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Abstract
Purpose Single-incision laparoscopic surgery decreases
postoperative infections, but introduces limitations in the
surgeon’s maneuverability and in the surgical field of view.
This work aims at enhancing intra-operative surgical visual-
ization by exploiting the 3D information about the surgical
site. An interactive guidance system is proposed wherein the
pose of preoperative tissue models is updated online. A crit-
ical process involves the intra-operative acquisition of tissue
surfaces. It can be achieved using stereoscopic imaging and
3D reconstruction techniques. This work contributes to this
process by proposing new methods for improved dense 3D
reconstruction of soft tissues, which allows a more accu-
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rate deformation identification and facilitates the registration
process.
Methods Two methods for soft tissue 3D reconstruction
are proposed: Method 1 follows the traditional approach of
the block matching algorithm. Method 2 performs a non-
parametric modified census transform to be more robust to
illumination variation. The simple linear iterative cluster-
ing (SLIC) super-pixel algorithm is exploited for disparity
refinement by filling holes in the disparity images.
Results The methods were validated using two video data-
sets from the Hamlyn Centre, achieving an accuracy of 2.95
and 1.66mm, respectively. A comparison with ground-truth
data demonstrated the disparity refinement procedure: (1)
increases the number of reconstructed points by up to 43%
and (2) does not affect the accuracy of the 3D reconstructions
significantly.
Conclusion Both methods give results that compare favor-
ably with the state-of-the-art methods. The computational
time constraints their applicability in real time, but can be
greatly improved by using a GPU implementation.

Keywords Surface reconstruction · Super-pixel seg-
mentation · Robotic surgery · Census transform · Depth
estimation

Introduction

In open surgery of the abdomen, the trauma of laparotomy
wounds is a source of infection or dehiscence and may
increase the likelihood of postoperative chest infection, ileus
and immobility [30]. The evolution of new minimally inva-
sive approaches, such as minimally invasive surgery (MIS)
and single-incision laparoscopic surgery (SILS), allows to
perform the surgery by bringing the surgical instruments and
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endoscope to the surgical site through few or only one small
incision, improving the physiological and immuno-responses
with respect to open surgery [6], and reducing the trauma,
without compromising the surgical quality [27,31].

However, MIS and SILS introduce some limitations,
including: (1) the insertion of the instruments through few
access ports and their required length reduces the surgeon’s
maneuverability at the surgical site; (2) the freedom ofmove-
ment of the endoscopic cameras inside the patient’s body is
limited, due to the single endoscopic port access; (3) the
structures of interest, such as blood vessels or cancer areas,
cannot be viewed from different points of view, compromis-
ing the accuracy and safety of the surgery; and (4) the surgical
field visible to the surgeon is limited by the viewing angle
of the endoscopic cameras. Such factors extend the learning
curve for surgeons and increase operating times [28].

The recent development of advanced robotic systems for
MIS andSILShas beenmotivated bydrawbacks related to the
maneuverability of the surgeon [28]. Robot-assisted devices
can greatly help to restore the intuitiveness of operations in
such procedures, but this is largely dependent on system’s
surgical vision. For example, the da Vinci® Surgical Sys-
tem [8] allows intuitive execution of surgery and hand–eye
coordination through 3D vision and the configuration of its
surgical console. Thus, a requirement in robotic MIS and
SILS is to provide an appropriate surgical vision system opti-
mally coupled to the control of the robotic arms. However,
in many cases this may not be enough, especially in SILS
operations: once the robot is inside and moving around the
patient’s body, it is easy for the surgeon to get disoriented
since the pose of the robot cannot be observed (or easily
inferred) from the outside. This requires an extra learning
phase even for experienced laparoscopy surgeons, and also
poses a safety risk for the operation.

Computer-assisted technologies can enhance the view of
the surgical field. Augmented reality (AR) or augmented vir-
tuality (AV) systems can provide a more comfortable and
efficient environment for the surgeon during surgery [15].
For example, in [16], preoperative information about the dis-
ease and a surgical plan are fused with the intra-operative
visualization of the surgical field.

Nevertheless, aligning multimodal preoperative patient
data is highly challenging in soft tissue surgery since the
anatomy undergoes significant changes between the data
acquisition (preoperative) phase and the surgical procedure
(intra-operative) due to different factors [33]: (1) different
pose of the patient with respect to the pose in which the pre-
operative image was taken; (2) CO2 abdominal insufflation
for increasing the working volume (pneumoperitoneum); (3)
instrument tissue interaction; (4) heart beat; (5) breathing;
etc. Overcoming these challenges requires online estimation
of the tissue deformations to correct the preoperative plan,
which can be done, for example, through methods of depth
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Fig. 1 Virtual Assistive System. The left side shows the preoperative
phase with the processing of the CT scan images and the cameras
calibration. The right side shows the intra-operative phase with the
processing of the surgical images and the integration between the real
and virtual images. The endoscope shown is from the da Vinci® system

estimation from stereo endoscopic images (3D reconstruc-
tion). The denser the reconstruction, the more accurate the
deformation identificationwill be. The real-time 3D informa-
tion from the surgical site can also help the surgeon to under-
stand the relationship between the organs and the robotic
devices. Moreover, for robotic SILS procedures the surgical
site visualization issues can be overcome by introducing a
virtual environment including a dynamic model of the robot
within a surgical scene recreated from preoperative informa-
tion. This virtual environment can be updated in real time by
exploiting 3D reconstruction of the soft tissues [4,22].

In this paper, we present twomethods for dense 3D recon-
struction of soft tissue from endoscopic images, exploiting
a super-pixels approach for the disparity map refinement.
The dense surface reconstruction algorithm facilitates the
registration process between the preoperative model and the
intra-operative site. The methods form the basis of the vir-
tual assistive system, introduced in [20], for intra-operative
guidance and improved surgical safety for abdominal SILS
procedures (Fig. 1). The system provides: (1) surgical guid-
ance by exploiting patient-specific preoperative 3D models
obtained from CT scans to improve the operative vision and
(2) improved surgical safety by providing the visualization
of the pose of the robotic devices.

The paper is organized as follows: After a brief review on
the state of the art in “State of the art” section, a description of
the virtual assistive system and the contribution of this paper
are presented in “Research overview” section. The complete
algorithms for soft tissue surface reconstruction are described
in “Materials and methods” section. “Evaluation” section
presents the evaluation of the proposed methods, and the
obtained results are presented and discussed in “Results” sec-
tion and “Discussion and conclusion” section, respectively.
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State of the art

The surface reconstruction of man-made environments using
stereo images is a well-understood concept [14,23]. How-
ever, 3D surface reconstruction of surgical endoscopic
images is still an active area of research due to some chal-
lenging aspects that include: (1) the application in surgery
requiring high accuracy and robustness in order to ensure
patient safety; (2) difficulties arising due to large lens dis-
tortion, many texture-less areas, occlusions introduced by
the surgical tools, specular highlights, smoke and blood pro-
duced during the intervention [25]; etc. Many approaches
have been proposed in the literature in order to achieve more
reliable, robust and real-time depth measurement to repre-
sent a deforming environment. Some approaches are based
on feature detection and tracking [13], allowing the recov-
ery of a sparse surface. In [26], a semi-dense reconstructed
surface is obtained using feature detection and propagating
the information into neighboring regions. The robustness of
these methods depends on the availability of stable features.
Other solutions are based on finding correspondences in the
pixel intensities to give dense reconstructed surfaces. In [22],
denseGPU-enhanced 3D reconstruction is obtained using the
hybrid recursive matching algorithm performing a nonpara-
metric transformation on the images. A nonparametric image
transformation with model-based methods is also exploited
in [24] for dense 3D reconstruction, with the assumption
of a smooth and continuous surgical surface. [19] presents a
comparative studyof such state-of-the-artmethods.Recently,
color-based segmentation was used in stereo methods for
depth estimation [11]. Such techniques first segment a ref-
erence image into regions and then label each region with
disparity values, preserving the boundaries of the objects.
For example, the segmentation is used in combination with
belief propagation within a Markov random field framework
in [32]. However, segmentation algorithms are computation-
ally expensive and infrequently used on surgical images.

Research overview

The overall goal of our research is to enhance the visual
information provided to the surgeon during robotic SILS pro-
cedures in the abdomen. Toward this end, a first prototype of
a virtual assistive systemwas presented in [20]. An overview
is shown in Fig. 1. In the preoperative phase, the surgeon
extracts 3D surface models from a CT scan dataset of the
patient. Thesemodels are inserted into a virtual environment.
A stereo camera calibration and a real–virtual camera cali-
bration are performed. During the surgery, a semiautomatic
registration of the virtual abdomen on the real patient creates
a connection between the reality and the virtual environment,
which consists of:

1. View of the entire abdomen model, where it is possible
to visualize at run-time the motion of the robot and the
surgical tools. The possibility to change the transparency
of the model of the skin allows the surgeon to plan the
entry point, adjusting the access region with respect to
the target to be reached.

2. A virtual camera image plane, which shows the struc-
tures from the same point of view as the real endoscopic
camera. This can enable the visualization of the hidden
structures using the transparencies function. A zoom fea-
ture allows the surgeon a wider field of view if desired.

The current design of the virtual assistive system from [20]
is reliable only under the assumption that the patient remains
in the same condition as he/shewas during theCT scan phase.
However, this is an ideal condition, and as noted earlier,
the changes in anatomy from preoperative phase to intra-
operative phase are unavoidable. To overcome this drawback,
the 3D reconstruction of the tissues at run-time can serve
as the keystone for updating the preoperative tissue models.
Moreover, by knowing the pose of the tissue surface with
respect to the robotic devices, it would be possible to define
areas to be protected, e.g., main vessels or vital structures,
improving the safety of the surgery.

Research contributions

Two techniques for 3D surface reconstruction of soft tissue
are investigated in this paper:

1. Method 1 follows the traditional approach of the block
matching algorithm [23].

2. Method 2 exploits a nonparametric transformation to
make the stereo matching more robust to illumination
variations.

The paper introduces a novel method to enhance the density
of the reconstructed surface from these methods through dis-
parity refinement based on simple linear iterative clustering
(SLIC) super-pixels algorithm [1].

The algorithms introduced here are designed to enhance
the visualization during robotic SILS procedures and are
integrated into the virtual assistive system as highlighted in
Fig. 1.

Materials and methods

The workflow for the soft tissue 3D reconstruction algorithm
using the two methods is shown in Fig. 2, and it is described
in detail in the following subsections.
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Fig. 2 Workflow of the proposed surface extraction algorithm. Two
methods are proposed:Method 1 one based on SAD andMethod 2 based
on census transform. Both methods are improved using the disparity
refinement with super-pixel segmentation

Preprocessing

Surgical images acquired from an endoscope need pre-
processing in order to facilitate the search for pixel correspon-
dences. For greater accuracy in the 3D reconstruction, we
calibrate the cameras using theOpenCVLibrary [17], obtain-
ing the intrinsic and extrinsic parameters. The images are then
undistorted and rectified, so that the corresponding pixels lie
on the same horizontal line (epipolar line) [9]. Generally,
the stereo cameras are on the tip of the inserted endoscope
device and in proximity to a light source. The two cameras are
exposed differently to the light source due to their different
position with respect to it. This can produce over- or under-
exposure and differences in brightness/exposure between
the images. Image processing removes such artifacts in the
images and enhances the identification of the correspon-
dences in texture-less and homogeneous areas. These steps
are described in the following paragraphs.

Specularity removal Clinical images are usually affected by
specular reflections due to the tissue characteristics and the
proximity of the light source. The specular reflections appear
as bright regions in the endoscopic images and can be mis-
taken for regular/irregular tissue. The algorithm described in
[3] is implemented for removing specular highlights.

Image equalization Histogram equalization is performed to
improve contrast and enhance details that are over- or under-

exposed. The method used is a function from the OpenCV
Library (equalizedHist). The equalization is performed only
inMethod 1, since the census transform inMethod 2 already
makes it robust to illumination variation.

Surface reconstruction

The two cameras of the endoscope record the surgical field
from two different points of view. The difference in position
of an object between the left and right images is called dis-
parity (d). Knowing the distance between the cameras (s)
and the focal length of the cameras ( f ), the depth, i.e., the z
coordinate of the reconstructed point, can be calculated with
the following equation:

depth(i, j) = ( f · s)
disparity(i, j)

(1)

where i and j are, respectively, rows and columns of the
image.

Stereo correspondence is the process of identification of
the matching between each pixel of the left and the right
images (iml and imr ). The process can be divided in three
steps, as stated in [23]: (1) matching cost computation; (2)
aggregation cost computation; and (3) disparity computation.
The two methods are described below:

Method 1

1. Matching cost computation This method uses the abso
lute intensity difference (AD) [10] operation to calculate
the similarity between two pixels.

2. Aggregation cost computation The aggregation of the
matching cost is done by summing the AD of a win-
dow of size n xm, i.e., by computing the sum of absolute
differences (SAD). Equation 2 shows the SAD value for
a pixel (i, j):

SAD(i, j, d)

=
m/2
n/2∑

h=−m/2
h=−n/2

|Il(i + h, j + k) − Ir (i + h − d, j + k)|

(2)

where Il and Ir is the intensity of each pixel of iml and
imr , respectively, and d is the disparity. The matching
cost computation and aggregation cost of Method 1 are
shown in Fig. 3.

3. Disparity computation The computation of the final dis-
parity involves choosing the disparity at each pixel that
is associated with the minimum of the aggregation cost
value. TheWinner Takes All (WTA) strategy from [23] is
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Fig. 3 Disparity computation algorithm forMethod 1. It uses the inten-
sity of the pixels and the sum of absolute differences (SAD) operation
for the aggregation

used to find the minimum aggregation cost value at each
pixel. Two optimizations are used to reduce the number
of incorrect values (froman incorrectmatching).With the
first optimization, the disparity is defined to be invalid if
two minimum aggregation cost values in the same image
are within a threshold [18]. This operation helps to inval-
idate incorrect pixels on uniform surfaces. The second
optimization, a left–right consistency (LRC) check, is
performed in order to invalidate half-occluded pixels, i.e.,
objects viewed in one image but not in the other.

Method 2

1. Matching cost computation The nonparametric census
transform [2] is applied on iml and imr , with a sparse
modified approach from [12]. It converts each pixel inside
a moving window into a string of bits C(i, j) (see Eq. 3),
representing neighbor pixels according to a comparison
with the central pixel and the mean value of the pixels
inside the window (Eq. 4).

C(i, j) =
m/2⊗

h=−m/2

n/2⊗

k=−n/2

ξ(I (i, j), I ((i, j) + (h, k)))

(3)

where
⊗

denotes the concatenation to a bit string. ξ is
the function for comparing the two intensities, defined
as:

ξ(I, I ′) =

⎧
⎪⎪⎨

⎪⎪⎩

00 I ′ ≤ min(I, Ī ))
01 I ′ < I
10 I ′ > I
11 I ′ ≥ max(I, Ī ))

(4)

0011 0101 10 1111 00

0111 11 11 10 01 00 00
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Fig. 4 Disparity computation algorithm for Method 2. It uses sparse
modified census transform and Hamming distance as cost and aggre-
gation function. The disparity value is the one associated with the
minimum of the aggregation cost value

where I ′ is the moving pixel in the window compared
with the central pixel I and Ī is the average of the pixel
intensities inside the window.
The similarity between the two census-transformed
images is analyzed using the Hamming distance (HD)
measure applied to a moving window. HD compares bit
strings representing the pixels and identifies the number
of positions at which the corresponding bits are different,
as shown in Eq. 5.

HD(i, j, d) =
m·n∑

b=0

Cl(i, j)b ⊕ Cr (i − d, j)b (5)

where Cl and Cr are the census transform of the left and
right images, respectively, ⊕ is the XOR operator, and b
represents the bit string.
The HD is computed only for a chessboard pattern of
pixels inside the window in order to decrease the compu-
tational time of the algorithm.

2. Aggregation cost computation The aggregation of the
matching cost is done by summing the Hamming dis-
tance over the window of size n×m, computing the sum
of Hamming distances (SHD). The matching cost com-
putation and aggregation cost of Method 2 are shown in
Fig. 4.

3. Disparity computation This step uses the same strategy
as that for the Method 1.

To avoid separated layers in the reconstructed surface
resulting from pixel-level precision, a sub-pixel refinement
is applied using a parabola fitting [29] in both methods. A
speckle removal filter is also applied in order to remove small
artifacts, i.e., regions of large and small disparities that can
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be generated near the boundaries of shapes. This method is
adopted from theOpenCVLibrary [17] function (filterSpeck-
les).

Disparity refinement

The disparity map, computed so far from the procedures
described above, can contain invalid values (holes), which
can compromise the usefulness of the reconstructed surface.
As mentioned in “Research overview” section, the 3D recon-
struction of the surgical field serves to update the pose of the
preoperative models considering the real organ deformations
and also to update the pose of safety areas to be protected
from the surgical tools during surgery. Problems can arise
if the motion and the deformation of the soft tissue are not
identified, i.e., if the reconstructed surgical field is not dense
and accurate.

To address these issues, a method to exploit the over-
segmentation of the reference image iml is introduced here,
which further refines the results and fills the holes in the dis-
parity map. iml is segmented using the SLIC super-pixels
algorithm [1], which adapts the k-means clustering approach
to generate super-pixels efficiently and in less computational
time. At each super-pixel, a label L is assigned. Then, iml(L)

is set as a group of pixels from the left image with the same
label, i.e., belonging to the same super-pixel. The same labels
are assigned to the disparity map, disparity(L). Each super-
pixel is ideally a homogeneous area with similar or at least
continuous depth. This information can be exploited in order
to fill the holes in the disparity map, avoiding large discon-
tinuities within a super-pixel, as shown in Fig. 5. We apply
two different strategies depending on the valid values inside
a label:

1. Plane fitting The invalid disparity values are fitted to
a plane which is computed on the valid values of the
disparity map. The locally optimized RANSAC (LO-
RANSAC) method [5] is used to find the optimal plane
parameters in the pixel space, using the model of the
plane described in Eq. 6.

Super pixel segmentation Disparity Map

Fig. 5 The super-pixel areas (on the left) can be used to fill gaps in the
disparity image (on the right)

disparity(i, j) = a · i + b · j + c (6)

where a, b and c are the coefficients of the fitted plane.
2. Median fitting If the plane fitted on the valid values is

not reliable (according to the LO-RANSAC results), the
invalid disparity values are replaced by the median of the
valid disparity values.

Evaluation

Quantitative evaluation

This section presents the evaluation of the methods for the
3D surface reconstruction. The performances of Method 1
and Method 2 are evaluated against the metrics of accuracy,
computational time and percentage of matched pixels.

The Hamlyn Centre laparoscopic/endoscopic video data-
set [7],with an associated ground truth representing a surgical
scene, is used for the evaluation.

Stereo images of a silicon heart phantom were used in
order to validate the results and ensure the proposed methods
are robust and reliable when applied to a surgical scenario.
The dataset consisted of intrinsic, extrinsic and distortion
parameters for the cameras and aground truth fromaCTscan.
Weused20 frames from twovideos,heart1 andheart2. These
frames are named h1i and h2i , respectively, where i indicates
the frame number. The ground-truth sets are called g1i and
g2i . The point clouds computed using the two methods are
pc1i and pc2i . The use of this dataset for the evaluation of the
proposed system was preferred over other standard datasets,
such as the Middlebury evaluation [22], because these pro-
vide only static images and do not show surgical scenarios,
which present specific issues related to endoscopic imaging.

The error evaluation consists of computing the Euclidean
distance between the corresponding points from the extracted
point cloud and the rectified ground truth, as in Eq. 7. The
final accuracy of each point cloud is computed as the median
value of these Euclidean distances.Method 1 and Method 2
are evaluated on the two datasets heart1 and heart2with and
without the application of the disparity refinement exploiting
SLIC segmentation (hereinafter called SLIC refinement).

error(i, j)

=
√

(pcxi, j − gxi, j )
2 +(pcyi, j − gyi, j )

2 +(pczi, j − gzi, j )
2

(7)

where pcxi, j , pcyi, j and pczi, j are the 3D coordinates of a
point from the computed point cloud, and gxi, j , gyi, j and gzi, j
are the coordinates from the ground truth. Since the point
cloud and the ground truth are represented as 2D maps, we
can simply calculate this error for each point considered as a
pixel of the image.
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A nonparametric test (Wilcoxon p < 0.05) was per-
formed on the point clouds to test whether the accuracy
before and after SLIC refinement was significantly differ-
ent, for both Method 1 and Method 2. The same test was
also performed to verify whether the accuracy obtained with
Method 1 and Method 2 was significantly different.

The percentage of matched pixels is computed as the ratio
of the valid reconstructed points identified in the region of
interest with respect to the total number of points of the
image. This region takes into consideration only the area of
the image with a pixel intensity >32, eliminating the areas
where the heart phantom is not visible. An example of the
region of interest used for the evaluation is shown in Fig. 6.

The computational time is the time of execution of the
algorithms. The codewas developed in C++, usingOpenCV
for the management of the images with robot operating sys-
tem (ROS) as framework [21]. The programwas running on a
system with GNU/Linux operating system, and a CPU Intel
Core i7-4820K with four cores and hyper-threading (eight
virtual cores).

The parameters and labels used during the evaluation are
listed in Table 1. The window dimension for the census
transform and the aggregation cost of Method 2 are taken
from [12], where the authors identify the optimal parameters
taking into consideration accuracy and computational time.

Fig. 6 Example of the region of interest for heart1 and heart2 mod-
els. The points marked with magenta color were not included in the
evaluation of the methods

Table 1 Parameters used in the evaluation

Parameters Value

Census window 9×9

Census block size 11×11

SAD block size 11×11

Threshold spurious remover 10

Threshold LR consistency check 4

LO-RANSAC max iteration 100

Number of sample frames 20

Labels Value

Method 1 M1

Method 1 with SLIC refinement M1R

Method 2 M2

Method 2 with SLIC refinement M2R

Qualitative evaluation

The target application for this research is robotic SILS pro-
cedure for the abdomen. Unfortunately, video datasets with
ground-truth information are not available for this anatomi-
cal region. Therefore, qualitative evaluations of the proposed
methods were performed using the abdominal dataset from
theHamlynCenter. This dataset approximates the envisioned
application area of our system well, including motions of
structures/organs and the presence of surgical instruments in
the field of view.

Results

Figure 7 shows a sample image from heart1 processed with
both methods, following the workflow of Fig. 2. The figure
demonstrates the presence of the invalid values in the dis-
parity map as well as the almost complete correction of the
map with the application of SLIC refinement. The effect is
clearly seen considering the percentage of matched pixels
in Fig. 8. The application of the SLIC refinement increases
the percentage of valid values to more than 70% in this
case.

A box plot representing the accuracy is shown in Fig. 9.
These results show an accuracy of 3.17 and 3.27mm using
M1 and M1R and an accuracy of 1.68 and 1.77mm for M2
and M2R, respectively. We can also see how the variance of
these results is similar, indicating good consistency between
the presented methods.

Figure 10 shows a colormap representing the accuracy
of the reconstructed surface computed with the methods.
Here again, the result of applying the SLIC refinement is
demonstrated and how the filled holes present a low error
with respect to the ground truth.

For the impact of the SLIC refinement on the accuracy,
the nonparametric test did not reject the null hypothesis for
both methods. This implies that the SLIC refinement did not
have a statistically significant impact on the accuracies of
M1 and M2. The same test rejected the null hypothesis in
the comparison between the values obtained with M1 and
M2. This implies that M2 is statistically better and provides
significantly improved accuracy over M1.

We can see the results of the evaluation in Table 2, which
shows the median values for the accuracy, percentage of
matched pixels, and computational time. Both methods have
a similar computational time, around 1.21 s per frame (with
an image resolution of 288×360), and the SLIC refinement
adds an overhead of only 0.1 s in both cases.

The results from the qualitative evaluation are shown in
Fig. 11. We can see that applying the methods on an image
representing amore complex surgical scenario,with different
abdominal structures and instruments visible in the field of
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Fig. 7 Example of the application of the workflow presented in this
paper on one frame of heart1 dataset. From left to right, the RGB stereo
images iml and imr , the stereo images after the specularity removal fil-
ter and Method 1 at the top and Method 2 at the bottom. The Method
1 images show the equalization of the image, the disparity map cal-

culation, the SLIC segmentation and the successive refinement of the
disparity map. The Method 2 images show the census transform, the
disparity map calculation, the SLIC segmentation and the successive
refinement of the disparity map
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Fig. 8 Box plot representation of the percentage of matching pixels
(pixels that are considered valid) withMethod 1 andMethod 2 evaluated
on heart1 and heart2 without and with the SLIC refinement
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Fig. 9 Box plot representation of the accuracy obtained with Method
1 and Method 2 evaluated on heart1 and heart2 without and with the
SLIC refinement

view, themethods are still able to reconstruct the surface, and
SLIC refinement seems to fill correctly the invalid values of
the disparity map.
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Fig. 10 Two-dimensional representation of the reconstructed 3D sur-
face, obtained from Method 1 and Method 2 with and without SLIC
refinement. The color represents the error

Table 2 Median values of the accuracy, percentage of matched pixels,
and computational time for bothmethods and datasets, with andwithout
SLIC refinement

M1 M1R M2 M2R
Accuracy [mm]

heart 1 2.95 3.11 1.66 1.75
heart 2 3.38 3.43 1.70 1.79

Percentage of matched pixels [%]
heart 1 57.5 72.6 51.9 72.6
heart 2 55.4 66.5 44.7 66.5

Computational time [s]
heart 1 1.21 1.30 1.21 1.29
heart 2 1.21 1.31 1.21 1.30
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M1 M1R

M2 M2R

Fig. 11 Qualitative results obtained by the application of M1 and M2
on a surgical video. The image on the left shows iml . The images on
the right show the disparity maps obtained with the different methods
presented in this paper

Discussion and conclusion

The research presented in this paper aims at improving a
dense 3D surface reconstruction of surgical environments,
specifically to enable enhanced visualization during robotic
SILS procedures of the abdomen. The 3D surface informa-
tion from the surgical scene can be exploited to update the
pose of preoperative models extracted from a CT scan. These
models, inserted into a virtual assistive system, can provide
guidance information to the surgeon, helping to improve the
quality and safety of procedures through augmented visual-
ization. In addition, information about the pose of the surgical
robot with respect to tissue surfaces can assist in defining and
enforcing safety constraints intra-operatively.

Two methods for 3D surface reconstruction were pre-
sented based on a traditional approach (M1) and a non-
parametric transformation approach (M2). The comparison
between the two methods shows that M2 has a significantly
higher accuracy respect toM1 (around1.7mm).According to
our teamof surgeons, for the proposed application, the overall
system accuracy should be below 10mm. This is motivated
by the fact that abdominal surgery cannot be considered as a
precision surgery and it is characterized by the presence of
motions and deformations of the organs. For this reason, the
obtained accuracy with both methods can be considered as a
good result since it should allow to comply with the required
accuracy.

Regarding the valid reconstructed points, M1 provides a
higher percentage ofmatching pixels. Themethodswere also
complemented to enhance the density of the reconstruction
using the SLIC disparity refinement. With the refinement,
the percentage of matching pixels increases in both methods,
reaching the 72.6% in the best case. The refinement provided
an improvement in thematching percentage up to 23% inM1
and 43% in M2, without any statistically significant impact
on the accuracy.

A comparison of our error results with those from [19],
which tests different state-of-the-art algorithmusing the same
video dataset, demonstrated that our errors are:

– lower as compared to stereo block matching (SBM) and
variational (Svar) algorithms.

– similar magnitude as compared to stereo semi-global
matching (SSGBM).

The strength of the methods presented in this paper is
the usage of the SLIC super-pixel algorithm to obtain high-
density valid disparity map, which can be exploited for
augmented reality applications.

In comparison with [22], the accuracy achieved is slightly
worse (mean error 2.47mm against 1.55mm), while the per-
centage of pixel reconstructed obtained exploiting the SLIC
refinement is higher (72.6% against 66.2%).

In the extension of this research, future work will be
focused on the development of a real-time implementation
of the proposed algorithm, potentially based on a hybrid
CPU–GPU processing framework. The expected speed-up
is between 10 and 30 times for the current resolution of the
images, which would allow reaching the target framerate of
25 fps. For higher-resolution images, in order to maintain a
real-time execution of the algorithm, a subsampling could
be applied. The motion tracking of the organs will also be
investigated in combinationwith the soft tissue surface recon-
struction. Finally, the components will be integrated into the
virtual assistive system.
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