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Abstract
Purpose In lung cancer screening, pulmonary nodules are
first identified in low-dose chest CT images. Costly follow-up
procedures could be avoided if it were possible to estab-
lish the malignancy status of these nodules from these initial
images. Preliminary computer methods have been proposed
to characterize the malignancy status of pulmonary nodules
based on features extracted from a CT image. The parameters
and performance of such a computer system in a lung cancer
screening context are addressed.
Methods A computer system that incorporates novel 3D
image features to determine the malignancy status of pul-
monary nodules is evaluated with a large dataset constructed
from images from the NLST and ELCAP lung cancer stud-
ies. The system is evaluated with different data subsets to
determine the impact of class size distribution imbalance in
datasets and to evaluate different training and testing strate-
gies.
Results Results show a modest improvement in malignancy
prediction compared to prediction by size alone for a tra-
ditional size-unbalanced dataset. Further, the advantage of
size binning for classifier design and the advantages of a
size-balanced dataset for both training and testing are demon-
strated.
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Conclusion Nodule classification in the context of low-
resolution low-dose whole-chest CT images for the clinically
relevant size range in the context of lung cancer screening
is highly challenging, and results are moderate compared to
what has been reported in the literature for other clinical con-
texts. Nodule class size distribution imbalance needs to be
considered in the training and evaluation of computer-aided
diagnostic systems for producing patient-relevant outcomes.
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Introduction

Compelling clinical studies have shown a benefit of lung
cancer screening, which allows for the early diagnosis and
treatment of lung cancer. A critical issue is the diagnosis of
a pulmonary nodule as benign or malignant. Current lung
cancer screening practice is to identify pulmonary nodules
on annual low-dose CT scans and to apply a follow-up pro-
cedure, such as another CT scan or a fine needle biopsy, to
suspicious nodules to determine their malignancy status. We
consider here how that malignancy status may be determined
from just the initial CT image of the nodule.

Pulmonary nodule size

It has been universally recognized that probability of malig-
nancy is correlated with the size of pulmonary nodules; the
size of nodules is always noted in radiological reports and
size is used in radiological staging and for determining the
follow-up in lung cancer screening. The conventional way of
recording size is to make a single or the average of two “diam-
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eter” measurements across a central image slice through the
nodule and is expressed in mm. More recently, with the
advent of volumetric measurement methods, the size is rep-
resented by the volume of the nodule, which is expressed
in mm3. While the former is more conventional and under-
standable to most physicians, the latter directly relates to the
amount of information (number of pixels) available in the CT
image. In this paper, we will use both measures; in discus-
sions, we will relate the equivalent diameter D of a nodule
given a volume V by:

D =
(

6

π
V

) 1
3

Therefore, in the context of this paper, diameter refers to a
surrogate for the measured volume of the nodule and it does
not correspond to any actual single-dimensional measure-
ment made on the nodule image.

Further, the size range of nodules under consideration for
a classifier is important for nodule classification. We specify
the size range R as the ratio of the largest to smallest volume
of nodules in a dataset.

R = Vlargest

Vsmallest

Nodule size in lung cancer screening

In lung cancer screening, the objective is to identify cancers
at the earliest stage; that is, when they are the smallest in size,
they are the most curable and simpler treatment options may
be available. Small-size nodules have less image information
in CT images than large nodules due to the number of fixed-
size image pixel elements (pixels) that they span. Further, in
screening, CT scans are set at a low-dose as the primary task
is detection; therefore, the image noise is much higher than
for regular CT scans. For a 1-mm thick slice whole-chest
CT scan using the conventional 512×512 image size, the
volume of each pixel is on the order of 0.5 mm3; therefore,
a very rough estimate of the number of pixels in a nodule
image is to double the volume. While nodules may be visible
to a physician in an apparent 1–2 mm size range, the image
information is limited. For example, a 2 mm nodule spans
in the order of 8 pixels, a 3 mm nodule 27 pixels, a 4 mm
nodule 64 pixels and a 5 mm nodule 620 pixels; further, for
all these cases, a large majority of these pixels are partial
pixels; that is, they consist of a mixture of the nodule tissue
and the surrounding lung tissue.

The larger size limit of interest is 15–20 mm. Nodules
larger than this generally have a high probability of malig-
nancy and very infrequently occur in the main repeat rounds
of screening. Such nodules may be detected in the first
baseline screening but should not occur in repeat rounds if

appropriate small-nodule follow-up procedures are correctly
followed. At the large end of the range scale, we have the
most image information—a 15–20 mm nodule image has on
the order of 106–107 pixels. However, this upper end of the
size range is much less clinically interesting since we aspire
to identify cancers at an earlier stage and time when they are
much smaller in size.

An alternative to characterizing a single CT image is to
measure the nodule growth rate from two or more images
[1]. However, this approach is not currently supported by
volumetrically calibrated CT scanners and also requires a
delay in the diagnosis required for a measurable change to
occur in the nodule between scans.

Size bias in feature evaluation

Obviously, size is a very important image characteristic for
determining the probability of malignancy. In this paper, we
explore image features other than size in order to provide
an improved probability estimate. Since size is easily deter-
mined, the main question of interest is what is the probability
of cancer at a given size rather than what is the probability
of cancer with respect to distribution of sizes.

A major issue in exploring pulmonary nodule characteri-
zation is to acquire a large enough sample of both malignant
and benign pulmonary nodule images with known outcomes.
It is tempting to use all possible data, but the danger here is
that the size distribution for the benign nodules may have a
much smaller mean than the size distribution for the malig-
nant nodules. The results of the evaluation then reflect the
natural difference in size distribution of the datasets rather
than other characteristics of the images.

Our hypothesis is that the size distribution difference may
become the largest factor in the performance evaluation of
datasets with different distributions. We test this hypothesis
in two ways. First, we evaluate a size-based classifier that
uses size as the only feature on which to predict malignancy,
and second, we have constructed datasets with balanced size
distributions. We compare the results of the size classifier
and the balanced datasets to the outcome of the traditional
size-blind approach [2–11]. We also consider the impact of
training using size binning. That is, using a set of size-specific
classifiers instead of a single size-independent classifier.

Image features

The general approach for computer-aided classification as
applied to malignancy diagnosis is to first establish a dataset
of images with known outcomes from both classes. A large
number of image features (often termed texture measures) are
computed for all images in the dataset, and a subset of the
features with the best diagnostic performance are selected for
the final classifier. In traditional computer vision for conven-
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tional video images, there are a number of “texture” features
that are classically used. We placed less importance on these
features given the ways that the CT data differs from conven-
tional images; for example, (a) the small number of pixels
in a nodule, (b) the large amount of image noise and (c) CT
images are 3D and have calibrated pixel values. We included
nontraditional image features for evaluation including 3D
geometry features, 3D features of the density distribution,
surface curvature features and features of the nodule margin.

In our preliminary studies [12], we showed that test set
size distribution imbalance had a major impact on the per-
ceived outcomes of other studies [2,3] and that size balancing
diminished the ROC AUC. Related work [13] showed that
3D image features based on all the image pixels of a nodule
were more effective than 2D image features based on just the
central image slice of the nodule.

In this paper, the issues in evaluating nodule characteriza-
tion by image features in the context of lung cancer screening
are explored with a system that includes novel 3D image fea-
tures. Balanced and unbalanced evaluation datasets are used
to determine the impact of size balancing and size binning.

Methods

Dataset selection

We combined image data from the two largest lung cancer
screening studies, the Early Lung Cancer Action Program
(ELCAP) [14] and the National Lung Cancer Screening Trial
(NLST) [15]. Malignant nodules were included if there was a
pathologically proven cancer diagnosis; benign nodules were
included if there was 2 years of no clinical change or a benign
pathologic diagnosis.

Pulmonary nodules may be solid, part-solid or nonsolid.
Solid nodules are the most common type for cancer and con-
sist of a mass of invasive cells that typically have CT image
intensity similar to that of soft tissue. Nonsolid nodules typi-
cally have abnormal cells distributed on the epithelial surface
of the airways. Hence, the associated lung parenchyma has a
higher CT image intensity than normal lung parenchyma but
less dense than soft tissue or solid nodules. Little is known
about nonsolid nodules compared to the more typical solid
nodules. One lung cancer screening study reported that 17 %
of the cancers were nonsolid nodules [16]. It has been sug-
gested that the part-solid nodules that contain both solid and
nonsolid components may occur when the cancer becomes
invasive and a more traditional solid nodule is developing.
From an image analysis viewpoint, nonsolid nodules have a
very different visual presentation compared to solid nodules
and are more challenging for image segmentation. Clinically,
nonsolid nodules are considered to be more slow growing

than solid nodules and also harder to measure; screening pro-
tocols usually have a different management for these nodules.

Given the different visual presentation of nonsolid nodules
and their small numbers in our databases, only solid nodules
or the solid component of part-solid nodules were included
in this study. Nonsolid nodules will be considered in a future
study when more images are available. It is likely that a sep-
arate image analysis system for the nonsolid subtype may
produce the best analysis outcomes.

In our study’s two datasets, the first dataset contained
cases selected from the Weill Cornell Medical Center data-
base (which is part of the ELCAP study) that had at least one
solid or part-solid nodule on at least one thin-slice CT scan.
Part-solid nodules were only included if they were comprised
primarily of a solid component. The status of malignant nod-
ules were determined by either biopsy or resection, while the
status of benign nodules was established through a negative
biopsy result or by 2 years of no clinical change by a board
certified radiologist. All CT scans had a slice thickness of
2.5 mm or less. Metastatic cancer and benign calcified nod-
ules were excluded. A total of 259 nodules (167 malignant
and 92 benign) with CT scans of 1.0, 1.25 or 2.5 mm slice
were included. Approximately 13.9 % (36/259) of the nod-
ules were on 1.0 mm scans, 73.8 % (191/259) on 1.25 mm
scans and 12.4 % (32/259) on 2.5 mm scans. Scans were
obtained using GE Medical Systems scanners. The Weill Cor-
nell image acquisition time period was 1994–2007, and the
majority of the Weill Cornell instances were reconstructed
using the BONE kernel.

The second dataset contained cases selected from NLST.
Participants underwent three rounds of screening at 1-year
intervals. Cancers were identified through the NLST pro-
tocol. After three rounds, abnormalities suspicious for lung
cancer that were stable across the three rounds were classified
as minor abnormalities (i.e., benign). We selected NLST CT
scans with a slice thickness less than or equal to 3.2 mm.
A total of 477 nodules (245 malignant and 232 benign)
with CT scans of 1.0, 1.25, 1.3, 2.0, 2.5, 3.0 and 3.2 mm
slice thickness were chosen. Approximately 2.94 % (14/477)
of the nodules were on 1.0 mm scans, 2.73 % (13/477) on
1.25 mm scans, 0.63 % (3/477) on 1.3 mm scans, 37.74 %
(180/477) on 2.0 mm scans, 48.01 % (229/477) on 2.5 mm
scans, 0.21 % (1/477) on 3.0 mm scans and 7.76 % (37/477)
on 3.2 mm scans. Scans were obtained using a wide range of
scanners including Siemens, GE Medical Systems, Philips
and Toshiba scanners. For NLST, the screening time period
was 2002–2007; NLST images were reconstructed with a
variety of reconstruction kernels including STANDARD and
BONE (for GE scanners) and B30f and B50f (for SIEMENS
scanners).

Nodules were selected to meet the 3D feature image qual-
ity criterion; that is that they spanned at least three image
slices and preferably four or more. Further, all nodules had a
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diameter between 3 and 30 mm. The volume of each nodule
was computed from automated segmentation [17], and the
nodule size was represented as the equivalent diameter of a
sphere with the equivalent volume as the nodule. Only one
instance of a nodule was used per case.

For both datasets, we used methods to minimize the size
distribution differences between malignant and benign. For
the ELCAP dataset, we selected all the large benign nodules
that were available to match the sizes of the cancers. For
the NLST, we sought to minimize the size of the cancers by
selecting the first CT image in a longitudinal sequence where
possible.

Figures 1 and 2 show the nodule size distribution for the
Weill Cornell and NLST dataset. By combining these two
datasets, we created a database with 736 nodules (412 malig-
nant and 324 benign). Figure 3 shows the size distribution for
the entire database, and Table 1 gives the statistics for size
distribution for malignant and benign nodules.

Size-balanced nodule dataset

A size-balanced subset of nodules (GA) was created from the
full database to assess the impact of size on the classification
result (see Table 2). First, all malignant and benign nodules
were divided into bins based on their volumetric derived
diameters (3, 4, 5 mm, etc). Then, bins smaller than 5 mm
were discarded since these nodules were too small for the

Fig. 1 Weill Cornell nodule subset size distribution

Fig. 2 NLST nodule subset size distribution

Fig. 3 Full dataset size distribution

shape-related features to be effective. Bins larger than 14 mm
were discarded due to the lack of data (usually less than
three nodules per bin). For the remaining bins (5–14 mm),
the same number of malignant and benign nodules was ran-
domly selected to maximize the number of nodules in each
bin. We explored two binning strategies: the first was to cre-
ate three bins each with a similar size range and the second
was to partition into just two bins (by combining the two
largest size bins) so that each bin would have a similar num-
ber of nodules (see Table 3). For the first binning strategy,
the first bin (G6) only includes nodules with a size from 5.0
to 7.0 mm; the second bin (G8) includes nodules with a size
from 7.0 to 9.0 mm; the third bin (G12) includes nodules with
a size greater than 9.0 mm. The three bins were designed so
that each bin would have a sufficiently large number of nod-
ules and the volume range within each bin would be similar
(see Table 3 volume range). For the second binning strategy,
the first bin contains G6 nodules and the second bin combines
both G8 and G12 nodules.

In total, 163 malignant and 163 benign nodules were
selected to have as similar size distribution as possible. In
the size-balanced dataset, 44.79 % (146/326) nodules had a
size between 5.0 and 7.0 mm, 28.22 % (92/326) nodules had
a size between 7.0 and 9.0 mm and 26.99 % (88/326) nodules
had a size between 9.0 and 14.0 mm (Fig. 4).

Image features

In this work, 46 3D features [18] were computed from the
segmented nodule images. These features are grouped into
four categories: morphological, density, surface curvature
and margin gradient (see Table 8 in “Appendix”). Images
were resampled to 0.25 mm3 isotropic resolution for feature
evaluation [18].

Morphological features describe the shape characteris-
tics of the nodule and are derived from standard image
moments [19]. Radiologists use the nodule shape as an indi-
cator of malignancy; for example, Takashima et al. [20]
identified a greater prevalence of polygonal shape and 3D
ratios in benign nodules compared to malignancies. The
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Table 1 Size statistics for the main datasets

Source Type Number Size Min (mm) Size Max (mm) Size mean (mm) Size median (mm)

Weill Cornell Malignant 167 3.72 29.14 12.80 12.17

Benign 92 3.25 27.11 10.21 9.47

All 259 3.25 29.14 11.88 11.28

NLST Malignant 245 3.00 27.60 8.93 7.60

Benign 232 3.11 21.43 5.76 5.15

All 477 3.00 27.60 7.39 6.15

Combined Malignant 412 3.00 29.14 10.50 9.21

Benign 324 3.11 27.11 7.02 5.84

All 736 3.00 29.14 8.97 7.33

Table 2 Size-balanced nodule size distributions

Group GA Number Size Min (mm) Size Max (mm) Size mean (mm) Size median (mm) Volume range

Malignant 163 5.01 14.00 8.05 7.21 21.82

Benign 163 5.02 13.91 8.01 7.27 21.28

All 326 5.01 14.00 8.03 7.22 21.82

Table 3 Size-balanced nodule
size distributions with binning

Group Type Number Size
Min
(mm)

Size
Max
(mm)

Size
mean
(mm)

Size
median
(mm)

Volume
median
(mm3)

Volume
range

G6 Malignant 73 5.01 6.98 6.04 6.04 115 2.70

Benign 73 5.02 6.97 5.96 6.06 116 2.66

G8 Malignant 46 7.04 8.96 7.82 7.65 234 2.07

Benign 46 7.03 8.84 7.83 7.71 239 1.99

G12 Malignant 44 9.05 14.00 11.64 11.72 842 3.70

Benign 44 9.02 13.91 11.61 11.41 777 3.66

GA All 326 5.01 14.00 8.03 7.22 197 21.79

Fig. 4 Size-balanced subset nodule size distribution

morphological features are: volume, surface area, volume-to-
surface area ratio, compactness, sphericity, attachment ratio,
length/width/height of the ellipsoid of inertia, ratios of the
length/width/height, the roll/pitch/yaw of the ellipsoid of
inertia and the scale-normalized second-order morpholog-
ical moment.

Since the gray levels of a CT scan are representative of
the density of the tissue, density features can be derived
from the gray-level voxel values of the image. One of the
density characteristics often used by radiologists is the aver-
age density of the nodule—whether the nodule is solid,
part-solid or nonsolid has a significant effect on the inter-
pretation of the nodule. The density features analyzed in this
work are: density mass, mean density, the standard devia-
tion, skewness and kurtosis of the density histogram, the
length/width/height of the density-based ellipsoid of inertia,
the ratios of length/width/height, and the scale-normalized
second-order densitometric moment.

The surface features of a nodule are often considered by
radiologists in determining nodule malignancy status. These
features are represented by the surface curvature features,
which measure the rate of change of the surface normal to
the length of the surface. Although the surface curvature can
be computed directly from the gray-level voxels [21], errors
are introduced from the fact that the voxels are rectangu-
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lar approximations of the nodule surface. To address this
problem, the surface curvature is estimated from a smoothed
polygonal tessellation of the segmented binary nodule image
as described by Jirapatnakul [22]. To generate the tessella-
tion, the marching cubes algorithm developed by Lorensen
and Cline [23] was used. This algorithm results in triangles
located at angles that are multiples of 45◦; to improve the sur-
face representation, the polygonal tessellation was smoothed
by modifying the position of each vertex as a weighted sum
of the neighboring vertices and itself. Once the smoothed
polygonal representation is obtained, the surface normal of
each triangle can be computed. From the surface normal of
each triangle, the surface normal of each vertex can be com-
puted as the average of the surface normals from each triangle
of which it is a member. Finally, the curvature for a triangle is
computed as the average difference between the surface nor-
mals at each vertex. The mean, minimum, maximum, range,
standard deviation, skewness and kurtosis of the curvature
distribution were included as features.

The final category of features is the nodule margin. The
nodule margin refers to the boundary of the nodule and the
surrounding lung parenchyma. While the surface curvature
features capture the shape of the nodule at the margin, the
margin gradient features measure the density changes that
occur at the margin. To compute the margin gradient, the
surface normals for each triangle in the nodule surface rep-
resentation are used. These normals are computed in the
process of computing the surface curvature, as described in
the previous paragraph. In addition to the surface normals,
gradient images in each direction (x, y, and z) are created
from the resampled isotropic grayscale images using a 3D
operator proposed by Monga et al. [24,25]. At each trian-
gle, ten gradient samples are taken along the surface normal
vector through the center of the triangle. The highest gradi-
ent value is recorded for the triangle. The mean, minimum,
maximum, range, standard deviation, skewness and kurtosis
of the distribution of gradients were included as features.

Feature classification

Five different classifiers were evaluated: the distance
weighted k-nearest-neighbors classifier (dwNN) [26], the
Support Vector Machine (SVM) classifier [27] with a poly-
nomial kernel (SVM-P), SVM with a Radial Basis Function
kernel (SVM-R), the logistic regression classifier (LOG)
and the size threshold classifier (Size-C). For dwNN, SVM
(polynomial and RBF) and LOG classifiers, fivefold cross-
validation approach was used for training and testing. In the
training stage, training set was further divided into train and
validation for parameter optimization using fivefold cross-
validation. The final classification outcome was represented
by the average ROC curve and the area under the ROC curve
(AUC) obtained using the five ROC curves from fivefold

cross-validation. The threshold averaging method was used
for ROC averaging (Fawcett et al. [28]).

Compared to the conventional K-Nearest Neighbors clas-
sifier, the dwNN classifier weights each neighbor n of a
feature vector based on their distance dn . The weight wn

is computed as follows where σ is a constant that controls
the impact of each neighbor on the classification outcome.
In the training stage, a grid search was performed to find the
optimal σ (see Table 9 in “Appendix”).

wn = 1

exp (σ ∗ dn)

The SVM classifier was implemented using the SVMlight

library [29]. For the SVM with polynomial kernel (SVM-P),
the two parameters obtained from training were the order
of polynomial kernel d and the trade-off between training
error and margin c. The search space for d and c is shown in
Table 9 in “Appendix.” Joachims [29] stated that c = 0.001 is
acceptable for most tasks and a larger c leads to considerably
longer training time. For SVM with RBF kernel (SVM-R),
the two parameters obtained from training were the weighting
factor in the polynomial kernel g and the trade-off between
training error and margin c. The search space for g and c is
also shown in Table 9 in “Appendix.”

For the LOG classifier, Peduzzi et al. [30] have shown in
a simulation study that for each feature, LOG would require
at least ten positive and ten negative samples to avoid bias.
In the training stage, each feature was ranked based on its
individual AUC and the top n features were selected. The
search space for n is shown in Table 9 in “Appendix.”

In addition, results for the size-only classification scheme
were computed. For a given size threshold T, the size classi-
fier indicates that all nodules with a size greater than T are
malignant and all nodules with a size less than T are benign.
The evaluation metric was the AUC, which was achieved by
varying the size threshold T through the size range of the
nodules in the dataset; therefore, no training was required
for this classification method. The size classifier provides
information on the size imbalance within the malignant and
benign size distribution of the test dataset—the greater the
size imbalance, the higher the AUC.

Experiments

Two main experiments were performed: the first to evaluate
the impact of class size distribution imbalance by comparing
the size-only classifier to methods using additional image
features, and the second to evaluate the impact of using size-
balanced datasets. In all experiments, the full set of image
features and all five classifier types were considered. The
organization of the experiments is illustrated in Fig. 5. The
main dataset All Data consists of the two trial cohorts. A size
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Fig. 5 Overview of the
experiment organization

distribution-balanced dataset is selected from All Data for
the second experiment, and it is further partitioned into size
bins for the binning classifiers.

In the first experiment, the traditional method for training
and testing using cross-validation on All Data was evaluated.
In addition, to illustrate the impact of the size imbalance, the
classifiers trained on just one of the two data cohorts are also
evaluated with All Data.

In the second experiment, the performance of three dif-
ferent classifiers trained on only the Balanced Data subset
is compared to the traditional classifier trained in All Data
using three different training strategies with the data sub-
sets shown in Table 3. First, the performance of this dataset
(GA) using the unbalanced full-data-trained classifier from
the first experiment was measured. Second, the performance
of the balanced data (GA) trained (through cross-validation)
with itself was evaluated. Third, a binned training strategy
was evaluated where the balanced dataset was partitioned
into different sized groups and each classifier was trained for
each group using only nodules in the same size group. A two
bin grouping using bins G6 and G8 + G12 and a three bin
strategy using bins G6, G8 and G12 were evaluated.

The usual metric for classifier performance is the area
under the curve (AUC). Since in this context much of this
performance is attributed to difference in the test set size
distribution, an additional metric, the incremental increase
in AUC compared to a size classifier (IAUC), was consid-
ered to be more relevant. The DeLong test [31] was used to
assess pairs of ROCs. It estimates a covariance matrix from
two ROC curves, which may also be used to construct confi-
dence regions and compute the statistical significance of the
difference between the two AUCs.

Results

In the following tables of AUC results, the mean AUC value
for the fivefold cross-validation is reported, together with
the standard deviation in parenthesis. Also the p value of the
Delong test with respect to the size classifier is given.

Results for the size-unbalanced dataset

The result for the full unbalanced dataset is shown in Table 4.
A comparison of the different training datasets using an
SVM-P classifier is shown in Fig. 6. A comparison of the
different classifiers for the full unbalanced dataset is given in
Fig. 7. For LOG on the full unbalanced data (Table 4, all row),
the optimal set of features is listed in Table 10 in “Appendix.”
For the full unbalanced data, each classifier’s ROC was com-
pared to size classifier’s ROC and their p values are listed in
Table 4. Values listed in bold in Table 4 indicate the ROC
appears in either Figs. 6 or 7.

Results for the size-balanced dataset

The results for the balanced dataset with the unbalanced train-
ing and the balanced training schemes are shown in Table 5.
Each classifier was also compared to the size classifier, and
the p value is given. Table 6 shows the results using differ-
ent training conditions for the two binning strategies. The
training conditions were: unbalanced binned training and
balanced binned training. For each training condition, only
the result from the best classifier is shown. The two binning
strategies were: three bins (G6, G8 and G12); two bins where
the two larger bins G8 and G12 were combined into one large
bin and the same experiments were repeated using a small bin
(G6) and a large bin (G8 + G12), each with a similar number
of nodules. Table 7 shows the overall performance for the
binned classifiers (three bins and two bins) under different
training conditions.

The ROC curves for the full balanced dataset with each
classifier with balanced training (GA balanced) are shown
in Fig. 8. The ROC curves for GA with each classifier with
unbalanced training (GA unbalanced) are shown in Fig. 9.
Figure 10 shows the ROC curves for the best classifier under
each training condition: unbalanced training, balanced train-
ing, overall performance using three bins (G6, G8 and G12)
and overall performance using two bins (small and large).
For testing on GA set using balanced and unbalanced train-
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Table 4 Classifier performance
(AUC) for the unbalanced data
sets

Training dwNN SVM-P SVM-R LOG

Weill Cornell

AUC 0.737 0.731 0.731 0.716

σ (0.046) (0.027) (0.027) (0.036)

NLST

AUC 0.738 0.766 0.763 0.749

σ (0.032) (0.039) (0.036) (0.047)

All

AUC 0.750 0.772 0.772 0.761

σ (0.042) (0.034) (0.031) (0.038)

IAUC 0.025 0.047 0.047 0.036

p value (p = 0.09) (p < 0.001) (p < 0.001) (p = 0.15)

σ is the standard deviation. Size-C AUC = 0.725

Fig. 6 ROC curve for SVM with Polynomial kernel on the two train-
ing dataset separately (red for Weill Cornell and green for NLST) and
combined (blue). The size classifiers on Weill Cornell (black), NLST
(brown) and combined dataset (magenta) are also shown

ing, the optimal features for LOG are listed in Table 11 in
“Appendix.”

Discussion

Due to the data selection methods for size balancing and the
image quality requirements neither of the size distributions
for the Weill Cornell nor NLST data accurately reflect the
size distributions of the subjects in lung cancer screening
studies; however, the general distribution for the cancers is
representative as we selected all usable malignant nodule
images. This is not the case for the benign nodules since

Fig. 7 ROC curve for dwNN (red), SVM with polynomial kernel
(green), SVM with RBF kernel (blue), logistic regression (black) and
size classifier (magenta) on the full unbalanced dataset

these were selected with a view to size balancing. In the full
studies, there are many more small benign nodules.

Pulmonary nodule classification from screening CT images
acquired for nodule detection is a very challenging task given
the small size of the nodules and the large amount of image
noise. From Table 4 and Figs. 6, 7, we see that the size clas-
sifier, which is only sensitive to the difference in the size
distributions for benign and malignant nodules, provides an
AUC of 0.725 for the combined dataset. This number would
have been much higher (and comparable to other published
studies) if we had included the very large number of small
benign nodules that were documented in the full screening
studies. The size classifier ROC curves in Fig. 6 for the two
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Table 5 Classifier performance
(AUC) for the balanced dataset
GA trained on balanced and
unbalanced data

Training dwNN SVM-P SVM-R LOG

Unbalanced

AUC 0.584 0.639 0.642 0.564

σ (0.014) (0.050) (0.048) (0.035)

IAUC 0.074 0.129 0.132 0.054

p value (p = 0.14) (p = 0.01) (p = 0.009) (p = 0.11)

Balanced

AUC 0.700 0.708 0.699 0.624

σ (0.051) (0.062) (0.056) (0.095)

IAUC 0.190 0.198 0.189 0.115

p value (p < 0.001) (p < 0.001) (p < 0.001) (p = 0.003)

Standard deviation σ , IAUC and p value are also listed. Size-C AUC = 0.510

Table 6 Best performance AUC for different evaluation data sets: G6,
G8, G12 and Large (G8 + G12)

Training G6 G8 G12 Large (G8 + G12)

Unbalanced (binned)

AUC 0.646 0.699 0.745 0.740

σ (0.050) (0.130) (0.093) (0.081)

Classifier (dwNN) (SVM-P) (SVM-R) (SVM-R)

Balanced (binned)

AUC 0.691 0.759 0.759 0.780

σ (0.078) (0.141) (0.089) (0.079)

Classifier (LOG) (SVM-P) (SVM-P) (SVM-P)

Size-C

AUC 0.546 0.500 0.507 0.503

The best classifier and standard deviation σ are also listed

Table 7 Best performance AUC for binned classifiers (3-bin and 2-bin).
Size-C AUC = 0.510

Training 3-bin 2-bin

Unbalanced

AUC 0.666 0.684

σ (0.036) (0.048)

IAUC 0.156 0.174

p value (p = 0.002) (p < 0.001)

Balanced

AUC 0.726 0.742

σ (0.056) (0.057)

IAUC 0.216 0.232

p value (p < 0.001) (p < 0.001)

individual study datasets show very similar properties with a
slightly larger size imbalance for the NLST dataset. Note, in
Fig. 6, the best evaluation results are superior to but follow
most closely the size evaluation curve of the All Data test set
even when the classifier is trained only by a single cohort.

Fig. 8 Comparison of classifiers on the size-balanced dataset GA using
balanced training

In Fig. 7, we see a comparison of the different classifica-
tion methods used for the combined full unbalanced dataset.
Very little difference is noted; the best classifiers (SVM-P
and SVM-R) have an IAUC of only 0.047 over the size clas-
sifier. The average improvement is 0.039. From Table 4, we
see that the IAUC is only statistically significant for the two
SVM classifiers (p < 0.05).

The results for the size full balanced dataset are shown in
Tables 5, 6, 7 and Figs. 8, 9, 10. The size classifier has an AUC
of 0.510; for a perfectly balanced dataset the value would be
0.500. For the balanced data test set GA, the unbalanced
classifier (which claimed an AUC of 0.772 when evaluated
on all nodules) only achieved an AUC of 0.642 (IAUC of
0.132) compared to an AUC of 0.708 (IAUC of 0.198) using
the balanced classifier. This difference in performance was
statistically significant (p = 0.01).
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Fig. 9 Comparison of classifiers on the size-balanced dataset GA using
unbalanced training

Fig. 10 Comparison of the best classifier under different training con-
ditions when tested on the size-balance dataset GA

In Tables 6 and 7 and Fig. 10, the AUC results for bin-
ning are shown. While all AUCs were statistically significant
with respect to the size classifier, none of the balanced binned
classifier was statistically significantly different with respect
to the unbalanced binned classifier. However, the binned
results show better AUC values compared to balanced train-
ing overall 0.742 (two bins), 0.726 (three bins) versus 0.708
(balanced training). Further, the small-nodule bin (G6) shows
a lower AUC than the others under all training conditions.

Malignant B50f   Malignant B30f 

Benign B50f Benign B30f 

Fig. 11 The effect of the CT image reconstruction filter

For the binned training, the IAUC for G6 was 0.145, while
for the other bins, it was much higher (G8, 0.259, G12, 0.252;
(G8 + G12) 0.277). This implies the image features are less
effective for these small nodules. An improvement of per-
formance of the 2-bin classifier is noted (0.742 vs. 0.708)
although this is not statistically significant p = 0.35.

Figures 11 through 13 provide examples of some of the
image issues and demonstrate the range of presentations
shared by both malignant and benign nodules. Figure 11
shows the impact of the image reconstruction filter on image
quality, Fig. 12 shows malignant and benign nodules with
similar complex presentations and Fig. 13 shows the impact
of structured image noise.

There have been a number of studies on characterizing the
malignancy status of pulmonary nodules from CT images
reported in the literature [2–11]; performances have been
reported in terms of area under the curve (AUC) for ROC
analysis in the range of 0.79–0.92. Of these studies, only three
have used nodules from a lung cancer screening study [2,5,
8]. These three studies all used the same dataset that has over
400 benign nodules and less than 80 malignant nodules and
is dominated by a large number of very small benign nodules
(smaller than any malignant nodule), which is a major factor
in determining the AUC performance [12].

Limitations of this study

For this retrospective study, the data are on the order of
10 years old and does not reflect the impact of recent changes
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Malignant      Benign 

Malignant Benign

Fig. 12 Examples of nodules with similar complex presentations

in CT technology. Many of the scans (65 %), especially those
from the NLST (94 %), had a slice thickness greater than or
equal to 2 mm which is half the image resolution specified
by current lung cancer screening guidelines. We did not con-
sider nonsolid nodules since these are a different phenotype
and lack representation in our database in sufficient numbers;
these nodules should be the subject of a future study.

The scans for this study span a wide range of CT models
and parameter settings. No image preprocessing was per-
formed to compensate for different image scanner parame-
ters, especially with respect to image reconstruction filtering
and image noise (see Figs. 11, 13); however, image resam-
pling to isotropic space was performed for feature evaluation.

Conclusion

The task of nodule classification in the context of lung cancer
screening has the following distinguishing characteristics:

(a) low image resolution, (b) high image noise (c) tremen-
dous size range of nodules, (d) different size distributions
for benign and malignant nodules and (e) a large variation
in CT scanner acquisition parameters. For a classification
system to be relevant to lung cancer screening, all these
issues need to be considered. Ignoring size issues may result
in overlying optimistic performance results that reflect only
the imbalance in the test set size distribution. This imbal-
ance causes the system to confound the population-based
difference in size distribution with the patient-specific image
features of the nodule. The predictive power associated with
the nonsize-impacted image features may be determined by
using a size-balanced dataset.

In this study, we have explored the size issues using a
large size-enriched dataset of 736 nodules by combining
images from the two largest lung cancer screening studies.
Our results indicate that there is a measurable improvement
in the prediction of malignancy by using image features over
size alone; however, the main predictor is size and this must
be carefully accounted for when attributing the benefit of
other image features. The overoptimistic performance and
biased learning due to class size distribution differences can
be avoided by using a size-balanced evaluation dataset. The
tremendous size range of pulmonary nodules encountered in
screening may be addressed by binning, that is, training a set
of classifiers on a small nodule size ranges and selecting the
size-specific classifier for a given case. In any case, appropri-
ate representation of the large size range will require much
larger datasets than the 736 cases that we used in this study.

In this study, the incremental improvement of the AUC
over size was only 0.047 for the full unbalanced dataset. The
balanced data test set had a statistically significant improved
performance (p = 0.01) with the IAUC increasing from
0.132 to 0.198 when trained on the balanced data, which was
further increased to 0.232 by using two bins. This provides
a modest improvement over size information alone.

The population-based probability of malignancy based on
size is a major prediction factor that is known a priori from the
analysis of cancer screening studies and practice. The essen-
tial issue for a patient-based nodule characterization system
is to determine the probability of malignancy conditioned on

Fig. 13 Examples of images in
which the nodules intensity is
impacted by structured scanner
noise

Malignant  Benign Benign
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a size, rather than the joint probability of malignancy and
size.

There are several technical improvements that may lead
to improved classification performance including higher res-
olution images, standardization on scanner parameters and
reduction in image noise.
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Appendix

The appendix includes four tables. Table 8 lists all 46 3D
image features used in the experiments, their abbreviations
and their mathematical definitions. They are divided into
four categories: morphological, density, curvature and mar-
gin gradient. Morphological and density features are based on
standard moments [19], while other features including cur-
vature and gradient features that involve a polygon surface
representation are described in [22]. Table 9 gives the para-
meter search space in the training stage for the four different
classifiers: dwNN, SVM with polynomial kernel (SVM-P),
SVM with Radial Basis Function kernel (SVM-R) and logis-
tic regression (LOG). Table 10 gives the optimal features for
LOG classifier on the full unbalanced dataset using fivefold
cross-validation. Table 11 gives the optimal features for LOG
classifier on the balanced dataset with balanced training and
unbalanced training conditions.

Features

All the features, with the exception of the attachment ratio
feature, the curvature and the margin features were derived
from 3D image moments defined in [19]. The 3D image

moment of order (p + q + r) is defined as:

mpqr =
M−1∑
x=0

N−1∑
y=0

L−1∑
z=0

x p yq zrv (x, y, z)

where v (x, y, z) is a discrete function of size (M × N × L)

and can be binary or grayscale. All moment-related features
in this paper are standard moments, which are normal-
ized with respect to scale, translation and rotation [19].
When v (x, y, z) is binary, the moments are normalized mor-
phological moments Mpqr . When v (x, y, z) is grayscale
(voxel intensity), the moments are normalized densitiometric
moments Dpqr .

The voxel size is defined as:

Vvoxel = xres · yres · zres

where xres, yres, zres are the x, y, z image resolutions. The
intensity of Vvoxel is I (x, y, z).

A surface voxel can be:

Vxy : surface voxel in the surface perpendicular to the
z-axis;
Vxz : surface voxel in the surface perpendicular to the
y-axis;
Vyz : surface voxel in the surface perpendicular to the
x-axis.

The orientation is derived from the solution of the eigen-
problem: Av = λv, where v is a vector and A is defined
as:

A =
⎛
⎝m200 m110 m101

m110 m020 m011

m101 m011 m002

⎞
⎠

The solution of this problem, eigenvectors
(
Vx , Vy, Vz

)
and

eigenvalues λ0 > λ1 > λ2, form the major principal axis Vx ,
the intermediate principal axis Vy , the minor principal axis
Vz [19,22]. When mpqr is the geometric moment, the major,
intermediate and minor axes are geometric:Vx , Vy, Vz . When
mpqr is the density moment, the axes are density based:
Dx , Dy, Dz .

The roll, pitch and yaw angles are defined as the rotation
of an object about the standard x-y-z axes. The roll angle γ

is a rotation of γ about the x-axis. The pitch angle β is a
rotation of β about the y-axis after the first rotation. The yaw
angle α is a rotation of α about the z-axis after the first two
rotations [19].

The attachment ratio is the ratio of the number of surface
voxels along the border of the removed vessels and the nod-
ule, VDi , to the number of surface voxels of the segmented
nodule, VRi .
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Table 8 Nodule feature description

Name Definition Equation

Morphological features

gvol Volume (mm3) m000 · Vvoxel

gsa Surface area (mm2)
∑ (

Vxy · xres · yres + Vxz · xres · zres + Vyz · yres · zres
)

gvsr Volume-to-surface area ratio gvol
gsa

gcmp Compactness 4π ·gvol
gsa

3
2

gdiml Length of ellipsoid of inertia |Vx |
gdimw Width of ellipsoid of inertia

∣∣Vy
∣∣

gdimh Height of ellipsoid of inertia |Vz |
garlh Length to height ratio gdiml

gdimh

garlw Length to width ratio gdiml
gdimw

garwh Width to height ratio gdimw
gdimh

gsph Sphericity gcmp
garlh

grr Orientation angle: roll (◦) cos−1
(

(0,Vz (y),Vz (z)
|Vz |

)
· sgn (Vz (y))

grp Orientation angle: pitch (◦) cos−1
(

(Vx (x),0,Vx (z))|Vx |
)

· sgn (Vx (z))

gry Orientation angle: yaw (◦) cos−1
(

(Vx (x),Vx (y),0)
|Vx |

)
· sgn (Vx (y))

m200 Normalized morphological moment of order (2,0,0) M200

m020 Normalized morphological moment of order (0,2,0) M020

m002 Normalized morphological moment of order (0,0,2) M002

attach Attachment ratio
∑

VDi∑
VRi

Density features

dmass Density mass
M−1∑
x=0

N−1∑
y=0

L−1∑
z=0

I (x, y, z)

dmd Mean density 1
Nall

Nall−1∑
0

I (x, y, z)

dsd Density histogram standard deviation

√
1
Nall

Nall−1∑
0

(I (x, y, z) − μ̄)2

dskew Density histogram skewness
∑Nall−1

0 (I (x,y,z)−μ̄)3

dsd3

dkurt Density histogram kurtosis
∑Nall−1

0 (I (x,y,z)−μ̄)4

dsd4 − 3

ddiml Density-based length of ellipsoid of inertia |Dx |
ddimw Density-based width of ellipsoid of inertia

∣∣Dy
∣∣

ddimh Density-based height of ellipsoid of inertia |Dz |
darlh Density-based length to height ratio |Dx ||DZ |
darlw Density-based length to width ratio |Dx ||Dy |
darwh Density-based width to height ratio |Dy |

|Dz |
d200 Normalized densitiometric moment of order (2,0,0) D200

d020 Normalized densitiometric moment of order (0,2,0) D020

d002 Normalized densitiometric moment of order (0,0,2) D002

Curvature features

cmin Minimum curvature min
{
CTi

}
cmax Maximum curvature max

{
CTi

}
cran Range of curvature max

{
CTi

} − min
{
CTi

}
cmean Mean curvature mean

{
CTi

}
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Table 8 continued

Name Definition Equation

csd Standard deviation of curvature sd
{
CTi

}
cskew Skewness of curvature

∑
i

(
CTi −mean

{
CTi

})3

sd
{
CTi

}3

ckurt Kurtosis of curvature
∑

i

(
CTi −mean

{
CTi

})4

sd
{
CTi

}4 − 3

Margin gradient features

tmin Minimum gradient min
{
GTi

}
tmax Maximum gradient max

{
GTi

}
tran Range of gradient max

{
GTi

} − min
{
GTi

}
tmean Mean gradient mean

{
GTi

}
tsd Standard deviation of gradient sd

{
GTi

}
tskew Skewness of gradient

∑
i

(
GTi −mean

{
GTi

})3

sd
{
GTi

}3

tkurt Kurtosis of gradient
∑

i

(
GTi −mean

{
GTi

})4

sd
{
GTi

}4 − 3

Table 9 Parameter search space
for each classifier

Classifier Parameter Search space

dwNN σ 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 2.0, 2.4, 2.8, 3.2, 4.0,
4.8, 5.4, 6.4, 8.0, 9.6, 11.2, 12.8, 14.4, 16.0

SVM-P d 1, 2, 3, 4

SVM-P c 10e−6, 2×10e−6, 4 ×10e−6, …, 0.262, 0.524, 1.049

SVM-R g 10e−3, 2×10e−3, 4 ×10e−3, …, 0.512, 1.024

SVM-R c 10e−4, 2×10e−4, 4 ×10e−4, …, 3.277, 6.554

LOG n 1, 2, 3, …, min(number of positive samples, number of negative
samples)/10

Table 10 LOG classifier
optimal features on full
unbalanced dataset (onefold to
fivefold listed from fivefold
cross-validation)

Fold Features

1 gdimh, ddimh, gsa, gvol, cran, dmass, cmin, ddimw, gdimw, cmean, gvsr, ddiml, gdiml,
tmin, cmax, gcmp, csd, ckurt, dskew, tran, dmd, dkurt, dsd, garwh, tskew

2, 3 gdimh, ddimh, gsa, gvol, dmass, cran, ddimw, gdimw, cmin, gvsr, ddiml, gdiml, cmean,
tmin, cmax, gcmp, csd, ckurt, dskew, tran, dmd, tskew, tmean, garwh, darwh

4 cran, gdimh, ddimh, tmin, cmin, gsa, gvol, dmass, cmax, ddimw, gdimw, gdiml, ddiml,
cmean, gvsr, csd, gcmp, ckurt, tran, dskew, tskew, garwh, tmean, darwh, tsd

5 cran, gdimh, ddimh, gsa, cmin, gvol, tmin, dmass, gdiml, ddimw, gdimw, ddiml, cmean,
gvsr, gcmp, cmax, csd, ckurt, tmean, tran, dskew, tskew, gsph, dmd, cskew

The number of features is n = 25

The density statistics are computed using the central sta-
tistical moments, which are the summations of powers of
the voxel density values (intensity) normalized to the mean
value, μ̄.

μp =
Nall−1∑

0

(v (x, y, z) − μ̄)p

where Nall is the number of voxels.
Surface curvature is defined as the rate of change of

the surface normal φ with respect to the surface length.

For 3D curvature measurement, a discrete piecewise linear
model for the nodule surface is used. Curvature is esti-
mated on a smoothed tessellated polygonal surface model of
the segmented nodule, generated using the marching cubes
algorithm. The resulting triangular polygonal surface repre-
sentation is smoothed by replacing the location of a vertex by
a weighted sum of neighboring vertices and itself. The nod-
ule surface regions where attached structures such as vessels
have been removed are deleted.

The surface curvature is estimated for each pair of vertices
in the remaining triangular mesh. First, the normal of each
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triangle is computed: given vertices {VlVcVd} of a triangle
Ti the surface normal Ni is given by:

Ni =
−−→
VιVc × −−→

VιVd∣∣∣−−→VιVc × −−→
VιVd

∣∣∣

The surface normal at each vertex is computed by averaging
the surface normal of the triangles of which the vertex is a
member:

φi =
∑m

i=0 Ni

|T |

where |T | is the number of triangles of which |Vi | is a mem-
ber.

The curvature is computed by taking the angular differ-
ence between the surface normals at a vertex and an adjacent
vertex. The angular difference between the surface normal
vectors φi and φa is:

θi = cos−1
(

φi · φa

|φi | |φa |
)

For each vertex, the average curvature corresponding to all
adjacent vertices is computed. For example, the average cur-
vature for vertex Vi can be computed as:

CVi =
∑

m∈{a,b,c,d,e} cos−1
(

φi ·φm|φi ||φm |
)

n

where n is the number of adjacent vertices.
Finally, each triangle in the polygonal representation is

assigned a curvature value based on the average of the cur-
vatures of the vertices which comprise the triangle:

CTi =
(
CVi + CVd + CVc

)
3

where Vi , Vd , Vc are the vertices of the triangle Ti .
Descriptive statistics of the distribution of curvatures over

the entire nodule surface are used as curvature features.
The gradient features are used to measure the nodule mar-

gin, which is defined as the region along the nodule boundary
and lung parenchyma. The 3D gradient is measured in the x,
y, z directions as defined by Deriche [25].

To optimize the gradient estimate, at each triangle, ten gra-
dient samples are evaluated along the surface normal vector
through the center of the triangle and the maximum gradient
is recorded:

GTi = max
{
GTi0 ,GTi2 , . . . ,GTi9

}

where GTi j is a gradient sample for triangle Ti .
Descriptive statistics of the distribution of these maximum

gradients over the entire nodule surface are used as gradient
features.

Parameter optimization

See Table 11.

Table 11 LOG classifier optimal features on full balanced dataset GA
using balanced training and unbalanced training (onefold to fivefold
listed from fivefold cross-validation)

Fold Training Features

1, 3 Balanced tmean, dmd, tmax

2 Balanced tmean, dmd, csd

4 Balanced tmean, dmd, dsd

5 Balanced tmean, dmd, garwh

1–5 Unbalanced gdimh, ddimh, cran

The number of features is n = 3
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