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Abstract
Purpose In this paper, we investigate a framework for inter-
active brain tumor segmentation which, at its core, treats the
problemof interactive brain tumor segmentation as amachine
learning problem.
Methods Thismethodhas an advantageover typicalmachine
learning methods for this task where generalization is made
across brains. The problem with these methods is that
they need to deal with intensity bias correction and other
MRI-specific noise. In this paper, we avoid these issues by
approaching the problem as one of within brain generaliza-
tion. Specifically, we propose a semi-automatic method that
segments a brain tumor by training and generalizing within
that brain only, based on some minimum user interaction.
Conclusion We investigate how adding spatial feature coor-
dinates (i.e., i, j, k) to the intensity features can significantly
improve the performance of different classification methods
such as SVM, kNN and random forests. This would only be
possible within an interactive framework. We also investi-
gate the use of a more appropriate kernel and the adaptation
of hyper-parameters specifically for each brain.
Results As a result of these experiments, we obtain an
interactive method whose results reported on the MICCAI-
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Introduction

Brain tumor segmentation is primarily used for diagnosis,
patient monitoring, treatment planning, neurosurgery plan-
ning and radiotherapy planning. The task of brain tumor
segmentation is to locate the tumor and delineate different
sub-regions of the tumor, namely edema, non-enhanced, and
enhanced regions (see Fig. 1). A standard way to diagnose a
brain tumor is by using magnetic resonance imaging (MRI),
for which many different modalities can be used. The most
frequent MRI modalities used for brain tumor segmentation
are Flair, T1-weighted (also referred to as T1), T2-weighted
(also referred to as T2) and T1-weighted contrast-enhanced
(gadolinium-DTPA) which we refer to as T1C. These dif-
ferent modalities are often used jointly as they provide
complementary information for locating tumors.

Unfortunately, tumors (especially glioblastomas and
metastases) can appear almost anywhere in the brain. They
have no prior shape, and often have poorly defined edges.
Also, they visually present themselves in grayscales that are
present in healthy tissues as well. As a consequence, brain
tumor segmentation in practice is still done manually. Man-
ual segmentation is not only time consuming and tedious; it is
also subject to variations between observers and also within
the same observer [17].
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Fig. 1 Left T1C and T2 modality. Right groundtruth tumor segmenta-
tion

Many methods have been proposed to facilitate the tumor
segmentation process. Among them, automatic methods,
which rely on machine learning, are very popular and in
some cases very efficient [2]. These methods are trained on
a number of subjects and generalize on data which might be
gathered from different MRI scanners. Because there is no
intensity standardization among MRI scanners, this makes
generalization difficult for automatic methods. In an attempt
to overcome these difficulties, a lot of prepossessing steps are
made which can be time consuming. Also, to improve gen-
eralization, these methods often compute high-dimensional
feature vectors [17] which add to the processing time and
take up a lot of memory.

In this paper,we consider the specific problemof segment-
ing an imaged brain into four classes: edema, non-enhancing
tumor, enhancing tumor and healthy tissue (see Fig. 1). Note
that the non-enhancing tumor sometimes includes necrotic
tissue. Our approach is halfway between automatic and semi-
automatic methods. While machine learning methods train
on a pre-selected set of brains and then generalize to testing
brains, our method implements a “single brain” supervised
learning method. The user roughly selects brain voxels asso-
ciated to each class and then these voxels are used as training
data. The method then generalizes by labeling non-selected
voxels.

The main characteristics of our method are as follows:

– Since it treats each brain as a separate dataset, it is
immune to the multi-MRI disadvantages mentioned
above.

– Although it uses only6 simple features, it produces highly
accurate results.

– The segmentation process for a 240 × 240 × 168 brain
takes approximately 10s for our fastest method which
is much faster than most state-of-the-art methods which
can take up to 100min.

– The method is extremely memory efficient (50MB vs.
>2GB for other methods)

In this paper we first evaluate this framework on vari-
ations of three popular machine learning methods namely;
k-nearest neighbor classifier (kNN), support vectormachines
(SVM), random forests and boosted decision trees. Having
confirmed that SVMs give superior results, we propose better
distance metrics to be used by SVM classifier in the con-
text of this approach. We also investigate the importance of
performing hyper-parameter selection individually for each
brain, as opposed to using generic hyper-parameters for every
brain. Thanks to this investigation, we were able to signifi-
cantly improve the resulting brain segmentation system and
achieve a competitive performance compared to the methods
submitted to the brain tumor segmentation challenge online
evaluation benchmark [13].

Related work

Brain tumor segmentation methods can be divided into auto-
matic methods and semi-automatic (interactive) methods.
Semi-automatic methods are those relying on user interac-
tion. Most of these methods use either deformable models or
classification methods to perform segmentation (see Bauer
et al. [2] for a survey).

For automatic methods, machine learning classification
techniques are a tool of choice for designing such systems,
as they can easily integrate different MRI modalities as well
as other features. After integrating different intensity and tex-
ture features, these methods decide to which class each voxel
belongs to.

For instance, Festa et al. [13] used a series of intensity- and
texture-based features to make a feature space of over 300
dimensions, on which a random forest classifier was trained.
Tustison et al. and Reza et al. also used random forests [13].
Tustison et al. constructed a multi-dimensional feature space
by incorporating first order neighborhood statistical images,
GMM and Markov Random Field (MRF) posteriors, and
template differences. Lee et al. [11] performed binary seg-
mentation (tumor vs. non-tumor) using T1, T2, T1C in an
SVM framework followed by a variation of conditional ran-
dom fields to account for neighborhood relationships. Bauer
et al. [1] used a kernel SVM for multiclass segmentation of
brain tumors, where a CRF is used to regularize the results.

Schmidt et al. [17] compared the combination of many
different feature sets, such as binary mask, average intensity,
left to right symmetry. Luts et al. [12] also compared dif-
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ferent feature selection methods such as Fisher discriminant
analysis, Kruskal–Wallis, relief-f and ARD for LS-SVM.

Because automaticmethods train onmultiple brains, these
methods are vulnerable to the variations in the MRI data.
These variations come from the fact that MR images are
generated by different machines and each have their own
unique noise and intensity level. To overcome this difficulty,
most of these methods rely on a large number of features,
which requires a lot of memory and computation time.

As for semi-automatic methods, deformable models are
often employed. These algorithms are usually initialized
by a user drawing a contour around the tumor. Following
an energy minimization criterion, the contour shrinks down
toward the borders of the tumor [9,20]. Hamamci et al. [6]
used a so-called CA-based method on T1 weighted images
to produce a probability map for the tumor, based on seeds
provided by the user. This probability map is later used in
a level set framework. Later, they extend their method to
accept multi-modal MRI inputs namely T1C and Flair. For
a two class segmentation (tumor, edema) this method takes
1min for user interaction and 10–20min for segmentation
depending on the size of the tumor [5]. There exists a line of
research focusing on how to efficiently initialize the active
contour and thus remove user interaction. In this context, the
location of the tumor is roughly determined by some other
method and deformable models are used as post-processing
for refinement. Ho et al. [7] use the difference between T1
and T1C together with a Gaussian mixture model (GMM) to
get a probability map of the tumor, which is used in a level
set model to initialize the contour. Prastawa et al. [16] used
voxel registration with an atlas as a way to get a probability
map for abnormalities. An active contour is then initialized
using this probability map and iterates until the change in
posterior probability is below a certain threshold.

Although deformable models have been popular in med-
ical image analysis, they have some significant disadvan-
tages. Because these methods rely on image gradients, they
are likely to fail when the object of interest does not have
well-definedborders. The contourmayget attracted by strong
gradients from surrounding objects. Incorporating different
features into the model is also non-trivial. Finally, without a
GPU implementation, these methods can be extremely slow.

There has been research on ensembling results from mul-
tiple methods applied to brain tumor segmentation. Huo et
al. [8] used three segmentation methods: fuzzy connected-
ness, GrowCut and voxel classification using SVM to gen-
erate candidate segmentations for each voxel. Confidence-
based averaging (CMA) was used to make the ensemble.

Although our approach is a semi-automatic method, it
shares with automatic methods the use of a machine learn-
ing classification algorithm, ran on a feature representation
of voxels and improved by a spatial dependency model. The
main difference is that generalization is performed within

each brain, based on the training data provided by the user’s
interaction. This simplified generalization problem allows
us to use a very simple feature space, yielding an interactive
segmentation method that is fast and effective. Vaidyanathan
et al. [19] used a similar, semi-automatic, kNN classification
method, applied to proton density, T1 and T2 modalities.
Cai et al. [3] also proposed a semi-automatic segmentation
method that uses instead Quadratic Discriminative Analysis
to perform multi-class segmentation. However, they did not
use the 〈i, j, k〉 voxel positions as features (see “k-nearest
neighbors (kNN)” section) nor did they deal with label spa-
tial dependency modeling (see “Conditional random fields
(CRF)” section), which we found to play a crucial role in
obtaining competitive performances.

Investigating within-brain generalization

Within-brain generalization treats the segmentation of each
brain as its own machine learning experiment, in which a
classifier is trained (on user-labeled voxels) and used to gen-
eralize to new observations (voxels not labeled by the user).

This approach is motivated by the observation that, with
current computers and for relatively small data setswith small
feature spaces, a machine learning experiment (including
hyper-parameter selection) can actually be performed within
a very short delay, even for more sophisticated algorithms
that require more than simply storing the data (as in kNN).
Moreover, segmenting only within a given brain removes the
challenging problem of generalizing across brain imaging
acquisition conditions.

In what follows, we describe the details of our approach
and enumerate the different variations we explored in this
direction. Figure 2 shows our method in a nutshell. We
explain these steps in “Investigating within-brain general-
ization” section.

Feature representation and manual selection

The first step of our method is to collect voxel label data
for a given brain image to segment. This is done by the
user who roughly selects a subset of voxels associated with
each class, through a graphical interface. The number of
strokes required for obtaining the training data depends on
the number of tumors in a given brain. However, usually
one or two strokes per-class is enough. The user interaction
step takes 1min on average and up to 2min for complicated
tumors or noisy MRIs. We will note as B a binary mask
such that Bv ∈ {0, 1} indicates whether a voxel v has been
manually selected (i.e., labeled) or not. T will then be the
class-selection mask where Tv ∈ {edema, non-enhancing
tumor, enhancing tumor, healthy} is the class label associ-
ated with the voxel v by the user.
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Fig. 2 Our method in a nutshell. The segmentation is performed on the entire brain based on data provided by user interaction

We must also decide on a feature representation for the
different voxels. Each brain image I is assumed to come
with 3 MRI modalities (T1C, T2, Flair), such that I is a
tensor where each voxel v in I is a 3D vector containing
the grayscale values of the modalities. These modalities are
often chosen because of their discriminative power. In fact,
while the non-enhanced necrosis versus edema can be dis-
tinguished from T1Cmodality, the non-enhanced active area
and the edema can be distinguished with the Flair modality.
This is represented by I 1v , I 2v , I 3v . By converting each voxel
v to an N-dimensional feature representation Fv , it will be
possible to train a classifier to predict the voxel label Tv , for
every voxel, from its feature representation. We propose a
simple 6 dimensional feature representation, which consists
of the MRI modality grayscales and the 3d position of voxel
v: Fv = (I 1v , I 2v , I 3v , i, j, k). These features are normalized
between zero and one.

At this point, from each labeled voxel, we can thus gen-
erate a training pair (Fv, Tv) and construct a training set D
that we shall use to classify the non-selected voxels using a
classifier.

Voxel classifiers

Having built the training set through manual interaction, the
next step is to train a classifier and generalize the segmenta-
tion to non-selected voxels.We investigate the use of different
machine learning algorithms to produce a classifier. While
we could, theoretically, consider any existing algorithm, it
is natural to prefer algorithms that are known to be robust
and fairly “black box” in their use. For instance, we do not
want the user (typically a doctor or a neuroscientist) to have
to manually tune hyper-parameters for each brain, with trial
and error. So we chose algorithms that are known to be eas-
ily tuned or for which default hyper-parameters tend to work
well. These algorithms have also shown to be successful for
automatic brain tumor segmentation [13,17].

k-Nearest neighbors (kNN)

To start, k-nearest neighbor (kNN), one of the simplest clas-
sifiers, is considered. For every voxel v, kNNfinds among the

training dataD, the set of k-nearest neighbors (Nv) based on
Fv . Let Nv = ((Fv1, Tv1), (Fv2 , Tv2), . . . , (Fvk , Tvk )) where
Fvi is the ith closest training point of Fv . The kNN classi-
fication rule assigns a class label to some voxel v following
this equation

Tv = argmax
c

1

k

∑
(
Fvi ,Tvi

)∈Nv

δ
(
Tvi , c

)
(1)

where c is a class label and δ(a, b) returns 1 when a = b and
0 otherwise. Note that this formulation can be seen as using
a posterior class probability:

p (Tv = c|Fv) = 1

k

∑
(
Fvi ,Tvi

)∈Nv

δ
(
Tvi , c

)
(2)

which states that the probability of an observation Fv of
being in class c is given by the proportion of nearest neigh-
bors assigned to that class. This probabilistic formulation of
the classifier will be reused for the unary terms of a CRF,
described in “Conditional random fields (CRF)” section.

Support vector machine

The support vector machine (SVM) [4] is probably the most
frequently used classifier. This is in part due to the existence
of many freely available, mature and easy-to-use implemen-
tations. In its parametric form, it is a linear classifier that
attempts to classify data points by maximizing the margin
between the decision boundaries of the different classes and
their closest points.

Of higher interest in our setting is the kernelized version
of SVM [10]. A choice for the kernel that often proves suc-
cessful is the radial basis function (RBF) kernel:

K (
Fj , Fv

) = exp
(
−γ ‖ Fj − Fv ‖22

)
. (3)

where γ is a hyper-parameter. Also, a slack variable C is
used to relax the constraints in the SVM optimization prob-
lem [10]. The resulting classifier effectively takes the form
of a template matcher, which compares a given input with all
training examples, each voting for their class with a weight
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related to their similarity with the input (as modeled by the
kernel). In this sense, it is similar to the kNNclassifier, though
the former often outperforms the later in practice.

It is also possible to obtain a posterior class probability
p(Tv = c|Fv) from the SVM. This is done by training the
parameters of an additional sigmoid function of the form

P (Tv = c|Fv) = 1

1 + exp (A f (Fv, c) + B)
(4)

where f (Fv, c) is the unthresholded output of the SVM and
A, B are the parameters to be estimated [15]. Here again, the
posterior probability function will be used later on, for the
CRF unary term.

Ensemble of decision trees

Another popular approach to classification are ensembles of
decision trees. Each decision tree is trained by recursively
partitioning the feature space, according to some heuristic
that favors a good separation of classes. Once a criterion for
stopping the tree growth is reached, a conditional class dis-
tribution is then computed at each leaf, based on the training
data falling into the corresponding partition. Specifically, the
class distribution p(Tv = c|Fv) is set as

P(Tv = c|Fv) = Nc

N
(5)

where Nc is the relative frequency of examples belonging to
class c of the partition in which Fv falls and N is the total
number of examples.

The performance of a single decision tree is often dis-
appointing. However, by constructing an ensemble of such
trees, a competitive classification performance is achiev-
able. There are different approaches to combining decision
trees into an ensemble. The two most popular algorithms
for ensembles of decision trees are random forests and
Adaboost [14]. We considered these two algorithms for our
experiments.

Distance metric/kernel

The performances of the SVM classifier often depend on the
choice of metric or kernel used to compare data points. Thus,
it is generally beneficial to adapt this choice to each individ-
ual problem. For example, the conventional RBF kernel puts
equal weight to each dimension of the feature space. How-
ever, in our within-brain framework, the spatial coordinate
features 〈i, j, k〉 and the modality features actually play dif-
ferent roles. Intuitively, one role of the spatial coordinates
is to avoid that a user-labeled voxel starts influencing the
prediction made at a voxel far away from it, e.g., to avoid
false positives in faraway regions. The modality features are

thus mostly informative within the vicinity of a user-labeled
voxel.

Therefore, we might want to weight the modality and spa-
tial features differently, within the RBF kernel of the SVM.
To maintain positive-semidefiniteness of the kernel, we sim-
ply opt for using two different values of γ for MRI modality
intensities and the spatial features:

K (
Fj , Fv

) = exp
(−γ1 ‖ Fj,{1:N } − Fv,{1:N } ‖22
− γ2 ‖ Fj,{N+1:N+3} − Fv,{N+1:N+3} ‖22

)
.

(6)

This kernel is also equivalent to the product of two RBF ker-
nels, each defined on the subspace ofmodalities and of spatial
coordinates, and each having their own hyper-parameters.
The hyper-parameters required by this approach are γ1 and
γ2.

Importance of within-brain hyper-parameter selection

When training a classifier, hyper-parameter values must be
specified. One approach which is commonly implemented
[13] is to choose hyper-parameters by cross-validation in
a grid search approach on a subset of brains and fix the
selected set of hyper-parameters for the rest of the brains.We
hypothesize given the variations in MRI data, using a fixed
set of hyper-parameters for generalization is not optimal. An
alternative way is to perform hyper-parameter selection indi-
vidually for each brain, in order to adapt to the specificity of
each case. We measure the potential gains of this approach
in our experiments when selecting the hyper-parameters for
the SVM, namely the slack variable C and the coefficient
γ . A detailed discussion of this experiment is presented in
“Robustness of hyper-parameter selection” section.

Conditional random fields (CRF)

As mentioned earlier, segmentation accuracy can easily be
improved by leveraging a model of the 3D spatial regular-
ity of labels. One way of enforcing spacial regularity is to
define a joint (conditional) distribution over the labels of all
voxels in the brain that expresses the expected dependen-
cies between neighboring voxels. Conditional random fields
(CRF) provide a convenient formalism for that. CRFs model
directly the posterior probabilities of the labels given the
features P(T |F) directly, alleviating the need to model the
distribution over the feature vectors F and allowing us to
construct rich conditionals P(T |F).

Formally speaking,weuse the following form for P(T |F):

P(T |F) = 1

Z

∏

v

φ (Fv, Tv) φ (Tv, Fv, Tr , Fr ) where r ∈ ηv

(7)
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where Z is a normalization term, φ are clique potential func-
tions and ηv is the set of voxels surrounding v.

Segmenting a brain requires that we find the labeling
T with highest probability P(T |F). This leads to an opti-
mization problem of the form T = argmaxT

∏
v φ(Fv, Tv)

φ(Tv, Tr ) or, equivalently,

T = arg min
T∈T

∑

v

(
V (Fv, Tv) +

∑

r∈ηv

I (Tv, Fv, Tr , Fr )

)
.

(8)

where we set the equivalence V (Fv, Tv) = − logφ(Fv, Tv)

and I (Tv, Fv, Tr , Fr ) = − logφ(Tv, Fv, Tr , Fr ).
In our case, wemodel the unary terms V (Fv, Tv) by taking

the negative log of the posterior distribution

V (Fv, Tv) = − log (P (Tv|Fv)) (9)

specified in Eqs. (2), (4) or (5). As for the pairwise term, we
set it to be

I (Tv, Fv, Tr , Fr )=λ (1 − δ(Tv, Tr )) exp

(−‖Fv − Fr‖
σ 2

)
.

(10)

The choice of these unary and pairwise terms allows us to
perform the optimization of Eq. (8) using the graphcut algo-
rithm.

We refer to the segmentation methods using this label
dependency model as kNN-CRF, SVM-CRF, and DT-CRF,
depending on the unary term used.

Experiments

Experimental setup

All our experiments were conducted on real patient data
obtained from the brain tumor segmentation challenge
dataset (BRATS2013) [13] as part of the MICCAI con-
ference. The BRATS2013 dataset is comprised of 3 sub-
datasets. The training dataset, which contains 30 patient
subjects all with pixel-accurate ground truth (20 high-grade
and 10 low-grade tumors); the test dataset which contains 10
(all high-grade tumors) and the leaderboard dataset which
contains 25 patient subjects (21 high grade and 4 low-grade
tumors). There is no ground truth provided for the test and
leaderboard datasets. For each subject there exist 4 modal-
ities which are co-aligned together, namely: T1, T1C, T2
and Flair. In our experiments, we used T1C, T2 and Flair
only. We found T1 to be redundant with T1C and using
it did not improve the overall performance of the model.

For each brain, the user is asked to manually label voxels
in only two 2D slices for each class. The choice of slices
depend on the size and spread of the tumor. Considering
the fact that the user can choose slices from any view (i.e.,
axial, sagittal and coronal), the tumor coverage is sufficient
and the results are not very sensitive to the slices chosen
for labeling. On average, only 0.4% of the voxels contain-
ing pathology and 0.03% of the voxels corresponding to
healthy tissue were manually selected, thus providing mini-
mal labeled data to the algorithm. To make operations faster,
we disregard all the voxels outside of the skull and consider
them as healthy.

The quantitative results for each method was obtained
from the BRATS online evaluation system, which provides
Dice, Specificity and Sensitivity asmeasures of performance.
These measures are defined as follows:

Dice(P, T ) = |P1 ∧ T1|
(|P1| + |T1|) /2

,

Sensitivity(P, T ) = |P1 ∧ T1|
|T1| ,

Specificity(P, T ) = |P0 ∧ T0|
|T0| ,

where P represents the model predictions and T represents
the ground truth labels. We also note as T1 and T0 the subset
of voxels predicted as positives and negatives for the tumor
region in question. Similarly for P1 and P0 [13].

We report these measures for the test subjects over the
three categories considered by the BRATS evaluation (i.e.,
complete, core, enhanced). The complete category is the
union of classes containing un-healthy tissue. i.e., {l|l ∈
[necrosis, edema, enhancing]}, the core category are classes
containing tumor core, i.e., {l|l ∈ [necrosis, enhancing]}
and the enhancing category is the enhancing tumor class,
i.e., {l|l ∈ [enhancing]}. The online evaluation system
also provides a ranking for every method submitted for
evaluation. This includes methods from the 2013 BRATS
challenge published in [13] as well as anonymized unpub-
lished methods for which no reference is available. The
methods in each table presented in this section are ordered
according to the ranking provided by the online evaluation
system.

Please note that we could not use the BRATS 2014 dataset
due problemswith both the system performing the evaluation
and the quality of the labeled data. For these reasons the
old BRATS 2014 dataset has been removed from the official
website and, at the time of submitting this manuscript, the
BRATS website still showed: “Final data for BRATS 2014
to be released soon” For these reasons, we decided to focus
on the BRATS 2013 data. Also, this article does not contain
any studies with human participants performed by any of the
authors.
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Results and discussion

In this section, we report experimental results obtained with
the machine learning methods presented in “Voxel classi-
fiers” section. This includes linear SVM (LSVM), kernel
SVM with rbf kernel (KSVM), our proposed product kernel
SVM (PKSVM), kNN, decision trees trained with AdaBoost
(ADT), and random forests (RDT). All these methods have
been explored with and without the CRF. The CRF parame-
ters α and β were set for each method, by cross-validation
on 6 brains on the training set. We also investigate the extent
to which adding spatial features 〈i, j, k〉 helps improving
the performance. This is noted by adding a “∗” next to the
method’s name.

kNN

The results for the kNN related experiments are presented in
Table 1. We first made an experiment without including the
〈i, j, k〉 position features in the feature vector as presented
by Vaidyanathan et al. [19]. Since his method uses neither
the spatial coordinate features nor the CRF regularization, it
performs significantly worse than other kNN related exper-
iments. While adding the spatial coordinates to this method
improves the result by a significant margin, the best perfor-

mance is achieved when we use both spatial coordinates and
a CRF regularization.

SVM

The results for the SVM-related experiments are presented
in Table 2. Results confirm that using spatial coordinate fea-
tures (shownwith “*”) and using theCRFmodel (shownwith
“−CRF”) improve the performance of both a linear SVM
(LSVM) and an RBF kernel SVM (KSVM). It is also quite
clear from this experiment that the nonlinearity of the ker-
nel SVM is crucial, as it significantly outperforms the linear
SVM (LSVM).

As for the PKSVM method which stands for the RBF
product kernel SVM presented in “Distance metric/kernel”
section [c.f. Eq. (7)], it clearly improved the kernel-SVM
and kernel-SVM+CRF results. This underlines the relative
importance of the spatial coordinate features 〈i, j, k〉 versus
the input T1, T2 and Flair modalities.

Decision trees

For these experiments, we fixed the number of decision trees
for AdaBoost (ADT) and random forests (RDT) to 100 and

Table 1 Dice, Specificity and Sensitivity measures for kNN methods on BRATS-2013 test set

Method Dice Specificity Sensitivity

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

kNN-CRF* 0.85 0.75 0.60 0.91 0.85 0.77 0.78 0.69 0.56

kNN* 0.81 0.68 0.65 0.76 0.62 0.62 0.90 0.84 0.73

kNN-CRF 0.80 0.69 0.55 0.92 0.83 0.75 0.74 0.63 0.48

kNN 0.65 0.52 0.53 0.59 0.49 0.50 0.77 0.68 0.65

Bold values indicate top performance
“∗” the use of spatial features
Table 2 Dice, Specificity and Sensitivity measures for various SVM methods on the BRATS-2013 test set

Method Dice Specificity Sensitivity

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

PKSVM-CRF* 0.86 0.77 0.73 0.88 0.85 0.76 0.78 0.68 0.58

KSVM-CRF* 0.84 0.75 0.70 0.87 0.77 0.72 0.82 0.79 0.71

PKSVM* 0.82 0.71 0.69 0.84 0.73 0.71 0.80 0.76 0.71

KSVM* 0.81 0.68 0.65 0.76 0.62 0.62 0.90 0.84 0.73

KSVM-CRF 0.74 0.67 0.53 0.82 0.82 0.79 0.73 0.61 0.45

LSVM-CRF* 0.79 0.64 0.51 0.86 0.74 0.70 0.74 0.62 0.45

LSVM* 0.69 0.59 0.62 0.65 0.54 0.47 0.84 0.76 0.59

LSVM-CRF 0.72 0.60 0.46 0.77 0.66 0.59 0.72 0.61 0.44

KSVM 0.65 0.50 0.50 0.61 0.49 0.49 0.75 0.63 0.58

LSVM 0.51 0.35 0.45 0.48 0.35 0.43 0.73 0.59 0.59

Bold values indicate top performance
“∗” the use of spatial features
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Table 3 Dice, Specificity and Sensitivitymeasures for ensemble of decision treeswithAdaBoost (ADT) and random forests (RDT) onBRATS-2013
test dataset

Method Dice Specificity Sensitivity

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

RDT* 0.81 0.69 0.64 0.83 0.71 0.64 0.79 0.75 0.70

RDT-CRF* 0.82 0.69 0.51 0.92 0.83 0.79 0.73 0.61 0.50

RDT-CRF 0.80 0.66 0.49 0.92 0.83 0.78 0.71 0.60 0.40

ADT-CRF* 0.79 0.64 0.51 0.88 0.75 0.71 0.72 0.61 0.45

ADT-CRF 0.78 0.63 0.50 0.87 0.73 0.67 0.72 0.61 0.45

ADT* 0.73 0.57 0.58 0.73 0.60 0.59 0.75 0.64 0.66

RDT 0.67 0.55 0.55 0.66 0.55 0.53 0.72 0.65 0.65

ADT 0.65 0.48 0.54 0.66 0.55 0.53 0.69 0.52 0.62

Bold values indicate top performance
“∗” the use of spatial features
Table 4 The effect of having a fixed selection of hyper-parameters for kernel SVM and product kernel SVM

Method Dice Specificity Sensitivity

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

PKSVM-CRF* 0.86 0.77 0.73 0.88 0.85 0.76 0.78 0.68 0.58

KSVM-CRF* 0.84 0.75 0.70 0.87 0.77 0.72 0.82 0.79 0.71

FixedKSVM-CRF* 0.82 0.69 0.56 0.93 0.82 0.78 0.75 0.64 0.49

FixedPSVM-CRF* 0.72 0.56 0.55 0.71 0.62 0.58 0.73 0.65 0.65

Bold values indicate top performance
“∗” use of spatial features

the leaf size to 1. For AdaBoost, decision stumps were used.
The quantitative results are shown in Table 3. While adding
spatial features are beneficial for both random forests and
AdaBoost, using the CRF model is mostly beneficial except
for random forest without spatial coordinates. However, the
segmentation systems relying on decision trees tend to be
worse than using kNN or SVM methods.

Robustness of hyper-parameter selection

In our method when using the SVM as the classifier,
the hyper-parameters (regularization constant C and kernel
hyper-parameters γ , γ1 and γ2) were always cross-validated
for each brain individually, using an automated grid search.
For this purpose we create a smaller training and validation
set (with proportions of 70% for the training set and 30% for
validation set) from the sub-sampled interaction points. The
hyper-parameters are selected based on the performance on
the validation set. On the other hand, for automatic methods,
a fixed set of hyper-parameters is used for generalization.
Given the variation of the MRI data and tumor types, we
hypothesize that using a fixed set of hyper-parameters will
degrade the performance quite significantly.

To evaluate the importance of performing per-brainmodel
selection, we conducted an experiment wherewe used a fixed
configuration of hyper-parameters for all subjects. For this

experiment, we considered our top two segmentation meth-
ods, PKSVM-CRF* and KSVM-CRF*. The values of the
hyper-parameterswere chosen by taking the hyper-parameter
value most frequently selected by these methods, across all
the brains. The idea was to pick values that are most likely
to work well in general. For the KSVM-CRF*, C was set to
1 and γ to 5 and for the PKSVM-CRF*, C was set to 1, γ1
to 100 and γ2 to 10.

The results (Table 4) show a decrease in performance
if fixed hyper-parameters are used for all brains. We also
performed this experiment on the BRATS training data (not
shown here), and the performance decreased evenmore. This
was not unexpected, since the training data ismore varied and
actually consists of both high-grade tumors and low-grade
tumors, while the test data only contains high-grade tumors.

While it appears the tuning of the SVM’s hyper-parameter
to each brain is beneficial, we tested the extent to which small
changes to the optimal hyper-parameters would affect the
performance. This is meant to simulate the fact that cross-
validation might not always find the same hyper-parameters
between variations on the manually labeled voxels. In order
to measure how resilient our method is to slight hyper-
parametric shifts, we ran another experiment to measure the
sensitivity of our model. We did so by randomly selecting 20
brains from the BRATS training data, trained an SVMwhose
hyper-parameters have been obtained from cross-validation.
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Fig. 3 Sensitivity of the model with respect to the gamma hyper-
parameter

We then added noise to the hyper-parameters and measured
the effect on the resulting segmentation. The noise corre-
sponded to Gaussian noise, whose standard deviation was
set to a certain percentage of the hyper-parameters’ values.
Figure 3 shows the resulting Dice measure for different noise
level. As one can see, even with a noise level corresponding
to a corruption of 25% of the hyper-parameter values, the
end result is still close to the one obtained without any noise.

Finally, the importanceof optimizing thehyper-parameters
was found to be less crucial for the other methods. For kNN,
we evaluated the effect of using different values of k, with
k = 3 consistently producing higher performance. The same
type of experiment was performed to measure the effect of
using different number of trees and leaf size in ADT and
RDT. For these methods, setting the number of decision trees
to 100 and leaf size to 1 always worked well.

Speed-up procedure

Every segmentationmethodpresented in this paper usesman-
ually selected voxels as their input. However, these selected
voxels often carry out similar information. That is especially
true for neighboring voxels whose 〈i, j, k〉 position is almost
the same, and whose T1, T2, Flair values are likely to be
identical. Thus, in order to speed-up the segmentation pro-
cedure, one can randomly down-sample the training data. To
have an overall idea to what extent we can down-sample the
data without hurting too much the overall precision, we con-
ducted an experimentwherewe divide the training points into
healthy and non-healthy subsets and subsample them sepa-
ratelywhile trying to keep equal proportions in the un-healthy
classes and also balanced proportion for the healthy ver-
sus union of un-healthy classes. In other words, the healthy
class comprises of roughly 50% of the training data, while
non-enhanced, edema and enhanced classes each take about
16%. The outcome of this process is a smaller training set
but with roughly the same proportion of healthy points and
non-healthy points. Figure 4 shows the result of this exper-

iment. The curves were obtained by averaging the results
of 20 randomly selected brains from BRATS training data.
The horizontal axes in Fig. 4 shows the number of training
points in the subsampled training set. As shown in Fig. 4a,
with maximum number of training points (i.e., 3000) we get
an average Dice measure of 0.72 and by considering 1000
trainingpoints the averageDicemeasure barely drops to 0.71,
while the processing time decreases by 60%. Thus, all exper-
iments submitted to the BRATS website were done with this
subsampling measure.

Conclusion

Putting it all together

We finally present how our top performing methods com-
pare with other state-of-the-art methods. The BRATS official
website provides a ranking system for this purpose. How-
ever, because the BRATS organizers have recently made all
methods anonymous, a complete comparison is not possible.
For that reason, we rank our method based on the MICCAI-
BRATS 2013 challenge results for which references to the
methods were available. This is shown in Table 5.1 As one
can see, PKSVM-CRF* and KSVM-CRF* are ranked sec-
ond and third respectively, closely behind Tustison et al. and
kNN-CRF* is ranked 6th in this table. Using the spatial fea-
tures 〈i, j, k〉, and CRF post-processing is vital to produce
highly accurate results. Many methods in this table (like that
of Tustison et al., Reza et al. and Festa et al.) use random
forests with a large number of features. In our case, ran-
dom forests did not perform as well as the SVM or kNN
methods. This might be due to the low dimensionality of our
feature space. Recently Subbanna et al. [18] published com-
petitive results on the BRATS 2013 dataset, reporting Dice
measures of 0.86, 0.86, 0.77 for Complete, Core and Enhanc-
ing tumor regions. Since they do not report Specificity and
Sensitivity measures, a completely fair comparison with that
method is not possible. However, as mentioned in [18], their
method takes 70min to process a subject, which is signifi-
cantly slower than our method.

To further validate ourmodel, we present results of our top
performing methods on the BRATS 2013 leaderboard and
compare it with published methods which reported results
on that same dataset. Note that as with BRATS 2013 test
set, results from other methods are currently available on the
online scoreboard but for which no reference is available.

1 Please note that the results mentioned in Table 5 are from methods
competing in the BRATS 2013 challenge for which a static table is
provided (https://www.virtualskeleton.ch/BRATS/StaticResults2013).
Since then, other methods have been added to the score board but for
which no reference is available.
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(a) (b)

Fig. 4 Sensitivity of the model with respect to the number of training points. aVariation in average Dice measure, while, b variation in the average
processing time and memory usage

Table 5 Comparison of our top implemented architectures with the state-of-the-art methods on the BRATS-2013 test set

Method Dice Specificity Sensitivity

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

Tustison 0.87 0.78 0.74 0.85 0.74 0.69 0.89 0.88 0.83

PKSVM-CRF* 0.86 0.77 0.73 0.88 0.85 0.76 0.78 0.68 0.58

KSVM-CRF* 0.84 0.75 0.70 0.87 0.77 0.72 0.82 0.79 0.71

kNN-CRF* 0.85 0.75 0.60 0.91 0.85 0.77 0.78 0.69 0.56

Meier 0.82 0.73 0.69 0.76 0.78 0.71 0.92 0.72 0.73

Reza 0.83 0.72 0.72 0.82 0.81 0.70 0.86 0.69 0.76

Zhao 0.84 0.70 0.65 0.80 0.67 0.65 0.89 0.79 0.70

Cordier 0.84 0.68 0.65 0.88 0.63 0.68 0.81 0.82 0.66

Festa 0.72 0.66 0.67 0.77 0.77 0.70 0.72 0.60 0.70

Doyle 0.71 0.46 0.52 0.66 0.38 0.58 0.87 0.70 0.55

Bold values indicate top performance
Our implemented methods are shown in italic
“∗” the use of spatial features

Results of published methods are presented in Table 6. As
can be seen, our top approaches out perform state-of-the-art
methods on this dataset.

Please note that since BRATS2012 dataset is a subset of
BRATS2013 leaderboard and that more methods are com-
peting on the BRATS2013 leaderboard, we did not include
results for the 2012 dataset.

Figure 5 shows a visualization of segmentation results,
for different variations of our SVM method. This illustrates
the contribution of adding spatial features, using a CRF and
using our improved kernel function, in improving the general
performance of the SVM approach.

Processing time and memory usage

A key advantage of our proposed method is in having a very
small processing time (1min 40s in total which includes the
user interaction) and memory usage, while maintaining high
accuracy. Due to the low dimensionality of our feature space,

it only takes up, on average, 50MB of RAM to store the
feature space of a brain. This is very small compared to state-
of-the-art methods, whose memory footprint of the feature
space is on the order of GB’s. For example, Festa et al. use
a feature space of 300 dimensions for their random forest
approach which would take up to 2.7GB’s. Tustison et al.,
Reza et al. andMeier et al. also take a similar approach using
random forests [13]. These methods rely on a high number of
texture features which are computationally time consuming
and memory wise expensive.

Apart from the feature space, our proposed methods have
different speed and memory footprint. We can make a com-
parison in accuracy, speed and memory usage as presented
in Table 7. The processing time was measured on an 8-core
processor and includes both training and testing. The time
required by graphcut inference is the same for all methods
and involves only an additional 8 s. As shown in Table 7,
PKSVM-CRF* has the highest accuracy but requires a higher
processing time (35s) and memory usage (7.7MB), on top
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Table 6 Comparison of our top implemented architectures with the state-of-the-art methods on the BRATS-2013 leaderboard set

Method Dice Specificity Sensitivity

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

PKSVM-CRF* 0.83 0.69 0.59 0.86 0.78 0.55 0.84 0.71 0.67

KSVM-CRF* 0.81 0.68 0.56 0.81 0.75 0.61 0.83 0.69 0.58

kNN-CRF* 0.79 0.66 0.54 0.77 0.72 0.55 0.85 0.70 0.61

Tustison 0.79 0.65 0.53 0.83 0.70 0.51 0.81 0.73 0.66

Zhao 0.79 0.59 0.47 0.77 0.55 0.50 0.85 0.77 0.53

Meier 0.72 0.60 0.53 0.65 0.62 0.48 0.88 0.69 0.6

Reza 0.73 0.56 0.51 0.68 0.64 0.48 0.79 0.57 0.63

Cordier 0.75 0.61 0.46 0.79 0.61 0.43 0.78 0.72 0.52

Bold values indicate top performance
Our implemented methods are shown in italic
“∗” the use of spatial features

Fig. 5 Illustration of brain tumor segmentation maps predicted by different variations of SVM. Top row from left to right T1C modality, KSVM,
KSVM*, PKSVM*. Bottom row from left to right ground truth, KSVM-CRF, KSVM*-CRF, PKSVM*-CRF

Table 7 Best performing methods for each machine learning category with average processing time and memory usage

Method Dice Specificity Sensitivity Time (s) Memory

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

PKSVM-CRF* 0.82 0.71 0.69 0.84 0.73 0.71 0.80 0.76 0.71 35 7.7MB

KSVM-CRF* 0.81 0.68 0.65 0.76 0.62 0.62 0.90 0.84 0.73 10 75KB

kNN-CRF* 0.81 0.68 0.65 0.76 0.62 0.62 0.90 0.84 0.73 3 40KB

RDT* 0.81 0.69 0.64 0.83 0.71 0.64 0.79 0.75 0.70 10 120KB

Bold values indicate top performance
“∗” the use of spatial features
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of the 50MB required to store the feature space. On the other
hand, KSVM-CRF* and kNN-CRF* are closer to real-time
implementations with negligible memory consumption. This
allows the expert to interact in real-time with the software.
That being said, all methods presented in Table 7 are sig-
nificantly faster than state-of-the-art methods. For example,
Tustison’s method takes around 30min to process a brain as
mentioned in Menze et al. [13].

In this paper we evaluated the capability of within brain
generalization using a variety of classifiers. We showed
that the SVM reached the best performances, thanks in
part to a kernel function specifically adapted to our feature
space. Most interestingly, we also showed that adopting a
fixed hyper-parameter configuration for all brains actually
decreases the performance of the SVM.A better strategy was
to also performhyper-parameter selection for each brain indi-
vidually, in order to adapt to the specificities of each brain,
further motivating our within brain generalization frame-
work.
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