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Abstract
Purpose Noise reduction in material density images is a
necessary preprocessing step for the correct interpretation of
dual-energy computed tomography (DECT) images. In this
paper we describe a new method based on a local adaptive
processing to reduce noise in DECT images
Methods An adaptive neighborhood Wiener (ANW) filter
was implemented and customized to use local characteris-
tics of material density images. The ANW filter employs a
three-level wavelet approach, combined with the application
of an anisotropic diffusion filter. Material density images and
virtual monochromatic images are noise corrected with two
resulting noise maps.
Results The algorithm was applied and quantitatively eval-
uated in a set of 36 images. From that set of images, three
are shown here, and nine more are shown in the online
supplementarymaterial. Processed images had higher signal-
to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than
the raw material density images. The average improvements
in SNR and CNR for the material density images were 56.5
and 54.75%, respectively.
Conclusion We developed a new DECT noise reduction
algorithm. We demonstrate throughout a series of quanti-

Electronic supplementary material The online version of this
article (doi:10.1007/s11548-015-1297-8) contains supplementary
material, which is available to authorized users.

B Rafael Simon Maia
rafaelsimonmaia@gmail.com

1 Department of Computer Science, University of Calgary,
2500 University Dr NW, Calgary, AB T2N 1N4, Canada

2 Department of Radiology, Mayo Clinic, 13400 E Shea Blvd,
Scottsdale, AZ 85259, USA

tative analyses that the algorithm improves the quality of
material density images and virtual monochromatic images.

Keywords Material density · Dual-energy computed
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Introduction

The usage of dual-energy computed tomography (DECT)
in clinical settings is advantageous due to increased tissue
discrimination properties obtained from the simultaneous
acquisition of two linear attenuation images with different
voltage settings. DECT can reduce the ambiguity inherent to
the density and HU values obtained from regular computed
tomography. Due to the acquisition of two linear attenuation
images, it is possible to obtain extra physical information,
which can be used to generate images that show material
density information, effective atomic numbers, virtualmono-
chromatic and virtual non-enhanced images that contribute
to ameliorate image interpretation by the radiologist.

In the last three decades, many different technical solu-
tions for the acquisitionofDECT images havebeen attempted.
Two of these technologies are currently mature and being
sold commercially: the single-source rapid voltage switch-
ing approach by general electric (GE) and the dual-source
approach by Siemens. Due to slightly different spectra, these
two approaches have some intrinsic and important differ-
ences in the resulting images. While DECT does not have
spectrographic qualities, the two basis material decomposi-
tion processes are flexible enough and capable of providing
density information of many different pairs of basis mate-
rials, as long as their atomic numbers differ by at least 5.
Unfortunately, that process results in images with significant
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more noise than in regular CT images. Since noisier images
may negatively affect diagnoses, a preprocessing step that
minimizes the noise is necessary.

In this paper, we explore the noise correction of material
density images and virtual monochromatic images obtained
from DECT data sets. Our technique takes into considera-
tion both single- and dual-source scanners. It employs an
adaptive neighborhoodWiener (ANW) filter to eliminate the
noise in thematerial density images.The resultingnoisemaps
can then be employed to correct the virtual monochromatic
images at any energy level.

This paper is organized as follows: Second section
describes related work. Third section quickly describes the
Wiener filter. Fourth section describes our noise reduction
algorithm. Fifth section presents the results, including an
analysis of image quality. Discussion and Limitations of the
present technique are discussed in sixth section. Finally, sev-
enth section provides the conclusion and future work.

Related work

Dual-energy computed tomography is affected by the same
noise artifacts that are found in regularCT.Therefore,most of
the noise problems that affect the acquisition of a single lin-
ear attenuation image can be resolved with the same mature
methods (for example, scanner calibration) that are applied
to regular CT. Furthermore, it is known that noise-related
errors that cause uncertainties in the measured attenuation
values can be enhanced or decreased by an appropriate
choice of image reconstruction algorithms and convolution
kernels. Recently, the introduction of iterative and statisti-
cal reconstruction algorithms has provided radiologists with
high-quality images, while, at the same time, decreasing [14]
the total dose a patient is exposed to. However, they may
increase the reconstruction time. More advanced reconstruc-
tion algorithms are still being actively investigated. In this
paper, we limit this session to noise correction as a post-
reconstruction step.

The problem of noise in DECT is more evident in images
of derived information, as is the case with material density
and virtual mono-chromatic images. Fortunately, Kalender
et al. demonstrated [5] mathematically that noise in material
density images is affected by negative correlation between
the two different basis materials. They developed an algo-
rithm that compensates for image degradation by using
a simple mean filter and adding a noise correction map
obtained from the first basis material image to the second
basis material image. Their technique also attempts to keep
the corrected values as close as possible to the original values.
A similar technique was developed by Macovski et al. [8].
They combine a low-pass filter of the high-energy image and
a high-pass filter of the low-energy image, to increase image

quality of the virtual monochromatic images.Warp and Dob-
bins [16] have studied both techniques and concluded that
they are mathematically related.

Hinshaw and Dobbins [4] have also focussed on the sim-
ilar problem of noise correction of dual-energy radiography,
developing algorithms that could be adapted to DECT. One
of these algorithms, called noise clipping, restricts the pixel
attenuation values within a range of low- and high-intensity
values. A second technique, called noise forcing, examines
the contrast between pixel values located in the foreground
with those in the background. The difference between those
values should decrease when going from the low-energy to
the high-energy image. Consequently, pixels that violate this
constraint are likely affected by noise.

An idea similar to Hinshaw and Dobbins’ noise forcing
technique is also seen in the spectral correction algorithm
of Park et al. [10]. Their algorithm employs a three-step
approach that first locates water pixels close to the zero
Hounsfield units (HU) in both low- and high-energy images.
Second, pixels that are identified as having increasing val-
ues, whereas their values should be decreasing, are swapped.
As the third and last step, Kalender’s technique is employed,
resulting in final images with increased quality. In another
work, Park et al. [11] attempted to use the Gram Schmidt
orthonormalization process to remove noise from mater-
ial density images. They assume that noise in the material
density images is not only negatively correlated but also
orthogonal to the vector space of thematerial basis. However,
their results do not support such hypothesis.While the images
appear to have better quality, the water density images suffer
from cross-contamination from the iodine images, present-
ing values that appear to differ too much from the expected
values.

Another recent technique reported by Grant et al. [3] uses
a frequency-split approach to improve the quality of virtual
monochromatic images obtained using Siemens dual-source
scanners. They combine the lower spatial frequency stack of
the low-energy linear attenuation image with the high spa-
tial frequency of the monochromatic image obtained at the
less noisy energy level (approximately 70keV). The authors
claim the technique improved the contrast while decreasing
the noise in virtual monochromatic images. However, we
have found that noise reduction improvements in the linear
attenuation image space causes limited improvements in the
material density images.

The application of anisotropic diffusion filters has been
previously investigated in our own work [9] as well as in the
works of Li et al. [7]. The diffusion equation and the main
objectives of these papers differ. Li et al. focus on dimin-
ishing cross-contamination, while [7,9] attempt to preserve
edges while simultaneously decreasing noise. The applica-
tion of wavelets has also been investigated by Borsdorf et al.
[2]. Their work is focused only on dual-source DECT; they
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prefer to suppress the wavelet coefficients that are deemed
correlated at each wavelet level of the linear attenuation
image, which results in slight improvements in material den-
sity images.

A value-based approach was presented by Balda et al. [1].
Using a joint probability distribution of the linear attenuation
values from both low- and high-energy images, they employ
a gradient ascent algorithm that approximates the values of
each pixel to the mean value of the pixel’s main material.
Finally, a comparison of post-reconstruction algorithms for
noise correction of dual-energy radiography images is given
by Warp and Dobbins [16].

Background: the Wiener filter

The Lee filter [6] is a good approximation of the Wiener
filter using local image statistics. Its basic idea is to minimize
the mean-square error estimation of the original image. In
order to approximate local statistics, the Lee filter attempts to
estimate themean and variance necessary for its computation
by using a square window with fixed size and fixed shape,
centered on each pixel. Because of its fixed shape and size
approach, the Lee filter suffers from poor noise filtering near
the edges, especially when using large neighborhoods. At the
same time, the Lee filter performs well in uniform areas. The
Lee filter used here is formulated as:

f̄ (i, j) = ḡ(i, j) + vg(i, j) + vn(i, j)

vg(i, j)
(g(i, j) − ḡ(i, j)) ,

(1)

where g(i, j) and ḡ(i, j) are, respectively, the original image
and the mean filtered version of the original image, vg(i, j)
and vn(i, j) are, respectively, the variance of the original
image and the variance of the noise, always estimated locally
in a square window kernel of size N × N .

Because the Lee filter uses local statistics that mostly
ignore the size of uniform regions, as well as the presence
of edges, it does not produce optimal results. Therefore, we
adapt the Lee filter by using an adaptive neighborhood mean
filter that was customized to take advantage of minimum
noise linear attenuation in order to correct the material den-
sity images.

Methodology

Description of the algorithm

Contrary to the work of Balda et al. [1] and Borsdorf et al.
[2], where linear attenuation orHU images are corrected first,
our focus lies primarily on the noise correction of material
density, followed by the correction of virtual monochromatic

images in HU. The most common image size for CT images
is 512 × 512 pixels. In order to tackle noise that may be
larger than a pixel, we employed a multilevel Haar transform
to reduce the image, which was applied three times, gener-
ating subimages of size 256, 128 and 64 square pixels. We
have found that applying the Haar transform further gener-
ated no noticeable improvement in the final filtered image.
We apply our ANW filter followed by an anisotropic dif-
fusion filter at each wavelet level and again at the original
image size. At each wavelet level, after the application of the
Wiener filter and the anisotropic diffusion filter, we calculate
an intermediate noisemap by subtracting the filteredmaterial
density image from the original image, creating a correlated
noise map and adding back a weighted version of that map to
each material density image. In order to measure the level of
image quality improvement achieved by the new algorithm
and for comparison reasons, we also modify the algorithm,
employing the classic Wiener filter in the form of the Lee
filter instead of the newly proposed adaptive Wiener filter.

The adaptive Wiener filter

We modified the Lee filter so it employs an adaptive region
growing method in its calculation of the mean value of a
region. Instead of calculating the local statistics of noise and
signal within a fixed window size and fixed window shaped
local neighborhood (like in Fig. 1a), we employ an adaptive
region growing technique that, given some constrains, finds
an near-optimal, variable size and variable shape neighbor-
hood (like in Fig. 1b) for each individual pixel in the image.
This method was inspired by the work of Rangayyan et al.
[13],whoused a similar idea for natural images.Weadapt and
extend their idea to DECT material density images and take
advantage of the edges obtained from the linear attenuation
image with minimal noise to restrict growth in certain areas.

Fig. 1 a Usual 3 × 3 fixed size and fixed shape window over a region
in a hypothetical image. b An region whose growth was limited by the
existence of an edge and a distance of at most 4 pixels from the center
pixel. The pixel marked with an X is the center pixel of both regions and
will be updated with the mean value calculated from the pixels in each
region. The mean pixel in (a) will be contaminated by including a pixel
from the edge, while the center pixel in (b) will only be updated from
pixels that are within the same uniform region. a Raw water density
image. b Raw iodine density image
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In our algorithm, in order to calculate the local statis-
tics with an adaptive region, we first calculate the fixed size
and fixed shape local mean and standard deviation of the
image. We use a 3× 3 pixel window and calculate the mean
and standard deviation using MATLAB (The Math Works,
Inc., Natick, MA, USA) filter2 and stdfilt standard func-
tions. Subsequently, we calculate the binary edges of the
linear attenuation imagewithminimumnoise,which is found
around an energy level of 70keVs [17]. We use the binary
edge image to mark region boundaries, limiting the calcula-
tion of mean values in the marked regions to a window of
3 × 3 pixels. This means that the pixels marked as edges do
not undergo region growing.

We mark the pixel locations of the edges in the linear
attenuation image in both iodine and water density images.
Although edges may not immediately be identifiable, we
assume some edges do exist and are, in fact, hidden by noise.
This fact is especially true for the iodine density images.
The outer border of each image is treated without symmetric
padding of values; therefore, the adaptive region grows only
within the space of the original image. Since the boundaries
of CT images are usually outside of the field of view, this
does not affect the overall quality of the images.

A growing region will only include a new pixel if that
pixel is not marked as a boundary. The pixel is only included
if its value is within one standard deviation of the original
mean value that was previously calculated with a 3× 3 pixel
window. If the new pixels in the current region are not within
one standard deviation of the original mean value, they will
be ignored and not taken into consideration for the updated
mean and standard deviation calculations. If the pixels in the
growing region are within that appropriated range, we calcu-
late the new mean and the new standard deviation, updating
those values accordingly.

The adaptive region used in the adaptive filter grows itera-
tively, but its maximum extent is limited to a square window
of 13 × 13 pixels, which is approximately equal to 1cm2

in most images. This area property is also kept for each of
the Haar transform levels, i.e., the maximum extent for the
first wavelet level is 7 × 7 square pixels and so on. While
this maximum extent value seems random, it was defined so
that the region growing is locally limited and to avoid overly
smoothing the image. This procedure is executed for all pix-
els, with the exception of the pixels that are within a region
marked as being part of an edge. For the edge calculation we
use a Sobel filter without thinning, in order to have the pix-
els that are relatively close to the true edge marked as edge
pixels as well. The workflow describing the region growing
procedure is detailed in Fig. 2.

The calculation of the final standard deviation values,
which are required for the calculation of the variance in the
Wiener filter, is left as the last step of the adaptive region
growing mean filter. This step is necessary in order to ame-

Fig. 2 Flowchart of the adaptive mean filter with region growing used
in our algorithm

liorate the standard deviation of the edge regions where the
neighborhoodwas limited to a 3×3 neighborhood.One could
be tempted to use the pure standard deviation of the final
adaptive mean filter image. Yet we have found that this does
not achieve optimal results, creating incorrect values when
the Wiener filter is applied. Instead, we calculate the final
standard deviation for the adaptive region growing mean fil-
ter image and for those pixels previouslymarked as edges.We
update the final standard deviation by calculating the aver-
age between the original standard deviation (obtained from
the material density image being corrected) and the standard
deviation for the final adaptive mean filtered image.

Anisotropic filter

By applying the adaptive Lee filter before the anisotropic
diffusion filter, the intermediate image that will undergo
the anisotropic diffusion filter will be much less noisy than
before. Consequently, we have to adapt the noise estimation
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function of our previous work, so that it is more sensitive to
boundary conditions. We calculate the noise of each mater-
ial density image individually and use the opposite material
noise estimation as the gradient threshold function which is
defined as:

κ = N + 2 × μm(70) × Edges
(
μLA(70)

)
, (2)

whereμm(70) is the linear attenuationvalue of amaterialm at
the less noisy energy (70keV), μLA is the linear attenuation
image at the less noisy energy, which is found around the
70keVs [17]. The function Edges calculates the edges of
that image using the Prewitt filter [12]. Furthermore, N is
defined as:

N = 1√
2M2

√
im − G(im), (3)

where G is a gaussian function and im is the current material
density image being processed.

Noise map processing

The final step toward noise correction of the density images
is the calculation of the temporary and final noise maps
after the application of each wavelet transform, Wiener and
anisotropic diffusion filter. For the current work, wemodified
the Algorithm A1 proposed by Kalender et al. [5], where he
mathematically derived some of these values from the pre-
reconstruction images. A combined temporary noise map C
is calculated according to [5]:

C = 0.01 × μL
I (70) × nmi − μL

M (70) × nmw (4)

where nmi and nmw are the noise maps for iodine and water,
respectively, obtained after the subtraction of the filtered
image from its original version, at each scale,μL

I andμL
M are

the linear attenuation values for iodine and water at 70keV,
respectively. The water noise map is obtained by weighting
C by:

nmW = 1

2 × μL
W

× C, (5)

where μL
M is the linear attenuation of water and C is the

combined noise maps as defined in Eq. 4.
The noisemap for iodine requires a fewmore calculations.

We first need to estimate the noise using N (see Eq. 3). The
values in N are normalized between 0 and 1 and then used to
scale the gradient magnitude obtained applying a Sobel filter
in the linear attenuation image at the keV with minimum
noise, defined as:

E = min(v, 1),with

v =
∣∣sobel (μL

HU(70)
)∣∣

NW
, (6)

where NW is the noise for the water material density images,
as defined inEq. 3. The linear attenuation of the virtualmono-
chromatic image is given by μL

HU(70). The formula for the
calculation of the noise map for iodine is then given by:

nmI = 0.01 ×
(
1 − E2·NW

)
× μL

I (70) × nmW , (7)

where the multiplication by 0.01 is used to put the resulting
values in the correct unit.

The final noisemaps can nowbe added back to the original
material density images, as follows:

ρNC
w = ρO

w +
∣∣∣∣
−nmw

nmI

∣∣∣∣ nmI

ρNC
I = ρO

I +
(
1 −

∣∣∣∣
nmI

−nmW

∣∣∣∣
)

× (−nmW ) , (8)

where ρO
w and ρO

I are the original material density images
of water and iodine, respectively. The correction of virtual
monochromatic CT images can be obtained by the modified
Hounsfield units conversation, defined as [17]:

NC(E) =
(

μL
I (E)

μL
W (E)

ρI

)
+

(
μL
I (70)

μL
W (70)

− μL
I (E)

μL
W (E)

)
× nmI

μHU(E) = ρW + 0.1 × NC(E) − 1000 (9)

Quantitative measurement of image quality

In order to assess the improvement in terms of image qual-
ity, we chose to use a number of objective quantification
measurements that can be obtained by evaluating certain
mathematical attributes of the image.While subjective meth-
ods evaluated by a number of experts could provide a more
realistic and correct estimation of quality, we opted to leave
this as future work, instead focusing on classic quantitative
methods.

We use two different types of quantitative measurements:
(1) localized region of interest (ROI) and (2) ground truth
comparisons using noiseless images obtained by simulation.
We use both techniques to compare the image quality of the
adaptive algorithm with that of the algorithm using the stan-
dard Wiener filter as well as with the original image. For the
second case, our comparison is extended to a whole-image
quantification approach using the noiseless simulated image
as ground truth. For the ground truth comparison, we use
a similarity metric that is based on an objective method for
quality assessment based on the human visual system. This is
done by using the structural similarity index metric (SSIM)

123



672 Int J CARS (2016) 11:667–678

Fig. 3 Simulated Gammex 472 phantom scanned with the ImaSim CT
simulation software. Left column contains the original images, middle
column contains images corrected using the algorithm with the stan-
dard Wiener filter. Third column contains the images corrected with the
algorithm using the adaptiveWiener filter. Average SNR gain was 66%
for water and 75% for iodine density images. The CNR gain of 60% for

water and 62% for iodine density image corrected using the adaptive
filter when compared to the raw image. a Raw water image, b Wiener
filtered water image, c adaptive Wiener filter water image, d raw iodine
image, e Wiener filtered iodine image, f adaptive Wiener filter iodine
image

described by Wang and Bovi [15]. The SSIM is used here to
measure (1) how close an image obtained from the simulation
with realistic (noisy) settings is compared to the correspond-
ing image from the ideal simulation, and (2) whether there is
any improvement in image quality after the noise reduction
algorithms are applied.

Our measurements where done in images of simulated
software phantoms (Gammex 472), physical phantom (Gam-
mex472) and real patient images. For the simulated phantom,
we used ImaSim CT simulation software (version 1.0, Mon-
treal, Canada) to create dual-energy scans of a virtual
imitation of the physical Gammex 472. We acquired a set
of simulations that contained no noise and were acquired
using ImaSim’s ideal integrator for ground truth reference.
Another simulationwas acquiredwith settings that were sim-
ilar to those used in the image acquisition of the physical
phantoms (350 and 550mAs for 80 and 140kVp, respec-
tively) in order to approximate the same level of noise and
artifacts observed in those images. The physical Gammex

472 phantom was scanned with both single- and dual-source
techniques (GE and Siemens’ scanners, respectively).

All water density images are shown with the same win-
dowing setting, with a window center of 1000 and a window
width of 300, representing a range of values between 850 and
1150. Similarly, all iodine density images are shown with the
samewindow settings, with window center at 75 andwindow
width of 87, representing a range of values from −12 to 172.
CT images are shown in Hounsfield units, with window cen-
ter at −250 and window width of 1000, resulting in a range
of values from −1250 to 750.

ROI-based quantitative measurement of quality

Quantitativemeasurements of image quality who use regions
of interest (ROI) usually examine a set of small regions in the
image. These regions are usually chosen by an user by taking
in consideration features like homogeneity and size. Noise
in a homogenous region would be defined by the presence of
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Fig. 4 Gammex 472 phantom scanned with a GE’s single-source
DECT Scanner. Left column contains original images, middle column
contains images corrected using the algorithmwith the standardWiener
filter. Third column shows images corrected with the algorithm using
the adaptive Wiener filter. Average SNR gain was 68% for water and

58% for iodine density images. The CNR gain of 65% for water and
65% for iodine density images corrected using the adaptive filter when
compared to the raw images. a Raw water image, b Wiener filtered
water image, c adaptive Wiener filter water image, d raw iodine image,
e Wiener filtered iodine image, f adaptive Wiener filter iodine image

a larger than expected standard deviation. The noise is more
evident in the background (air) part of the image; therefore,
its standard deviation is usually used for reference.

ROI-based measurements can be used to compare the dif-
ferences in image quality between a pair of two images. In
this paper, we use two kinds of measurements. The first kind,
the signal-to-noise ratio (SNR), is measured in two different
ways. The second kind of measurement is the contrast-to-
noise ratio (CNR). The improvement or gain between each
of the measurement is calculated from the original image
in relation to its specific noise-corrected version. A positive
value indicates some level of improvement, while a negative
value some level of degradation. The first of these measure-
ments, the SNR, will be defined as:

SNR =
∣∣∣∣
μforeground

σbackground

∣∣∣∣ or SNR2 =
∣∣∣∣
μforeground

σforeground

∣∣∣∣ (10)

where μforeground, σbackground and σforeground are the mean of
the foreground, the standard deviation of the background and

standard deviation of the foreground, respectively. The region
of interest used in this paper is taken in regions of size 9 ×
9 pixels. The improvement in terms of SNR between the
filtered image and the original noisy image is then given by:

SNRgain = 1 −
(

SNRoriginal

SNRcorrected

)
× 100 (11)

This equation can be applied to both types of SNR defined
above. It returns a percentage value that demonstrates the
local measurement gain in the filter image in relation to the
same location in the original image. The CNR is defined as:

CNR = |μA − μB |
σbackground

(12)

whereμA andμB are the mean values of two distinct regions
of interest in the foreground of the image, while σbackground
is the standard deviation of the background of the image.
We define CNR gain following the same scheme seeing in
Eq. 11.
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Fig. 5 Abdominal image acquired with a GE’s single-source DECT
Scanner. Top column shows original images, second column shows
images corrected using the standard Wiener filter while third column
contains the images using the ANWfilter. Average SNR and SNR2 gain
was 59 and 67% respectively, with a CNR gain of 63% for the adaptive

filter when compared to the raw image. a Raw water image, b Wiener
filtered water image, c adaptive Wiener filter water image, d raw iodine
image, e Wiener filtered iodine image, f adaptive Wiener filter iodine
image

Implementation

The prototype of our algorithmwas implemented withMAT-
LAB2012b (TheMathWorks, Inc., Natick,MA,USA) using
vectorized codewhenever it was possible. The algorithmwas
then executed on a Mac Pro Early 2009 with an Intel Xeon
Core of 3.5 GHz and 16 GB of RAM.

Results

The noise correction algorithm with the adaptive neighbor-
hood Wiener filter, which was implemented in MATLAB,
takes about 10 s to be executed for both pairs of material
density images found in a single DECT slice. Given the
constrains of the language and those of the region growing
algorithm, it was not possible to take full advantage of the
vectorization aspects of MATLAB, which contributed to the
less then optimal performance. The algorithm with the stan-
dard Wiener filter performs slightly over a second for each

pair of density images because it can take full advantage of
vectorization. Nonetheless, the implementation of the adap-
tive algorithm in amassive processing language likeOpenCL
can be easily done and is left as future work.

In order to ascertain the usefulness of the algorithm in
noise correcting the material density images obtained from
single- and dual-sourceDECT,we used aGammex 472 phan-
tomwith known amounts of differentmaterials. The phantom
was scanned by both GE (Discovery CT750) and Siemens
(Somatom Definition) scanners. Furthermore, a simulated
Gammex 472 phantom was modeled and scanned using
ImaSim. Additionally, a set of other 33 slices of different
body parts was also analyzed and some of the slices and other
results are shown in the online supplementary material.

Material density images

We applied the adaptive neighborhood algorithm and the
algorithm using the standardWiener filter to a set of different
images of increasing realism. Figure 3 shows a virtual Gam-
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Table 1 SNR, SNR2 and CRN and relative improvements for the noise-reduced images over raw material density images

SNR SNR2 CNR SNR gain (%) SNR2 gain (%) CNR gain (%)

Figure 3—water

Raw water image 31.57 17.41 2.11

Regular Wiener filtered water image 72.82 37.28 4.66 56.65 53.30 54.72

Adaptive Wiener filtered water image 93.31 48.85 5.35 66.17 64.36 60.56

Figure 3—iodine

Raw iodine image 1.90 1.18 0.85

Regular Wiener filtered iodine image 5.87 3.15 2.43 67.63 62.54 65.02

Adaptive Wiener filtered iodine image 7.83 5.51 2.25 75.73 78.58 62.22

Figure 4—water

Raw water image 28.97 17.02 0.36

Regular Wiener filtered water image 58.93 31.17 0.94 50.84 45.40 61.70

Adaptive Wiener filtered water image 90.77 54.45 1.04 68.08 68.74 65.38

Figure 4—iodine

Raw iodine image 0.49 0.50 4.65

Regular Wiener filtered iodine image 0.71 0.95 7.00 30.99 47.37 33.57

Adaptive Wiener filtered iodine image 1.19 1.52 13.30 58.82 67.11 65.04

Figure 5—water

Raw water image 45.42 26.14 5.74

Regular Wiener filtered water image 104.26 69.94 13.20 56.44 62.63 56.52

Adaptive Wiener filtered water image 165.44 89.79 20.75 72.55 70.89 72.34

Figure 5—iodine

Raw iodine image 17.38 4.92 12.60

Regular Wiener filtered iodine image 56.69 6.11 40.55 69.34 19.48 68.93

Adaptive Wiener filtered iodine image 93.74 9.39 68.83 81.46 47.60 81.69

SNR gain was close or higher to 60% in most of the images examined

mex 472 phantom built using the simulator ImaSim. Images
were scanned twice at different energies (80 and 140kVp)
and then underwent a two material decomposition processes
in order to obtain the material density images for water and
iodine. The average SNR gain was 66% for water and 75%
for iodine density image and the CNRgain of 60 and 62% for
the adaptive filter when compared to the raw image. Figure 4
shows the results of applying the algorithm to the two mater-
ial density images of an Gammex 472 phantom scanned with
a GE scanner. A visual inspection of Figs. 3 and 4 shows that
the adaptive algorithm performed similarly well in all three
scans of the Gammex phantom, independently of the mech-
anism used to acquire the images and the settings used in the
reconstruction step. Figure 5 shows a real patient abdominal
image scanned with a GE scanner, which presents similar
levels of quality improvements as previous. The improve-
ment in terms of quantitative measurements for these figures
is presented in Table 1, and it clearly shows the benefits of
employing the adaptive Wiener filter for correcting material
density images.

Additionally, Fig. 5 shows additional material density
images from a patient slice. The statistics for those figure

are also presented in Table 1. It is evident from both the
quantitative and visual inspection of the material densities
analyzed that the noise correction algorithmwith the adaptive
neighborhood Wiener filter provides much improved image
quality. The behavior of the algorithm using the adaptive
neighborhood Wiener filter is superior to that of the algo-
rithmwith the standardWiener filter, for both SNR and CNR
gains in all three kinds of acquisition techniques selected for
the comparison.

Virtual monochromatic images

The image quality improvement inmaterial density images is
directly translated into improved virtual monochromatic HU
images as well. Figure 6 shows the virtual monochromatic
HU image (VMI) at 40 keV of Figs. 3, 4 and 5. Top images
are the original VMI without noise correction, while bottom
images show the noise-reducedVMI calculated using Eq. 10.
The images with noise correction have evident better quality,
and this is quantified in Table 2. The SNR and SNR2 gain is
similar to what was shown for the monochromatic images,
with an average improvement close or higher to 60%. The
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Fig. 6 Original and noise-reduced virtual monochromatic images at
40 keV of Figs. 4 and 5, in this order. Top row shows images gener-
ated without noise correction. Bottom row shows the images generated
using the noise map obtained using the adaptive Wiener filter. The val-

ues are summarized in Table 2. a Raw VMI (40keV) of Fig. 4, b raw
VMI (40keV) of Fig. 5, c raw VMI (40keV) of Fig. 5, d filtered VMI
(40keV) of Fig. 4, e filtered VMI (40keV) of Fig. 5, f filtered VMI
(40keV) of Fig. 5

Table 2 SNR, SNR2 and CRN and relative improvements for the noise-reduced VMI when compared to original raw images generated at 40keVs

SNR SNR2 CNR SNR gain (%) SNR2 gain (%) CNR gain (%)

Figure 4—VMI 40 keV

Without noise correction 0.11 0.06 1.19

Adaptive Wiener filtered 0.32 0.22 1.94 65.63 72.73 38.66

Figure 5—VMI 40 keV

Without noise correction 3.72 1.36 7.20

Adaptive Wiener filtered 9.42 3.65 18.62 60.51 62.74 61.33

Figure 6c—VMI 40 keV

Without noise correction: 7.13 1.90 9.48

Adaptive Wiener filtered: 17.49 1.97 23.49 59.23 3.55 59.64

Images corrected with the noise maps obtained after applying the algorithm with the adaptive Wiener filter show better image quality, with an
average SNR gain higher than 60% for the figures examined in this table

same improvement also happens for the CNR and is particu-
larly noticeable in the images of the Gammex 472 phantom
fromFigs. 3 and 4. Additional images available in the supple-
mentary material also show similar levels of SNR and CNR
improvement.

Noise-reduced images present better defined edges, and
the structures are more clearly visible than in the images
without the application of the algorithm. The behavior of the
algorithm is also approximately the same, independently of
themechanism of image acquisition used. The overall texture
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and details present in the original image are also present in
the noise-reduced images; however, due to the decrease in
noise, they are much more visible.

Ground truth comparison using noiseless simulation

We used a CT simulation software called ImaSim, to create
dual-energy scans of a virtual Gammex 472 phantom. We
performed two scans of the virtual phantom that contained
no noise (using ImaSim’s ideal integrator) for ground truth
reference and another set of dual-energy scans acquired with
setting akin those used in the scanning of the real Gammex
472 using GE or Siemens scanners. The noiseless images are
of very high quality and can be see in Fig. 7a, b. The realistic
scans were obtained at 80kVp (550 mAS) and 140kVp (350
mAS) with standard filtering and detector of 1.04g mm of
simulated ultra fast ceramic (Gd2O2S) detector. The realistic
images can be see in Fig. 3. We compared the quality of the
pair of noisy material density images with that of two pairs
of noise-corrected density images. The first pair of material
density images was corrected using the algorithm with the
classic Wiener filter, while the second pair was corrected
using the adaptive version of the algorithm. This two noise-
corrected images can also be see in Fig. 3.

For the ground truth comparison, we use a similarity met-
ric that is based on a objectivemethod for quality assessment,
which is based on the human visual system. This metric,
called the structural similarity index, was developed byWang
and Bovik [15] and is used here to objectively measure how
close the images obtained from simulation with realistic set-
tings are to that of the ideal simulation, and whether there
is any improvement between the realistic simulations after
the noise reduction algorithms are applied. The structural
similarity index of the images evaluated below is also pre-
sented as a scalar value in Table 3, which also corroborates
the results obtained by visual inspections of structural simi-
larity images shown in Fig. 7. By observing Fig. 7, we can
objectively say that the adaptive Wiener filter approximates
the noiseless image better than the algorithm using the clas-
sic Wiener filter. It is also noticeable that the noise reduction
improved the iodine density image more than water density

Table 3 Whole-image SSIM value of the material density images
shown in Fig. 3

Figure 3 SSIM Figure 3 SSIM

Raw water image 0.87118 Raw iodine image 0.98003

CWF water image 0.96635 CWF iodine image 0.99597

ANW water image 0.98112 ANW iodine image 0.99803

The closer this value is to one (1), the closer the image resembles the
noiseless image. The algorithm with the adaptive Wiener filter (ANW)
performs better than the one using the classic Wiener filter (CWF)

Fig. 7 Structural similarity images of Fig. 3. The whiter and more
homogeneous the image is, the closer it is to the ground truth present
on the leftmost column. Darker regions show areas where discrepancy
occurs due to noise and other acquisition artifacts. a Noiseless iodine
density image, b noiseless water density image, c SSIM of raw iodine,
d SSIM of raw water, e SSIM of CWF iodine, f SSIM of CWF water,
g SSIM of ANW iodine, h SSIM of ANW water

images, as its SSIM seems to show that the corrected image
approximates the noiseless image to a higher degree.

Discussion

Overall, both density and virtual monochromatic images that
were obtained after noise correctionwith the adaptiveWiener

123



678 Int J CARS (2016) 11:667–678

algorithm had much better defined edges and were much less
noisy, with both higher CNR and SNRwhen compared to the
raw images. The average value of a region was minimally
altered, preserving valuable information that should not be
altered.

However, limitations occur due to our usage of the edges
from the rawVMIwithminimumnoise (70keV), which does
not necessarily contain all the edges from other energies.
Still, the visual appearance of the images is much better and
less plagued by noise.

Even though the final values of both iodine and water
density images are kept as close as possible to the orig-
inal images, commonly used thresholds for some specific
pathologies may have to be updated. We have found that
the CNR of lower-range virtual monochromatic images is
not always improved. This is consistent with the results
reported in Grant et al. [3], where the contrast of iodine at
these low-energy levels increases less than the noise. Finally,
our noise-corrected images have yet to undergo a subjective
evaluation in a controlled clinical environment.

Conclusion

Wehavedeveloped a newnoise correction algorithm that uses
an ANW filter to improve the quality of the material density
images and virtual mono-chromatic images. Our algorithm’s
key innovations lie in (1) the usage of a customized adap-
tive Wiener filter, developed specifically for DECT material
density images, and (2) adaptations required to keep details
and avoid over-blurring of the image when combined with
the anisotropic filter.

The anisotropic filter also required changes in its noise
estimation function, which is more sensitive to noise than in
our previous work. The algorithm is presented in an easy-
to-implement work flow, and extensive quantitative analyzes
were made to confirm the quality of the images after noise
correction.
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