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Abstract
Purpose Statistical shape analysis of anatomical structures
plays an important role in many medical image analysis
applications such as understanding the structural changes in
anatomy in various stages of growth or disease. Establishing
accurate correspondence across object populations is essen-
tial for such statistical shape analysis studies.
Methods In this paper, we present an entropy-based cor-
respondence framework for computing point-based corre-
spondence among populations of surfaces in a groupwise
manner. This robust framework is parameterization-free and
computationally efficient. We review the core principles of
this method as well as various extensions to deal effectively
with surfaces of complex geometry and application-driven
correspondence metrics.
Results We apply our method to synthetic and biological
datasets to illustrate the concepts proposed and compare the
performance of our framework to existing techniques.
Conclusions Through the numerous extensions and varia-
tions presented here, we create a very flexible framework that
can effectively handle objects of various topologies, multi-
object complexes, open surfaces, and objects of complex
geometry such as high-curvature regions or extremely thin
features.
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Introduction

The variability of anatomical structures among individu-
als is large within populations. This variability makes it
necessary to use statistical modeling techniques to study
shape similarities and to assess deviations from the healthy
range of variation. For instance, studying the local cortical
thickness measurements is a common tool in neuroimag-
ing. Similarly, morphological phenotyping is of great value
in gene-targeting studies. Variability captured by statisti-
cal shape models is often used by segmentation algorithms.
These examples demonstrate the importance of statisti-
cal modeling of anatomical objects for medical image
analysis.

The construction of such statistical models requires the
ability to compute local shape differences among similar
objects, which introduces the problem of finding correspond-
ing points across the population, which can be interpreted as
a form of registration between the surfaces.

Consistent computation of corresponding points on 3D
anatomical surfaces is a difficult task, since manually choos-
ing landmark points not only is cumbersome, but also does
not yield a satisfyingly dense correspondence map. It should
also be noted that no generic “ground truth” definition of
dense correspondence exists across different anatomical sur-
faces. The choice of particular correspondence metric must,
therefore, be flexible and application-driven. The lack of a
“ground truth” also makes it difficult to evaluate correspon-
dence algorithms. While expert-placed manual landmarks
can be created for each new application, a more generic eval-
uation strategy relies on assessing characteristics of the shape
model implied by the correspondence method. For instance,
principal components analysis (PCA) can be used for assess-
ing the number of major modes of variation discovered in the
shape space, and the “leak” into smaller modes. Similarly,
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Davies [1] proposes using the compactness, generalization,
and specificity properties of the shape model.

In this manuscript, we present a review of the entropy-
based particle correspondence methods previously only
shown in conference proceedings [2–12]. This is a very
flexible framework for finding corresponding points on pop-
ulations of surfaces. This method, based on the concept
of entropy on sets of dynamic particles moving freely on
surfaces, allows for efficient and robust computation of corre-
spondence across ensembles of shapes. This framework can
be extended in many ways to deal with challenging geome-
tries and the particular needs of a given application.

We begin by providing a summary of existing corre-
spondence algorithms. These techniques fall in two main
categories: Pairwise correspondence methods establish the
correspondence between each object and an atlas; given
a population of objects, the correspondence follows by
transitivity. Groupwise methods, on the other hand, con-
sider the entire population at once to capture the variabil-
ity in the population. Pairwise methods, unlike groupwise
approaches, fail to incorporate information from the entire
population and treat each surface separately, which can lead
to suboptimal correspondence results for the purposes of
population-based shape analysis [2,13]. In both approaches,
the correspondence computation is typically formulated as
an optimization problem with an objective function, which
involves a similarity measure between the objects and often
incorporates regularization terms. Some methods, such as
FreeSurfer [14] and BrainVoyager [15], are particularly tai-
lored to the human cortex and are not applicable to other
domains.

We note that shape analysis can be done on a global scale,
e.g., by comparing a shape index computed per object. Cor-
respondence methods allowmoving from such a global scale
to the local scale.

Pairwise correspondence

Pairwise correspondence methods aim to optimize the corre-
spondence between each object in a population and either an
atlas or one of the objects in the population chosen as tem-
plate. Surface-based methods typically lend more weight to
geometrical properties of the objects, whereas volume-based
methods focus on image intensities.

Surface-based pairwise correspondence

Parameter space optimization In most surface-based
schemes, correspondence is defined through a parameteri-
zation of both objects, such that points in each object with
the same parameter space coordinates correspond (e.g., [14–
16]). Thus, it is necessary to map each object to a standard

parameter space. The parameter spaces of different objects
are then aligned based on the minimization of an objective
function that reflects the mismatch.

The spherical harmonics (SPHARM) description [17] is
commonly used as a parameterization-based correspondence
scheme (e.g., [18]). A continuous one-to-one mapping from
each surface to the unit sphere is computed. The correspon-
dence is established by rotating the parameter meshes such
that the axes of their first-order spherical harmonics, which
are ellipsoidal, coincide with the coordinate axes in the para-
meter space. Comparisons between objects with significant
shape variability becomeproblematic, because the SPHARM
method does not have a proper means of optimizing shape
similarity but rather focuses on parameterization quality. An
additional limitation of such parameterization-based meth-
ods is that they are restricted to objects of a given topology
(e.g., spherical in this case).

Meier and Fisher [16] extend the original SPHARM cor-
respondence by proposing to warp the parameter space to
optimize the correspondence between the two objects instead
of relyingon thefirst-order ellipsoid alignment. Theobjective
function is a similarity metric based on Euclidean distances,
normal directions, and shape index. Other examples include
software packages such as FreeSurfer [14] and BrainVoy-
ager [15], which define similarity metrics based on the
similarity of sulcal depth and curvature, respectively.

Other surface-based pairwise correspondence methods
Many other methods were proposed to address the corre-
spondence problem. Tosun and Prince [19] propose to use
a partially inflated cortical surface in order to capture only
the geometry of the most prominent anatomical features to
allow meaningful comparison among different individuals.
The alignment is based on two curvature-related measures; a
multi-spectral optical flow algorithm is used to warp the sub-
ject cortical surface into the atlas. Wang et al. [20] propose
using geodesic interpolation of a sparse set of corresponding
points.

Volume-based pairwise correspondence

A fundamentally different approach to shape analysis that
does not rely on explicit correspondences exists, via the
registration of an image volume to an atlas. Talairach [21]
registration procedure is a classical volume-based correspon-
dence method for the human brain. Many popular software
packages such as SPM and FSL adopt more sophisticated
volumetric registration approaches. A full discussion of vol-
umetric registration is beyond the current scope; we refer
interested readers to an excellent evaluation by Klein et
al. [22].
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Groupwise correspondence

Several lines of research [23–25] in the early 1990s have
investigated shape from the point of view of correspondence.

Determinant of the covariance matrix

Kotcheff and Taylor [26] propose to automatically find cor-
respondence points by optimizing an objective function that
leads to compact and specific models. They optimize via a
genetic algorithm the determinant of the covariance matrix
of the landmark locations, specifically:

F = ln|K ′ + δ I | − nlnδ (1)

where K ′ is given by K ′ = 1
nW

TW , W is the centered data
matrix, δ is the variance of the Gaussian noise model, n is
the number of objects in the population, and I is the iden-
tity matrix. This method leads to better correspondence than
some of the earlier pairwise algorithms. However, as Davies
et al. [27] later pointed out, the choice of the objective func-
tion is not clearly justified and solely based on intuition.

Minimum description length

The MDL method [1] is an information theoretic approach.
The main idea is that the simplest description of a popula-
tion is the best; simplicity is measured in terms of the length
of the code to transmit the data and the model parameters.
This leads to an objective function comprised of two terms,
description length of model parameters, which aims to min-
imize the model complexity, and encoded data, which aims
to ensure the quality of the fit between the model and the
data. Several extensions have been proposed, e.g., regarding
gradient descent optimization [28], shape images for efficient
optimization [29], extension to medial object representations
[30], inclusion of arbitrary local features [31] or only geo-
metrical features [32], use of manual landmarks [33], and
optimal landmark distributions [34].

MDL implementations currently rely on parameteriza-
tions, which must be obtained through a preprocessing stage.
This is a computationally expensive step at best and becomes
further complicated for 3D surfaces of non-spherical topol-
ogy (e.g., [35]). Furthermore, MDL optimization itself is a
slow process due to the reparameterization step in the algo-
rithm.

Styner et al. [36] describe an empirical study which
shows that ensemble-based statistics improve correspon-
dences relative to pure geometrical regularization and that
MDL performance is virtually the same as that of min
log |Σ+α I | (whereΣ is the covariancematrix of the sample
positions and α I introduces a lower bound α to its eigenval-
ues). This last observation is consistent with the well-known

result from information theory: MDL is, in general, equiva-
lent to minimum entropy [37].

We proposed [4,6] a system exploring this property.
This entropy-based algorithm provides a nonparameterized,
topology-independent, and computationally efficient frame-
work suitable for correspondence optimization on anatomical
surfaces. It also is very flexible and can be extended in many
ways to suit the application domain. The remainder of this
paper will be focused on this groupwise surface-based cor-
respondence approach and will review its variants.

Methods

The entropy-based correspondence method uses a point-
based surface sampling to optimize surface correspondence
in a groupwise manner. Each sample, named particle, is
assigned a number; particles that have the same number
define the correspondence across the population. The opti-
mization consists of moving the particles along the surfaces
in the direction of the gradient of an energy functional that
strikes a balance between an even sampling of each surface
(characterized by surface entropy) and a high spatial sim-
ilarity of the corresponding samples across the population
(ensemble entropy).

Surface entropy

In this work, as presented in [6], a surface S ⊂ R
D is

sampled using a discrete set of N surface points, Z =
(X1, X2, . . . , XN ). These points, called particles, are con-
sidered to be random variables drawn from a probability
density function (PDF), p(X). A particle set is represented
by z = (x1, x2, . . . , xN ), where xi ∈ S. The probability of a
realization x is p(X = x), denoted p(x).

A nonparametric Parzen windowing method is used to
estimate p(xi ) such that

p(xi ) ≈ 1

N (N − 1)

N∑

j=1, j �=i

G
(
d(xi , x j ), σi

)
. (2)

whereG(d(xi , x j ), σi ) represents a D-dimensional isotropic
Gaussian with standard deviation σi . The value for σi
is computed using Newton–Raphson method such that
∂p(xi , σi )/∂σi = 0. d(xi , x j ) is the distance between xi and
x j ; Euclidean distance is used in the following.

The amount of information contained in such a random
sampling is the differential entropy of the PDF in the limit,
which is H [X ] = − ∫

S p(x) log p(x)dx = −E{log p(X)},
where E{·} denotes expected value. The cost functionC is the
negative of this expected value, which can be approximated
by the sample mean. The optimization problem is given by:
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ẑ = argmin
z

C(z) s.t. x1, . . . , xN ∈ S (3)

C(z) = −H [X ]

≈
N∑

i=1

log
1

N (N − 1)

N∑

j=1, j �=i

G(d(xi , x j ), σ j ) (4)

This can be interpreted as the particles moving away from
each other under a repulsive force while constrained to lie on
the surface. The motion of each particle is away from all of
the other particles, but the forces are weighted by a Gaussian
function of interparticle distance. Therefore, interactions are
local for sufficiently small σ .

We use an implicit representation of the surface via the
zero-set of a signed distance function F(x). After each iter-
ation, the particles are projected to the closest root of F [38].

Ensemble entropy

An ensemble E is a collection of M surfaces each with their
own set of particles, i.e., E = z1, . . . , zM . The ordering of
the particles on each shape implies correspondence among
shapes. The entire population can be represented in a matrix
of particle positions P = xkj with particle positions along the

rows and shapes across the columns.Wemodel [4] zk ∈ R
Nd

as an instance of a random variable Z , and we minimize the
combined ensemble and shape cost function

Q = H(Z) −
M∑

k=1

H
(
Pk

)
, (5)

which favors a compact ensemble representation balanced
against a uniform (or adaptive) distribution of particles on
each surface. Generalized Procrustes alignment without scal-
ing is used for aligning the samples during the optimization.

Given the low number of examples relative to the dimen-
sionality of the space (N > M), some conditions must be
imposed to estimate the density. We assume a normal distri-
bution and model the distribution of Z parametrically using
a Gaussian with covariance Σ . The ensemble entropy can
therefore be expressed as

H(Z) ≈ 1

2
log |Σ | = 1

2

Nd∑

j=1

log λ j , (6)

where λ j are the eigenvalues of Σ . Let Y = P − P , where
P is a matrix with all columns set to the mean shape μ.
The covariance can then be estimated from the data, with
Σ = (1/(M − 1))YYT. Thus, the cost function G associated
with the ensemble entropy is defined as:

log |Σ | ≈ G(P) = log
∣∣∣ 1
M−1Y

TY
∣∣∣ (7)

In practice, Σ will not have full rank, and the entropy is
thus not finite. It is therefore necessary to regularize the prob-
lem with a diagonal matrix α I to introduce a lower bound
on the eigenvalues. Starting with a large α and incrementally
reducing it using an exponential decaymodel yield an anneal-
ing approach which improves computational efficiency; this
has the effect of preventing the system from attempting to
reduce the thinnest dimensions of the ensemble distribution
too early in the process.

Initialization

For initializing the particle positions, we propose a simple
splitting scheme [6] (Fig. 1), which is adequate for most
datasets.

The initialization may also be jump-started by provid-
ing a small set of particles. For example, the surfaces may
be subdivided into anatomical regions and a particle may
be created at the center of gravity of each subregion. For
example, a 98-region lobar parcellation provides an adequate
initialization for the cortex [39]. If a rough correspondence is
already known, this may also be provided as an initialization.
For example, to align cortical surfaces, we extract the sulcal
curves and align these in a pairwise manner to initialize the
entropy-based correspondence in [11].

Extension to features: generalized ensemble entropy

As suggested by Styner et al. [31], incorporating local
features into the similarity metric may better mimic the

Fig. 1 Initialization scheme
based on recursive splitting
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intuitive notion of correspondence and may improve corre-
spondence quality as compared to approaches that only use
spatial proximity. Candidates for featuresmay range from the
geometrical, such as curvature, to application-specific mea-
surements such as white matter connectivity measures in the
brain [7] or proximity to blood vessels and other neighboring
organs.

The entropy-based particle framework lends itself nicely
to this generalized correspondence definition [2,7]. The
ensemble entropy term is modified to reflect the similarity
of the local features instead of the spatial locations. The fea-
tures are represented as a function of location, f (xkj ), with

f : Rd → R
q . The function f is vector-valued (with vector

dimension q) allowing multiple features to be used at once.
The surface entropy term remains unchanged, since it is still
desirable to sample the surfaces uniformly.

When computing the ensemble entropy of vector-valued
functions of the correspondence positions P , the generalized
case can be represented by P̃ = f (xkj ). Ỹ becomes a matrix
of the function values at the particle points minus the means
of those functions at the points. We note that the particle
positions can still be encoded in the Ỹ matrix, as position
can be viewed as a function value. The general cost function
becomes

G̃
(
P̃

)
= log

∣∣∣∣
1

M − 1
Ỹ T Ỹ

∣∣∣∣ . (8)

All feature channels may be forced to have a variance of 1,
giving them equal weight in the optimization; alternatively,
they may be scaled differently if the application warrants
assigning a heavier weight to some of the features.

Dealing with complex geometry

Correspondence on open surfaces

To compute correspondence on open surfaces, we proposed
[9] an extension to the sampling method by defining the
boundary as the intersection of the surface S with a set of
geometrical primitives, such as cutting planes and spheres
(Fig. 2), and by introducing virtual particle distributions
along these primitives near S. This allows minimizing the
influence of the position of these constraints on the statisti-
cal shape model.

Multi-object complexes

Joint analysis of complexes of multiple surfaces is often
of interest. The particle-based correspondence method out-
lined above can be directly applied tomulti-object complexes
by treating all of the objects in the complex as one. How-
ever, if the objects themselves have distinct identities (i.e.,

Fig. 2 Geometrical primitives
such as the spheres and the
plane define the open surface
boundaries

object-level correspondence is known), we can assign each
particle to a specific object [8], decouple the spatial inter-
actions between particles on different shapes, and constrain
each particle to its associated object. The shape-space sta-
tistics remain coupled, and Σ includes all particle positions
across the entire complex, so that optimization takes place
on the joint model.

Adaptive sampling

The original particle formulation computes Euclidean dis-
tances between particles rather than the geodesic distances
on the surface. Thus, a sufficiently dense sampling is assumed
so that nearby particles lie in the tangent planes of the zero
sets of the implicit surface. In highly curved surfaces, the dis-
tribution of particles may be affected by neighbors that are
outside of the true manifold neighborhood. Sampling high-
curvature regionsmore densely can be desirable to ensure the
validity of the assumption that tangent planes vary smoothly
between neighboring particles. Such an adaptive sampling
strategy can be achieved by modifying Eq. 2 [6].

Using geodesic distances for surface sampling

For highly curved surfaces such as the human cortex, even
a strong degree of adaptivity does not produce a sampling
dense enough that nearby particles can be assumed to lie
on the local tangent planes, unless a very high number of
particles are used, which would be undesirable due to com-
putational cost. Additionally, there may be regions where
even dense sampling may not be enough to prevent interac-
tion between particles in geodesically distant regions due to
the folding pattern (Fig. 3).

One way to overcome this problem is to inflate the cortical
surface prior to optimizing correspondence [2,7]. The parti-
cles therefore live in the tangent planes of the inflated surface;
they are only pulled back to the original cortical surface for
correspondence evaluation purposes.

Amore direct way to resolve the problem of highly curved
surfaces is to use geodesic distances between particles rather
than Euclidean distance. However, geodesic distances are not
generally computable in closed form, and it would thus be
extremely expensive to compute a very large number of inter-
particle distances at every iteration of the correspondence
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A 

B 

C 

Fig. 3 Spatial proximity can be a false indicator of correspondence.
Point A is closer to C than to B (AC < AB). However, intuitively A
should correspond to B rather than to C, as C is located on the opposite
bank of the sulcus. A’s position is replicated on the right brain for ease
of comparison

optimization. However, as demonstrated in [3], it is possible
to precompute all pairwise distances on a fine 3D mesh rep-
resentation of the surface using GPU-based algorithms and
interpolate to the particle locations during the optimization
process. An interesting variation on this approach is using
the geodesic distances to given landmarks as a feature in the
generalized ensemble entropy formulation [12].

The notions of adaptive sampling and geodesic distances
are closely intertwined when highly curved objects are con-
sidered. In Fig. 3, using only geodesic distances may result
in no particles being placed in the fold containing C . Using
adaptive sampling but not geodesic distances will clearly
result in inappropriate neighborhood relations. Both tech-
niques are needed for a satisfactory solution in this scenario.

Normal consistency

In high-curvature regions, corresponding particles should
typically have similar normal directions. A simple way
to enforce this would be to use the generalized entropy
described in “Extension to features: generalized ensem-
ble entropy” section with a normal-related feature, such
as the inner product of the normal direction with a given
vector. A more general solution is to add an intershape
normal-consistency term to the objective function defined in
Eq. 5 to disambiguate correspondences near highly curved
regions [3].

Regression

Shape regression is an emerging tool with the goal of esti-
mating the continuous shape evolution from a set of observed
shapes and corresponding underlying variables, such as time
of the observation. Clearly, it is useful to have shape models
that can tease apart those aspects of shape variability that are
explained by the underlying variables and those that are not.
As we proposed in [9], this can be achieved in our framework
by minimizing the entropy of the residual ε̂ from a regres-

sion model rather than the residual ε from an average in the
Gaussian distribution model.

Results

In this section, we present a selection of applications demon-
strating the strengths of the entropy-based particle system.
We start by synthetic examples and present increasingly
complex structures to illustrate how the various extensions
discussed in this paper can be used together to tackle dif-
ficult correspondence problems. Specifically, we start with
the standard application of the basic model to spherical
and non-spherical surfaces and then add geodesic distances
and normal consistency for highly curved objects. Next, we
present a series of biological datasets where we show how
multi-object complexes are handled, how a typical statistical
shape analysis study can be conducted, and how the regres-
sion model is applied. Finally, we show why the generalized
entropy with user-defined features is necessary.

In the absence of a “gold standard” in the form of explicit,
dense manual landmarks, we evaluate the correspondence
quality indirectly via the quality of the implied shape model.
In particular, for synthetic datasets, we use PCA for assess-
ing the number of major modes of variation discovered in
the shape space and the “leak” into smaller modes, and com-
pare these to the “ground truth” based on the parameters
used for generating the dataset. For real datasets, we use
the variance of independent features (features independent
from those used for correspondence optimization) with the
underlying assumption that compact models are better rep-
resentations of the shape population.

Box with a bump

We begin with a simple experiment on closed curves in a
2D plane and a comparison with the 2D open-source MAT-
LABMDL implementation given by Thodberg [40]. For this
experiment, we study a population of 24 box-bump shapes,
each consisting of cubic b-splines with the same rectangle of
control points but with a bump added at a random location
along the top edge. One hundred particles and the original
formulation (i.e., Eq. 5) were used for the entropy algorithm
[4]. Both MDL and the particle method successfully identi-
fied the single mode of variation, but with different degrees
of leakage into orthogonal modes. In particular, MDL lost
0.34% of the total variation from the single mode, while the
particle method lost only 0.0015%. Figure 4 illustrates the
two different models. This experiment illustrates our indi-
rect correspondence evaluation strategy, which is based on
evaluating the quality of the shape model implied by the cor-
respondence results. Shapes from the particle method remain
more faithful to those described by the original training set,
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Fig. 4 “Box with a bump” experiment. The original formulation of
the particle correspondence algorithm, shown in top row, captures the
shape variation

even out to three standard deviations where the Thodberg
MDL description breaks down.

Two key features of the entropy-based particle system
may explain its superior performance compared to MDL
in this experiment, despite their similar objective functions.
First, the particle formulation allows for a more effective
optimization via gradient descent, which may result in the
avoidance of certain local minima and better convergence.
This argument is also supported by the findings of Ericsson
and Lstrom [41]. Second, the addition of the surface entropy
term forces a more thorough coverage of each surface in
the population. Many correspondence algorithms, including
MDL, often have the problem of avoiding “trouble zones,”
meaning that the samples are placed away from regions of
high curvature, or placeswhere a surfacemay differ fromoth-
ers in the population.While this effectively leads to a smaller
value of the objective function, it is not the desired behavior
since such regions are particularly important for capturing
the variability in the population. The surface entropy term in
our proposed method alleviates this problem by favoring a
thorough coverage of each surface.

Tori

The next synthetic example illustrates the seamless appli-
cation of the entropy-based particle system to surfaces of
non-spherical topology. For this purpose,wehave applied our
method to a set of randomly generated tori from a 2D distri-
bution, based on the small radius r and the large radius R [4].

The sample tori were chosen from a distribution with mean
r = 1, R = 2 and variation σr = 0.15, σR = 0.3, and the
constraint r < R was enforced. Figure 5 shows the particle
system distribution across two samples from this population,
using N = 250 particles/surface. The PCA shows that the
particle system successfully recovered the twomodes of vari-
ation, with only 0.08% leakage into smaller nodes. We note
that while the explicit correspondences between the surfaces
are only readily available via the individual particles sharing
the same index across the population (the particle index is
color-coded in Fig. 5), it is possible to obtain a continuous
warp between surfaces by interpolating between the parti-
cles, using a method such as thin-plate splines.

Coffee beans

To illustrate a high-curvature situation, we created a syn-
thetic population of ten “coffee beans” [3], each consisting
of a large ellipsoid with a smaller ellipsoid slot carved out.
The slot’s position and scale were randomly chosen from a
uniform distribution. When we apply the original formula-
tion (Eq. 5) of the entropy-based algorithm (Fig. 6, right),
we observe that the high-curvature regions near the slot are
poorly recovered.Whenwe add the normal-consistency term
and switch to using geodesic distances rather than Euclidean
distances, the correspondence results are improved and the
high-curvature area is effectively handled (Fig. 6, left). For
both scenarios, 1024 particles were used. Bothmethods iden-
tified two dominantmodes of variation, but with significantly
different amount of leakage into smaller modes (4 vs. 16%).

Complex of ten subcortical structures

The first biological dataset consisted of ten subcortical brain
structures (Fig. 7) semi-automatically segmented from MRI
scans of 15 autism subjects and ten controls (all male, 2years
old) [8]. Multi-object correspondences were computed to
produce a combined model of the groups. Euclidean dis-

Fig. 5 Particle correspondence
between synthetically generated
tori. Corresponding particles
between the two shapes have
matching colors
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Fig. 6 “Coffee bean”
experiment. Top first PCA
mode; bottom, second PCA
mode. Using normal penalty and
geodesic distances (left)
significantly improves the
results in the high-curvature
areas that are troublesome for
the original formulation of the
particle correspondence
algorithm (right)

Fig. 7 Mean brain structure complexes with average pose as recon-
structed from the Euclidean averages of the correspondence points.
The length in the surface normal direction of each of the pointwise
discriminant vector components for the autism data is given by the col-

ormap.Yellow indicates a negative (inward) direction, and blue indicates
a positive (outward) direction. Each structure is displayed in its mean
orientation, position, and scale in the global coordinate frame

tances (rather than geodesic) were used in this experiment,
since the geometry of each structure was relatively simple.
We sampled each complex of segmentations with 10,240
correspondence points, using 1024 particles per structure.
For comparison, we also computed models for each of the
ten structures separately and concatenated their correspon-
dences together to form a marginally optimized joint model.
While both methods lead to significant group differences
(p = 0.0087 with eight PCA modes for joint model and
p = 0.0480 with six PCA modes for marginal model),
we note that the result is an order of magnitude higher in
statistical power with the multi-object algorithm. This sug-
gests that the implied shape model captures the underlying
shape space better, making this approach more appropriate
for shape analysis studies. To illustrate the morphological
differences that are driving the global shape result, we visu-
alize in Fig. 7 the linear discriminant vector between the
two populations. This experiment suggests that the proposed
algorithm can be used to effectively model group differences
between clinical populations in multi-object complexes.

Head shape regression

The next experiment illustrates the use of the regression
model and provides further examples of open surfaces and
multi-object complexes [9]. The dataset includes 40 T1w

MRI scans (neonate to 5years old) in a study of growth of
head and brain shape; the head, cerebellum, and left and right
cerebral hemispheres were segmented. The particle corre-
spondence algorithm is applied with regression against age.
Figure 8 shows the changes in head shape with age.

Human cortical surface

Thefinal experiment illustrates employing features to improve
correspondence using DTI and structural MRI scans of
nine healthy adults. Cortical surfaces were reconstructed via
FreeSurfer. We compare three methods of correspondence
computation: FreeSurfer, the original entropy correspon-
dence (Eq. 5), and the generalized entropy method (“Exten-
sion to features: generalized ensemble entropy” section). For
the latter, we use probabilistic connectivitymeasurements [7]
to the corpus callosum, the brainstem and the caudate, with
seed segmentations provided by FreeSurfer. We use sulcal
depth as an additional feature. These features as well as the
inflation process are illustrated in Fig. 9.

The generalized method is expected to produce improved
correspondence over regions strongly identifiable by fea-
tures, and smaller improvement in other regions where no
relevant additional local information is provided. The goal
here is to illustrate how cortical correspondence can be
locally improved by using relevant data. In particular, since
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Fig. 8 Changes in head shape
as a function of log(age in
months). Corresponding
particles are shown

Fig. 9 The sulcal depth (SD)
and connectivity features on a
select subset of subjects. Sulcal
depth is defined as the length of
the path traveled by each vertex
during the inflation process. The
connectivity features are
computed via a probabilistic
connectivity algorithm and
projected to the cortical surface
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Table 1 Average and standard
deviation of cortical thickness
and sulcal depth (SD)
measurement variances across
the whole cortical surface and
across the temporal lobe, given
different correspondence maps

Sulcal depth Cortical thickness Cortical thickness
in temporal lobe

FreeSurfer 0.039 (0.003) 0.312 (0.010) 0.343 (0.04)

XYZ entropy 0.109 (0.003) 0.262 (0.006) 0.275 (0.01)

Connectivity+XYZ+ SD entropy 0.108 (0.003) 0.260 (0.006) 0.259 (0.01)

we observed fiber connections to the temporal lobe from both
the corpus callosum and the caudate, we expect improved
correspondence in this region.

As summarized in Table 1, FreeSurfer yields a much
tighter sulcal depth distribution than the entropy-based
method, which is to be expected as this is a biased evalu-
ation metric. However, entropy-based methods yield tighter
cortical thickness distribution overall. We particularly note
that the temporal lobe has above-average cortical thickness
variability for the FreeSurfer and XYZ-entropy methods,
identifying it as a potential “problem area.” The addition of
local connectivity features brings down the temporal cortical

thickness variability to below-average level, demonstrating
the impact of the local features.

Discussion and future work

This paper presents a review of the entropy-based particle
correspondence methods previously only shown in confer-
ence proceedings. Through numerous extensions and varia-
tions, we create a very flexible, groupwise, parameterization-
free, and computationally efficient framework that can

123



1230 Int J CARS (2016) 11:1221–1232

effectively handle objects of various topologies and/or with
complex geometry. Concurrently, this framework allows the
correspondence definition to be based on sample positions,
geometrical features such as normal direction or curvature,
or any user-specified local feature.

Better correspondence identification is of paramount
importance for shape analysis. The proposed groupwise
algorithm allows the robust construction of statistical shape
models by capturing the inherent variability in populations.
Such statisticalmodels are clinically relevant for both provid-
ing insight into the natural distribution of a given population,
e.g., by enabling identification of subphenotypes, and for
quantifying where a particular subject may fall within that
distribution, making it possible to assess deviations from the
healthy/“normal” range. Variability captured by statistical
shape models is often also used by segmentation algorithms.
The flexibility of our framework to handle a wide range of
surfaces boosts its relevance for studies, as illustrated on head
shapes, subcortical surfaces, and the cortical surface.

The idea of balancing a good sampling of the surfaceswith
a compact population description can be further extended in
a multitude of ways. A weighting factor α can be introduced
to Eq. 5:

Q = H(Z) − α

M∑

k=1

H
(
Pk

)
,

Then, the trade-off between the similarity term and the
regularization term can be explicitly manipulated, or the
regularization term can be made into a hard constraint by
choosing an arbitrarily large value for α.

Additionally, one can choose to optimize the correspon-
dence to fixed locations on a given template (perhaps an atlas
with expert annotations) or multiple objects with fixed par-
ticle configurations, which would be useful for comparing
two sets of objects. Similarly, one may wish to keep a sub-
set of fixed particles on each surface to allow for landmark
selection. These as well as a more sophisticated approach to
vector-valued features remain as future work.

A potential shortcoming of this method, as of all surface-
based correspondence methods, is that the inside of the
objects is not taken into consideration. For example, it could
be argued that subcortical structures should play a role in
determining cortical correspondence. In such applications,
a volumetric approach may be more suitable. The proposed
framework can also be extended [10] to allow the particles to
navigate in full 3D space rather than being restricted to the
2D manifold of the surface.

Because our approach does not use a parameterization,
there is no explicit control over the “ordering” of the particles.
In other words, the particles may “flip” in theory. In practice,
this is strongly discouraged by the surface entropy. To flip,

two particles would have to move either toward each other,
which is discouraged by the repelling forces from each other,
or “around” each other, which is discouraged by the repelling
forces from the neighboring particles. However, flippingmay
nevertheless occur, if the surface sampling is inadequate (no
nearby neighbors to interfere), the timestep is too large, or if
the attractiveness of the flipped configuration outweighs the
surface entropy term.

An implicit assumption is that each particle location has a
corresponding particle in every other object in the population.
This assumption may fail if the variation in the population
includes addition or removal of structural components, e.g.,
a tumor. Other correspondence methods typically deal with
this issue implicitly, by not enforcing complete coverage
of the surface such that “problem areas” can be avoided.
However, this approach also leads to incomplete representa-
tion of the surfaces, allowing structures with high variability
to be ignored (even if these structures are always present
throughout the population). Additionally, it fails to capture
the correspondence when it exists: If a structure exists in
half of the population, the correspondence in that half may
be important to know. An alternative would be to relax the
surface entropy by allowing particles to not have correspon-
dences in each subject. This would lead to trivial minima of
the objective function, where no particle has any correspond-
ing particles; an additional regularization term would likely
be necessary to prevent this.

An open-source implementation of the entropy-based par-
ticle correspondence algorithm and its various extensions
discussed in the manuscript is publicly available through the
NITRC website.1
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