m and train
a RF classifier to distinguish between different structures.
Particularly, we capture the textural patterns and colour vari-
ations via local colour histograms of the normalized RGB
and YCbCr channels. The probability of pixel x belonging
to kidney (Pk(x)) and tumour (Pt (x)) are estimated by train-
ing a RF consisting of Nt binary decision trees. To train the
RF, we select few 20 × 20 patches in Im, i = 1, . . . , M
from different structures. In practice, surgeons may (virtu-
ally) select these patches with the help of surgical tools. We
emphasize that unlike feature-based methods, e.g. [27], our
method does not require any correspondence between 3D
CT and the 2D intraoperative data. Figure 2a shows a sam-
ple seeding on an example endoscopic scene of real clinical
data. After training, for each pixel x, the feature channels,
Am(x), are propagated through each RF tree resulting in
the probability Pn, j (x|Am(x)), for the j th tree and nth
structure. These probabilities are combined into a forest’s
joint probability Pn(x|Im(x)) = 1

Nt

∑Nt
j=1 p

n, j (x|Am(x))

to determine the probability of x belonging to nth structure.
Figure 2b illustrates examples of regions probability for the
frame shown in Fig. 2a. The regional terms of kidney and
tumour are then calculated as: ρk

m = − log Pk(x|Im(x)) and
ρt
m = − log Pt (x|Im(x)), respectively.

Patient-specific heterogeneous deformation model

Due to the noisy endoscopic images, the regional terms
alone are not able to provide robust cues for guiding the
3D–2D alignment. To obtain a reliable result, we constrain
the space of possible transformations to patient-specific
shape models obtained from the preoperative data (Ppre). To
account for non-rigid deformation of structures, we include
the tissue-specific modes of vibration (Ψ i ) in our framework
as described in “Problem statement and notation” section.

The modes of vibration Ψ i are obtained by solving
the generalized eigendecomposition problem: K iΨ i =
M iΨ iΛi , where K and M are the stiffness and mass matri-
ces, respectively, and Λi is a diagonal matrix of eigenvalues
associated with the eigenvectors (Ψ i ) where higher eigenval-

ues corresponds to higher frequency. In contrast to traditional
variational methods that update the level set function repre-
senting the segmentation to adapt it to image data, the use
of Ψ favours shape deformations that are biomechanically
plausible (as dictated by K and M).

As we increase the number of modes, more deformations
are allowed, which is useful for accurately modelling the
deformations. Given all possible modes of shape variability,
we are able to produce/recover all possible deformations of
that shape. However, aswe includemore deformationmodes,
the computational complexity increases and recovering the
proper deformation parameters becomes more difficult. In
addition, too many modes of variations may end up with
extreme and unrealistic deformations. We empirically found
that choosing more than 6 modes results in an unjustified
increase in complexity, as deformations may become unreal-
istic and no noticeable improvement in accuracy is observed.
According toPentland et al. [24], since the lowest frequencies
correspond to rigid body motions and global deformations,
and we already encoded global deformations, translation and
rotation, through R and t (Eq. (3)), we selected eigenvectors
corresponding to larger eigenvalues to focus on finer defor-
mation details.

We use the average Hounsfield unit (HU) associated
with each structure in the preoperative CT to approximate
the stiffness of each tissue. This way the stiffness of each
structure is proportional to its tissue density. We used a sim-
ple linear elastic model to deform the objects of interest
to lower the computational complexity; however, exploring
more advanced elastic models might improve the results but
with the cost of complexity. In the next section, we show how
we optimize E in (4).

Optimization of the multi-structure pose and
deformation

We optimize (4) with respect to T , i.e. with respect to R =
{α, β, γ }, t = {tx , ty, tz}, and u = {u1, . . . , uq}, where α,
β, and γ are the rotation angles around the x , y, and z axes,
respectively and tx , ty , and tz are the translations in x , y, and
z directions. The derivative of E with respect to each of the
unknown parameters is:

∂E

∂ξ�

=
∑

n∈{v,k,t}

M∑

m=1

∫

Ωm
2D

ρn
m(x)

∂H(φn
m(x))

∂ξ�

, (9)

where ξ� = {α, β, γ, tx , ty, tz, u1, . . . , uq} and
∂H(φn

m(x))

∂ξ�

= ∂H(φn
m(x))

∂φn
m

(
∂φn

m

∂x

∂x

∂ξ�

+ ∂φn
m

∂y

∂y

∂ξ�

)

= δ(φn
m)

[
∂φn

m
∂x

∂φn
m

∂y

]
[

∂x
∂ξ�
∂y
∂ξ�

]

. (10)
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In (10), δ(.) is the Dirac delta function. We use the cen-
tred finite difference to calculate ∂φ

∂x and ∂φ
∂y . Every 2D point

x = (x, y) in Im has at least one corresponding 3D point
P srg = (X srg,Y srg, Z srg) in the surgical domain Ωsrg. We
calibrated the stereo camera and obtained the intrinsic cam-
era parameters. For m = 1, x and P srg are related by:

⎡

⎣
x
y
1

⎤

⎦ =
⎡

⎣
f1x 0 c1x
0 f1y c1y
0 0 1

⎤

⎦

⎡

⎣
X srg

Y srg

Z srg

⎤

⎦ , (11)

where π1 = ( f1x , f1y, c1x , c1y) are the first camera parame-
ters. Hence, we have

∂x

∂ξ�

= f1x
Z srg2

(

Z srg ∂X srg

∂ξ�

− X srg ∂Z srg

∂ξ�

)

. (12)

We similarly calculate ∂y
∂ξ�

. Also, each 3D point P srg is
related to Ppre by P srg = RPpre + t . Therefore, for ξ� ∈
{α, β, γ, tx , ty, tz}, ∂X srg

∂ξ�
, ∂Y srg

∂ξ�
and ∂Z srg

∂ξ�
in (12) are easily cal-

culated upon the choice of transformation function. Toupdate
the non-rigid deformation of structures, we need to calculate
the derivatives of E with respect to the shape parameters
ui . These shape parameters ui and the energy functional are
related through the 2D coordinate x in E (Eq.(4)) which
are derived from the corresponding 3D point in the surgical
domain P srg = (X srg,Y srg, Z srg) and the preoperative 3D
point Ppre. According to (3), Ppre depends on the weights
of the modes of vibration, ui . Therefore, for the shape para-
meters ξ� ∈ {u1, . . . , uk}, the derivative of a 3D point P srg

in the surgical domain with respect to ξ� is ∂ Psrg

∂ξ�
= R · ψ�,

where ψ� is the �th mode of vibration in Ψ . To avoid any
irrational shape deformation, we limit the shape parameters
to vary not more than three times the standard deviation (Λi ).
For multiple camera views (m > 1), the extrinsic parameters
(Rext

m , textm ) have to be considered in calculating the deriv-
atives, i.e. R in the above equations is replaced by Rext

m R.
The boundary of the segmented structures in Im are the zero
level set of their corresponding level set functions φn

m that
are obtained by (2) after finding the optimal T .

Materials and experiments

For validation, we applied our framework to fifteen differ-
ent clinical cases of robot-assisted partial nephrectomy. All
endoscopic videos were acquired by a da Vinci� Si surgical
system (Intuitive Surgical, California, USA), and each frame
was resized to 480 × 270 pixels for efficiency. The default
parameters suggested in our previous works [2,3] were used
to detect the vascular motion cues. We used Nt = 70 trees
to train the RF for learning the appearance of kidney and
tumour. Higher values of Nt did not improve accuracy but
increased complexity.

We used the patient-specific 3D segmented kidney,
tumour, and vasculature models and to set the tissue-specific
modes of vibration, for simplicity, we assumed that the
structures can be modelled as a set of unit masses mutu-
ally interconnected, i.e. M is the identity matrix and can
be removed from the eigendecomposition equation in our
case. We set the stiffness of each tissue to be proportional to
its corresponding HU (higher HU means higher density and
hence higher stiffness). HU is calculated from the preopera-
tive DICOM meta-data as HU = CT pixel value× μs + μi ,
where μs and μi are the rescale slope and rescale intercept
values that are stored in the CT meta-data. We manually ini-
tialized T such that the projection of 3D models intersect
the organs. This initialization does not need to be close to
the solution. Figure 2c shows the initial pose, which despite
being not well placed, results in a reasonable pose as shown
in Fig. 2d. However, we emphasize that an irrational initial-
ization will result in a wrong pose estimation due to our local
optimization framework.We should alsomention that if most
of the surface of the objects is occluded in the 2D scene, our
method cannot find the correct pose. For our experiments,
we asked surgeons to stop moving the tools for ∼10s so our
method can compute the regional term.

Fig. 3 First eight cases of the qualitative comparison of our proposed
method with state-of-the-art method [3]. a Original endoscopic image.
b The ground truth of venous (cyan), arterial (red), kidney (brown)
and tumour (green) structures provided in [3]. c Segmentation results
of vessels using [3]. d Our results. Kidney and tumour are shown in
yellow and green, respectively
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Fig. 4 Final seven cases of the qualitative comparison of our proposed
method with state-of-the-art method [3]. a Original endoscopic image.
b The ground truth of venous (cyan), arterial (red), kidney (brown)
and tumour (green) structures provided in [3]. c Segmentation results
of vessels using [3]. d Our results. Kidney and tumour are shown in
yellow and green, respectively

We compared the segmentations obtained through our
guidance system with the same ground truth presented in
[2,3] (Figs. 3, 4). Note how the noisy segmentations in (c)
are improved in (d) by incorporating the preoperative prior
information. We also quantitatively compared our proposed
method with [2] in Table 2.

The average runtime of our unoptimized MATLAB code
to process the vessel pulsation in a 4-s clip (120 frames)
was 65s. The runtime for pose estimation and segmenting
the structures depends on the initial pose of the organs. The
average runtime to find the pose and segment the structures
for an initialization similar to Fig. 2c is ∼16s on a standard
3.40GHz CPU.

Discussion and conclusions

We proposed a new technique for localizing both visible and
occluded structures in an endoscopic view by estimating the

3D pose and deformations of structures of interest in the 3D
surgical space. Our framework leverages both preoperative
data, as a source of patient-specific prior knowledge, as well
as vasculature pulsation (by analysing the local phase infor-
mation) and endoscopic visual cues (by training a random
decision forest) in order to accurately segment the highly
noisy and cluttered environment of an endoscopic video. To
handle the non-rigid deformation of different structures, we
incorporated a tissue-specific physically based deformation
model. To make the non-rigid deformation of each structure
closer to reality, we used the HU value of each structure in
the preoperative CT and assigned a specific stiffness to each
deformable model. Our results on in vivo clinical cases of
partial nephrectomy illustrate the potential of the proposed
framework for augmented reality applications in MIS.

There are several directions to extend this work. Our vari-
ational framework is highly parallelizable, and we do not
foresee any obstacles towards a GPU implementation for
real-time pose estimation and endoscopic video segmenta-
tion. In addition, we believe that leveraging stereo views as
well as encoding depth information into the proposed energy
functional can improve the performance.

We attribute some of the observable differences between
the ground truth, and our results to both the local optimiza-
tion framework we used and also to the error in the alignment
of the ground truth. As mentioned in Amir-Khalili et al. [2],
due to the fact that the preoperativemodelwas rigidly aligned
to the endoscopic video, an alignment error of 4–7mm exist
in cases where the organs have been significantly retracted
by the surgical instruments or mobilization of other organs.
We believe that despite the visible differences between the
two, our current solution is one step closer to an ideal solu-
tion compared to the ground truth as our current method
allows for non-rigidmodes of vibration. Generating a ground
truth that accounts for the non-rigid deformations due to
mobilization and retraction requires volumetric intraopera-
tive imaging such as cone beam CT or possibly implanting
fiducials. The use of such imaging techniques is not feasible
as it exposes the patient and clinicians to ionizing radiation
and implanting fiducials is intrusive and invasive and hence
not recommended.

Also, in our future work, we will explore the use of
an additional shape variation component that is orthogo-
nal to the restricted shape model, as descried by Andrews

Table 2 Quantitative
comparison for kidney (K) and
vessel (V) segmentation: our
method versus [2]

Method DSC TPR FPR F1-measure Accuracy

K V K V K V K V K V

Amir-Khalili et al. [2] – 0.41 – 0.74 – 0.40 – 0.41 – 0.60

Our method 0.70 0.61 0.70 0.56 0.07 0.06 0.70 0.61 0.88 0.87

The best results are highlighted in bold
DSC dice similarity coefficient, TPR true positive ratio, FPR false positive ratio
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and Hamarneh [4], since this allows for exploring larger
shape variability without noticeable increase in complexity.
Although we limited the modes of vibration to vary not more
than three times the corresponding eigenvalue (to avoid any
irrational shape deformation), we still might get similar pro-
jection from two different 3D deformations. This is due to
the fact that we lose information during the 3D to 2D trans-
formation. We believe that this is another interesting future
direction that worth investigation.

Given that in this proposed method we used a local opti-
mization technique, leveraging our own group and others that
have worked on convexification techniques [4–6,9,19,22]
can make the method less sensitive (or insensitive) to initial-
ization.

Finally, improved estimates of elasticity parameters (e.g.
using elastography imaging) will likelymore accurately con-
strain the space of non-rigid deformations.

Acknowledgments This publication was made possible by NPRP
Grant #4-161-2-056 from the Qatar National Research Fund (a mem-
ber of the Qatar Foundation). The statements made herein are solely the
responsibility of the authors.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval All procedures performed in studies involving
human participants were in accordance with the ethical standards of
the institutional and/or national research committee and with the 1964
Helsinki declaration and its later amendments or comparable ethical
standards.

Informed consent This articles does not contain patient information.

References

1. Agudo A, Agapito L, Calvo B, Montiel J (2014) Good vibrations:
a modal analysis approach for sequential non-rigid structure from
motion. In: IEEE conference on computer vision and pattern recog-
nition (CVPR), pp 1558–1565

2. Amir-Khalili A, Hamarneh G, Peyrat JM, Abinahed J, Al-Alao
O, Al-Ansari A, Abugharbieh R (2015) Automatic segmentation
of occluded vasculature via pulsatile motion analysis in endo-
scopic robot-assisted partial nephrectomy video. Med Image Anal
25(1):103–110

3. Amir-Khalili A, Peyrat JM, Abinahed J, Al-Alao O, Al-Ansari A,
HamarnehG,AbugharbiehR (2014)Auto localization and segmen-
tation of occluded vessels in robot-assisted partial nephrectomy.
In: Medical image computing and computer-assisted intervention
(MICCAI), pp 407–414

4. Andrews S,HamarnehG (2015) The generalized log-ratio transfor-
mation: learning shape and adjacency priors for simultaneous thigh
muscle segmentation. IEEE Trans Med Imaging 34(9):1773–1787

5. Andrews S, McIntosh C, Hamarneh G (2011) Convex multi-region
probabilistic segmentation with shape prior in the isometric log-
ratio transformation space. In: IEEE international conference on
computer vision (ICCV). IEEE, pp 2096–2103

6. Brown E, Chan T, Bresson X (2009) Convex formulation and exact
global solutions for multi-phase piecewise constant Mumford–
Shah image segmentation. UCLA CAM report, pp 09–66

7. Chan TF, Vese L et al (2001) Active contours without edges. IEEE
Trans Image Process 10(2):266–277

8. Crane NJ et al (2010) Visual enhancement of laparoscopic par-
tial nephrectomy with 3-charge coupled device camera: assessing
intraoperative tissue perfusion and vascular anatomy by visible
hemoglobin spectral response. J Urol 184(4):1279–1285

9. Delong A, Boykov Y (2009) Globally optimal segmentation of
multi-region objects. In: ieee international conference on computer
vision (IEEE ICCV), pp 285–292

10. Escudier B, Kataja V et al (2010) Renal cell carcinoma: ESMO
clinical practice guidelines for diagnosis, treatment and follow-up.
Ann Oncol 21(Suppl 5):v137–v139

11. Estépar RSJ, Westin CF, Vosburgh KG (2009) Towards real time
2D to 3D registration for ultrasound-guided endoscopic and laparo-
scopic procedures. Int J Comput Assist Radiol Surg 4(6):549–560

12. Figueiredo IN, Figueiredo PN, Stadler G, Ghattas O, Araujo A
(2010) Variational image segmentation for endoscopic human
colonic aberrant crypt foci. IEEE Trans Med Imaging 29(4):998–
1011

13. Figueiredo IN, Moreno JC, Prasath VBS, Figueiredo PN (2012)
A segmentation model and application to endoscopic images. In:
Image analysis and recognition. Springer, pp 164–171

14. Gill IS, Desai MM, Kaouk JH, Meraney AM, Murphy DP, Sung
GT, Novick AC (2002) Laparoscopic partial nephrectomy for renal
tumor: duplicating open surgical techniques. J Urol 167(2):469–
476

15. Gill IS, Kavoussi LR, Lane BR, Blute ML, Babineau D, Colombo
JR Jr, Frank I, Permpongkosol S,Weight CJ, Kaouk JH et al (2007)
Comparison of 1,800 laparoscopic and open partial nephrectomies
for single renal tumors. J Urol 178(1):41–46

16. Gill S, Abolmaesumi P, Vikal S, Mousavi P, Fichtinger G (2008)
Intraoperative prostate trackingwith slice-to-volume registration in
MR. In: International conference of the society for medical inno-
vation and technology, pp 154–158

17. Hernes N, Toril A, Lindseth F, Selbekk T, Wollf A, Solberg OV,
HargE,RyghOM,TangenGA,Rasmussen I et al (2006)Computer-
assisted 3D ultrasound-guided neurosurgery: technological contri-
butions, including multimodal registration and advanced display,
demonstrating future perspectives. Int J Med Robot Comput Assist
Surg 2(1):45–59

18. Hummel J, Figl M, Bax M, Bergmann H, Birkfellner W (2008)
2D/3D registration of endoscopic ultrasound to CT volume data.
Phys Med Biol 53(16):4303

19. McIntoshC,HamarnehG (2009)Optimal weights for convex func-
tionals in medical image segmentation. In: Advances in visual
computing. Springer, pp 1079–1088

20. Merritt SA, Rai L, Higgins WE (2006) Real-time CT-video regis-
tration for continuous endoscopic guidance. In: Medical imaging.
International Society for Optics and Photonics, pp 614313–614313

21. Mewes PW, Neumann D, Licegevic O, Simon J, Juloski AL,
AngelopoulouE (2011)Automatic region-of-interest segmentation
and pathology detection inmagnetically guided capsule endoscopy.
In: Medical image computing and computer-assisted intervention
(MICCAI 2011). Springer, pp 141–148

22. Nosrati MS, Andrews S, Hamarneh G (2013) Bounded labeling
function for global segmentation of multi-part objects with geo-
metric constraints. In: IEEE international conference on computer
vision (ICCV), pp 2032–2039

23. Nosrati MS, Peyrat JM, Abinahed J, Al-Alao O, Al-Ansari A,
AbugharbiehR,HamarnehG (2014) Efficientmulti-organ segmen-
tation in multi-view endoscopic videos using pre-operative priors.
In: Medical image computing and computer-assisted intervention
(MICCAI), pp 324–331

123



1418 Int J CARS (2016) 11:1409–1418

24. Pentland A, Sclaroff S (1991) Closed-form solutions for physically
based shape modeling and recognition. IEEE Trans Pattern Anal
Mach Intell (IEEE TPAMI) 7:715–729

25. Pickering MR, Muhit AA, Scarvell JM, Smith PN (2009) A new
multi-modal similarity measure for fast gradient-based 2D–3D
image registration. In: Engineering in medicine and biology soci-
ety. EMBC 2009. Annual international conference of the IEEE.
IEEE, pp 5821–5824

26. Pratt P, Mayer E, Vale J, Cohen D, Edwards E, Darzi A, Yang
GZ (2012) An effective visualisation and registration system for
image-guided robotic partial nephrectomy. J Robot Surg 6(1):23–
31

27. Puerto-Souza GA, Mariottini GL (2013) Toward long-term and
accurate augmented-reality display forminimally-invasive surgery.
In: IEEE international conference on robotics and automation
(ICRA). IEEE, pp 5384–5389

28. Singh I (2009) Robot-assisted laparoscopic partial nephrectomy:
current review of the technique and literature. J Min Access Surg
5(4):87

29. Teber D et al (2009) Augmented reality: a new tool to improve
surgical accuracy during laparoscopic partial nephrectomy? Pre-
liminary in vitro and in vivo results. Eur Urol 56(2):332–338

30. Tobis S et al (2011)Near infraredfluorescence imagingwith robotic
assisted laparoscopic partial nephrectomy: initial clinical experi-
ence for renal cortical tumors. J Urol 186(1):47–52

31. Urban BA et al (2001) Three-dimensional volume-rendered CT
angiography of the renal arteries and veins: normal anatomy, vari-
ants, and clinical applications. RadioGraphics 21(2):373–386

32. YimY,WakidM, Kirmizibayrak C, Bielamowicz S, Hahn J (2010)
Registration of 3DCTdata to 2Dendoscopic imageusing a gradient
mutual information based viewpoint matching for image-guided
medialization laryngoplasty. J Comput Sci Eng 4(4):368–387

33. Zikic D, Glocker B, Kutter O, Groher M, Komodakis N, Khamene
A, Paragios N, Navab N (2010) Markov random field optimization
for intensity-based 2D–3D registration. In: SPIE medical imaging.
International Society for Optics and Photonics, pp 762334–762334

123


	Endoscopic scene labelling and augmentation using intraoperative pulsatile motion and colour appearance cues with preoperative anatomical priors
	Abstract
	Introduction
	Related works

	Method
	Problem statement and notation
	Data terms: appearance of structures in endoscopic images
	Vascular pulsatile motion
	Learning of tissue appearance

	Patient-specific heterogeneous deformation model
	Optimization of the multi-structure pose and deformation 

	Materials and experiments
	Discussion and conclusions
	Acknowledgments
	References




