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Abstract
Purpose With higher resolutions,medical image processing
operations like segmentation take more time to calculate per
step. The pyramid technique is a common approach to solv-
ing this problem. Starting with a low resolution, a stepwise
refinement is applied until the original resolution is reached.
Methods Our work proposes a method for deformable
model segmentation that generally utilizes the common pyra-
mid technique with our improvement, to calculate and keep
synchronized all mesh resolution levels in parallel. The
models are coupled to propagate their changes. It presents
coupling techniques and shows approaches for synchroniza-
tion. The interactionwith themodels is realized using springs
and volcanoes, and it is evaluated for the semantics of the
operation to share them across the different levels.
Results The locking overhead has been evaluated for dif-
ferent synchronization techniques with meshes of individual
resolutions. The partial update strategy has been found to
have the least locking overhead.
Conclusion Running multiple models with individual reso-
lutions in parallel is feasible. The synchronization approach
has to be chosen carefully, so that an interactive modification
of the segmentation remains possible. The proposed tech-
nique is aimed at making medical image segmentation more
usable while delivering high performance.
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Motivation

Medical imaging, like computed tomography (CT), mag-
netic resonance imaging (MRI) and ultrasonography (US),
is commonly used in clinical environments and under con-
stant improvement. Higher resolutions result in larger data
sets that require specialized processing. A common tech-
nique is the pyramid approach [1]. Several levels of details
are created by subsampling the input. Using a factor of two, a
2D image would quadruple at each level. Using these levels,
processing can be performed from coarse to fine, getting the
main structure right before working details. This technique
is commonly used in image registration [1]. In this case, the
parameters are adjusted for each levels.

To segment anatomical structures, model-based
approaches like deformable models [22] have proven to be
very powerful and robust. They deform a three-dimensional
(3D) polygonal mesh, of the desired anatomical structure,
based on internal (shape preservation) and external (image
based) forces. This deformation is performed iteratively until
an equilibrium has been reached. The calculation effort per
step [23] depends on the mesh resolution. Therefore, using
the pyramid approach, a low-resolutionmesh is used first and
configured to allow larger changes. In the refinement (going
down the pyramid), the mesh resolution is increased while
limiting its range of motion. The structure of the pyramid
approach and distribution of steps per level is illustrated in
Fig. 1. This way, the coarse model first aligns to the anatom-
ical structure and later the high-resolution model is able to
capture fine details [21]. This process is always performed
in a one-way direction from coarse to fine.

In ourwork,wepropose a deformablemodel segmentation
approach that works on multiple levels of detail in parallel.
The meshes for each layer are synchronized with each other,
breaking the linear structure of the pyramid approach. This
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Fig. 1 Using the pyramid approach, the resolution of the model
increases with every level (left). At the same time, the number of steps
per level decreases due to the higher computational costs

changes the interaction pattern. The linear approach requires
a scale-based correction—influence points and corrections
have to be set (and the mesh evolved) before switching to the
next level of detail. In the approach presented here, the user
can work location based, e.g., when segmenting the femur,
focus on the femoral head first and work on the condyles
later. This way, the user can switch between multiple levels
of details and can go to a coarser model without losing fine
details previously created.

The different meshes run independently from each other
(except for some form of synchronization) and can be dis-
tributed across multiple cores or machines. We are therefore
able to exploit multi-coremachines evenwith algorithms that
are not optimized for this. Our methodology can be applied
to a large variety of 3D medical images, including CT, MRI
and US. The image loading is using the Insight Segmenta-
tion and Registration Toolkit (ITK) [34]; therefore, image
data sets are required to be ITK compatible. However, image
loading can be easily extended, and additional image forces
can be introduced for new modalities. Iso-voxel spacing is
currently required. Filtering (noise reduction, bias field cor-
rection, etc.) can be performed to improve the effectiveness
of the image forces.

Related work

Deformablemodels, introduced byTerzopoulos et al. [31,32]
and extended by Cohen [10], are used for a broad field of
applications like computer graphics [25], cloth simulation
[33], cell tracking in time-lapse microscopy [12] and med-
ical image analysis, as shown in the survey of McInerney
et al. [22]. Bredno et al. [7] describe a general deformable
model for multiple dimensions. Lehmann et al. [20] give
a good overview of different techniques and their fields of
application. Deformablemodels inmedical segmentation are
discussed in [3].

Deformablemodels can be divided by their representation.
Continuous representations can be explicit, e.g., with snakes
[18], or implicit, e.g., with level sets like in [26]. Discrete
representations are either based on particle systems, e.g., by
Szeliski and Tonnesen [29], or based on either triangular [7]
or simplex meshes [11].

Bogovic et al. [5] describe a framework that allows the
parallel segmentation of multiple coupled objects. They
demonstrate the feasibility of their level set-based approach
with brain structures. In contrast, Changizi andHamarneh [9]
showaprobabilisticmulti-shapepresentation.Their approach
handles multiple related meshes and can be used to improve
statistical models.

Popular interactionmodes for snakes, and later deformable
models like springs and volcanoes, have been introduced by
Kass et al. [18] in 1988. Han et al. [14] have used these
interaction modes for multi-user collaborative interactive
segmentation. Henriques and Wünsche [15] show improved
interaction through meshless deformation.

Edwards et al. [13] discuss mesh consistency during par-
allel modifications. Lachat et al. [19] present a method for
parallel re-meshing of distributed meshes. The work by
Sumengen et al. [28] demonstrates a multi-resolution rep-
resentation of a FEM model that can be deformed in a
distributed environments. They subdivide themesh and every
client is simulating a part, and the results are then shared
with the other clients. On the client side, it is then possible to
generate representations at multiple resolutions. Also Tang
et al. [30] demonstrate the distribution of mesh distributions
through collaborative environments.

We have chosen deformable models for their flexibility
and their well established use in medical image segmenta-
tion. Furthermore, interaction methods have been defined for
them. Some work has been done on parallel mesh access
and distribution and on the generation of multiple resolution
representations. Nonetheless, an approach for coupledmulti-
resolution meshes that allows interaction is still missing.

Methods

The coupling of multiple meshes is a complex process, and
several approaches are discussed in detail on their advan-
tages and disadvantages. Furthermore, since themeshes have
different resolutions and are continuously processed inde-
pendently from each other, some form of synchronization is
needed in order to propagate the deviations. Lastly, we look
at approaches for interactive segmentation and how they can
be implemented in the multi-resolution approach.

For a given mesh M , its subversions for n levels are
M1, M2, . . . , Mn . It is given that always M1 ⊇ M2 ⊇ · · · ⊇
Mn . A vertex V may be called Vi within the mesh Mi . This
relation is illustrated in Fig. 2 with initial model a and sub-
levels b and c.

Coupling

In order to propagate the changes between the coupled
meshes M1, . . . , Mn , we discuss in the following section
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Fig. 2 Concept of the coupled models. An initial model (a) is deci-
mated (b, c) to models with fewer vertices. This reduces the calculation
time per simulation step. Interaction is done through magnets and anti-
magnets. Magnets (x) are passed up to finer levels, and antimagnets (o)
are only propagated to more coarse levels

three different techniques: naive direct vertex copying, posi-
tion averaging and finally spring forces between meshes.

Direct vertex position copying

A simple approach to coupling the meshes is direct vertex
copying. It can be done from coarse to fine or from fine to
coarse. In either case, either M1 or Mn are favored, since
M1 ⊇ · · · ⊇ Mn . Therefore, any changes in the meshes
M2, . . . Mn−1 are discarded. This renders them useless and
reduces the actual number of meshes to two levels: M1 and
Mn .

Vertex position averaging

A more practical approach is to average the vertices across
the models. The new average vertex Vnew is calculated using
weights ωi :

Vnew = 1

n

n∑

i=1

ωi Vi

with weights ωi so that
n∑

i=1

ωi = 1

Using this approach, the position of the new vertex is the
same for all meshes. Manipulating the weighting factor on a
per-mesh basis can be used to increase the impact of certain
meshes, e.g., higher resolutions. In extension, it is possible to
adjust the weight dynamically per mesh, e.g., starting from a
coarsemodelwith a highweight at the beginning, and transfer
the weight continuously to the finer models. Another use of
this approach is to give the user control over the weights,
either directly or through a generalized interface.

In some use cases, it is useful to set the weights depending
on the region. An example of this could be the femoral shaft,
which has few details of importance so the coarsemesh could
be favored. The femoral head on the other hand has a lot of
detailed structures of high importance, so the finer meshes
would be given more weight.

Spring force coupling

The spring force coupling uses the (weighted) average of the
position of the vertices on the different meshes as described
above and places a force between the actual vertices and the
average position. This Hookean spring force is defined as
follows:

Fspring(Vj ) = 1

n − 1

n∑

i=1,i �= j

αi (Vj − Vi )

Similar to the previous approach, the weights αi and its
control mechanisms can be applied here as well.

Synchronization

Each of the deformation simulations is running in its own
thread and at different speeds due to the mesh resolutions. In
order to synchronize between the different resolution mod-
els, it must be avoided that these meshes are modified while
forces are being calculated on their basis.We have developed
different strategies (Fig. 3), which we will present here. All
strategies are based on a central force (the sync force) func-
tion that handles the synchronization. After each simulation
step, themodels provide a newcopy of their changed vertices.
The general segmentation process only has to be extended
with the call to that function. During the calculation of the
forces, the sync force function is called. The execution will
be delayed internally until all models are in sync. The actual
segmentation thread therefore does not have to be aware of
the other threads.

Per step updates strategy

The per step update strategy (PSU), see Fig. 3a, ensures that
all threads are always at the same step. This is achieved by
blocking the threads at the beginning of the force calculation
until all of them have updated their meshes. In this case,
the overall performance is restricted by the thread that takes
longest time for a segmentation step.

Scaled updates strategy

The scaled update strategy (SU), shown in Fig. 3b, is based
on a per-thread cost estimation.While in the PSU strategy, all
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Fig. 3 Comparison of the different synchronization approaches with
three models over time. The PSU strategy (a) causes a high amount of
waiting time (gray) for the lower-resolutionmodels for synchronization.

The SU strategy (b), when carefully tuned, reduces these waiting times.
The PU strategy (c) performs updates (arrows) in a unsynchronized
manner, fully removing waiting times

models were synchronized with each other after every step,
this strategy has the number of steps per thread depending on
the complexity of themodel.With a good estimation, waiting
times can be reduced in comparison to the PSU strategy. A
possible configuration for three threads would be the follow-
ing: The first thread with a full-resolution model is allowed
to do one step, the second threadwith a half-resolutionmodel
can do two steps, and the third with one third-resolution
model can do three steps.When the calculation scales linearly
with resolution, that configuration reduces waiting times. In
addition, the cost estimation can be dynamically derived and
adjusted from the resolution of themodel and the time it takes
for the simulation to perform a single step.

Partial updates strategy

Figure 3c illustrates the partial updates strategy (PU),
which strongly reduces the synchronization overhead with
its relaxed locking mechanism. For each resolution model,
updates are stored immediately and forces are calculated
directly upon request. Locking is only used to ensure that
no forces are being calculated while the meshes are chang-
ing. This approach should allow the best performance but
depending on the thread scheduling models can run mas-
sively apart. However, due to the synchronization, this effect
is kept minimal.

Interactive segmentation

There exist many styles of interaction for deforming meshes.
After careful consideration, we have selected to implement
springs and volcanoes, also known as magnets and anti-
magnets. Magnets are designed to attract the mesh, and
antimagnets are supposed to push away the mesh.

A magnet at the position P only interacts with the closest
vertex Vi of the mesh. Using the scaling factor αmagnet, they
are defined as:

Fmagnet(Vi ) = αmagnet(P − V )

Antimagnets are designed to affect only near proximity,
given by a radius. A vertex V inside this radius, having the
distance r to the antimagnet, receives the following force,
scaled by αantimagnet:

Fantimagnet(V ) = αantimagnet
r

‖r‖3

Magnets and antimagnets are set/defined by the user on
a specific levels. Nonetheless, they should also influence
the meshes at other resolutions. To reduce side effects and
unwanted behavior, we have evaluated the semantics of the
operations and defined the following rules:

1. Magnets are only passed down to more detailed levels.
Magnets pull the closest vertices toward them.While this
is desirable at all levels, on more coarse levels, they will
attach to a different vertex and can causemajor, unwanted
corrections.

2. Opposite to this, antimagnets are only passed up to more
coarse levels. When using antimagnets, the user usu-
ally wants to correct a segmentation mistake and to push
the model away from certain structures. This is a larger
operation that works more efficiently on coarse mesh.
Nevertheless, the more detailed models also benefit from
this, since they are coupled to the coarse models.

Implementation

In this section, we will describe the segmentation framework
architecture and its implementation. A general overview is
given for segmentation and the architectural changes for the
implementation of concurrency. Figure 4 shows the structure
of both frameworks.

Our segmentation framework is based on existing frame-
works and structured into layers. We use VTK [2] and
ITK [34] and OpenMesh [6] and the Bullet physics library1

1 http://bulletphysics.org/.

123

http://bulletphysics.org/


Int J CARS (2016) 11:695–705 699

Fig. 4 Deformablemodel framework used in this work has a layered architecture. Its single-process version (left) has several components (scripting,
visualization, model manager) which have been omitted in the presentation of the multi-threaded version (right side)

and is scriptable by using Lua [16]. We have selected to be
capable of using the underlying hardware at its best. The
physics simulation library Bullet physics has be chosen since
its pipeline also is available as OpenCL2 version which can
exploit not only multi-core CPUs but also many-core GPUs.
Similarly, ITK has been chosen not only because the large
number of supported file formats and filters but also because
of its OpenCL support.

While the core of the framework is developed in C and
C++, we provide Lua bindings for fast iterations and easy
testing of new concepts. The main loop of the segmenta-
tion process is shown below. Before that code, the images
and models have been loaded and the simulation has been
initialized. In the loop, we first calculate the forces that
are to be applied to the model, and we integrate them
using the simulation environment. Finally, the visualization is
updated.

Listing 1 Main loop for deformable model calculation

for i=1,1000 do
if i% 60 == 0 then
print (( i /60) , "seconds simulated")

end
modelMan:CalcForces()
sim:performSimulationStep(0.016666)
visu :addModel(model,1 .0 ,0 .0 ,0 .0 )

end

Image data sets can largely vary in size and can become
very big, especially in multi-channel images. Therefore, we
havedesigned themulti-threadedversion of our framework to

2 https://www.khronos.org/opencl/.

share the image between the threads. Since all image oper-
ations are read-only, we do not need advanced locking or
access control. So the image manager forms the shared foun-
dation for the threads as shown in Fig. 4. Each thread receives
a differentmodel and therefore needs its ownmodelmanager.
To avoid interference, every model also uses its own simu-
lation environment. Each thread, that is created and started,
is assigned a unique ID accessible from the per-thread Lua
scripting environment.

Synchronization

The task of running multiple meshes in parallel and coupling
their vertices requires careful synchronization. It falls into
two parts, the actual synchronization using primitives like
mutexes and the integration into the scripts.

We have modified the main loop of the deformable model
simulation to include calls to our force that performs the
coupling (modelSyncForce). This force is implemented as a
singleton and is therefore accessible from all threads. Every
thread initially has to register to this force, as seen on this
first line of the source below. Threads register with their ID,
their model and the index mapping they use. The different
resolutions of the meshes are created by decimation of the
initial high-resolution mesh. All meshes share some vertices.
To identify them, all vertices are mapped to the indices of
the initial model. Since the modelSyncForce is calculated
across threads, it gets called apart from the model manager.
It has the threadID and the model as parameters. After simu-
lation step is done, the new vertices model are updated in the
modelSyncForce. Depending on the synchronization strat-
egy, execution can be interrupted in either the calculation or
the update phase.
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Listing 2 Modified main loop for multi-threaded deformable model
calculation.

modelSyncForce: registerThread
(threadID ,model, indices )

for i=1,1000 do
if i% 60∗2 == 0 then
print(threadID , " : " ,( i /60)∗2,

" seconds simulated")
end
modelMan:CalcForces()
modelSyncForce: calcForces

(threadID ,femur)
sim:performSimulationStep(0.016666)
modelSyncForce:updateThread

(threadID ,femur)
visu :addModel(femur, threadID)

end

We have carefully selected the components of our single-
threaded version framework to support different platforms,
including Microsoft Windows, Apple OS X and Linux. For
the multi-threaded version, we have selected boost’s threads
and synchronization primitives because it allowed us to keep
the cross-platform compatibility. In the next section, we will
describe how we have used threads mutexes to implement
the three synchronization strategies described in “Synchro-
nization” section under “Methods”.

Partial update strategy (PU)

The partial update strategy provides locking for concurrent
access to the vertices, but it does not perform any synchro-
nization. If threads are stalled, it is possible that the other
threads continue to run and scatter. The basic locking of
access to the vertices is shown in the following listing. The
access to the vertices is also controlled in that fashion in the
other strategies.

Listing 3 Usage of mutexes for locking in the partial update strategy.

mutex vertexLock;

void update(threadID , model) {
vertexLock . lock ( ) ;
/ / copy vertices here
vertexLock .unlock ( ) ;
}

void calculate (threadID , model) {
vertexLock . lock ( ) ;
/ / calculate force here
vertexLock .unlock ( ) ;
}

Per step update strategy (PSU)

The per step strategy requires synchronization at two points:
The forces can only be calculated once all models have been
updated and the updates can only be done once all forces
have been calculated.

Listing 4 Usage of mutexes for locking in the per step update strategy.

mutex canUpdate;
mutex canCalculate ;
std : :map < Key,bool> threadUpdated;
std : :map < Key,bool> threadCalculated ;

void update(threadID , model) {
while (!canUpdate . try_lock ()) {
this_thread−>yield ( ) ;

}
canUpdate .unlock ( ) ;
threadCalculated [threadID] = false ;
/ / copy vertices here
threadUpdated[threadID] = true ;
i f (all_updated) {
canUpdate . lock ( ) ;
canCalculate .unlock ( ) ;

}
}

void calculate (threadID , model) {
while (! canCalculate . try_lock ()) {
this_thread−>yield ( ) ;

}
canCalculate .unlock ( ) ;
threadUpdated[threadID] = false ;
/ / calculate force here
threadCalculated [threadID] = true ;
i f ( all_calculated ) {
canCalculate . lock ( ) ;
canUpdate .unlock ( ) ;

}
}

Scaled updates strategy (SU)

The scaled updates strategies resemble the per step update
strategy, but some threads are entitled to more steps before
sync (between sync it follows the partial update strategy).
It is important that the last update is not called, before all
threads have reached it. This ensures that at least the original
model still refers to its initial state. In our implementation,
we use a mutex per thread to block the (last) update until all
threads have performed the required number of iterations.
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Listing 5 Usage of mutexes for locking in the scaled update strategy.

std : :map < Key, int> scalingFactor ;
std : :map < Key, int> threadCalculated ;
std : :map < Key,mutex> threadUpdated;

void updateThread(threadID , model) {
i f (( threadCalculated[threadID] >=
( scaling_factor [threadID])) ) {
while (!updateLocks[threadID]

−>try_lock ()) {
this_thread−>yield ( ) ;

}
}
/ / copy vertices here

}

void calcForces(Key threadID) {
/ / calculate force here
threadCalculated [threadID]++;
i f ( all_calculated ) {
/ / reset update counts
for (Key k: threadCalculated ) {
threadCalculated [k] = 0;
updateLocks[k]−>unlock ( ) ;

}
}
}

Results

We have tested our approach in different scenarios. We
describe the data set and medical field used for evaluation
and evaluate the effect of the synchronization overhead.

Data sets

For the evaluation data set, we have chosen image data that
covers the complete leg. It has been acquired in the context of
the MultiScaleHuman project [24]. The image has a dimen-
sion of 654 × 655 × 604 voxel, with a spacing of 0.78, 0.78
and 1.5mm. Details of the device used and the mDixon pro-
tocol that was used can be found in [17]. The MR scans were
stitched and filtered, and an initial labeling by tissue types
has been performed. The preprocessing steps are described in
[4], and they include stitching of separate stacks, a bias field
correction using a non-uniform intensity normalization (N3)
approach by Sled et al. [27] and the reduction of noise using a
non-local means algorithm as described by Buades et al. [8].
The data set is kept at its initial size, and all processes operate
on the same copy.

Fig. 5 Effect of the decimation on the model of the femur. The orig-
inal model (right) is reduced to fewer vertices while preserving shape
features like the femoral head and the condyles

The goal is to segment the femur in this data set. We have
evaluated three femur models, from low to high resolution.
The low-resolution model had 344, the medium-resolution
model had 1850, and the high-resolution model had 37,010
vertices, and these models are shown in Fig. 5. Having
these large variations in size allows us to estimate the
share of the time used for locking as well as the overall
robustness.

Deformable model configuration

We have used our deformable framework as described in
“Implementation” section. It has been configured with sev-
eral forces. We use Laplacian smoothing using adjacent
vertices within a one-edge neighborhood and a constant
growing force. We exploit the image data by using gradients.
For the coupling force, we have chosen the spring force, since
it best fits our requirements.

Starting with the loaded (high-, medium- and low-
resolution)model, we have created reduced versions of them.
With nmodels, modelMi , i = 1, . . . , n, only has 1

i times the
vertices of the initial model. We have used the built-in deci-
mators of OpenMesh, in this case with the collapse priority
based on error quadrics. The decimation at different levels of
a femur model is shown in Fig. 5.

Synchronization evaluation

The synchronization is the bottleneck of the whole calcu-
lation. The independent segmentation processes have to be
coordinated to all meet, after a specific strategy, as described
in “Synchronization” section under “Implementation”. In
this section, we evaluate the three approaches to seeing the
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Table 1 Timing measurement of the low-resolution model for total
duration of update, the time waiting for locks during the update, the
duration of the calculation of the force and the time waiting for updates
during force calculation

Sync Thr. Update (µs) Lock µs Calc Lock

PSU 1 5 0 72 µs 1 µs

PSU 2 65 62 10ms 9.8ms

PSU 3 1287 1279 10.7ms 10.5ms

PSU 4 2405 2391 10.9ms 10.7ms

PSU 5 2421 2410 11ms 10.8ms

PSU 6 2140 2129 11.1ms 10.9ms

PU 1 5 1 71 µs 1 µs

PU 2 4 3 56 µs 1 µs

PU 3 7 3 62 µs 2 µs

PU 4 9 9 73 µs 9 µs

PU 5 6 4 66 µs 7 µs

PU 6 9 5 53 µs 9 µs

SU 1 15 7 70 µs 0 µs

SU 2 2918 2813 66 µs 3 µs

SU 3 3646 3633 69 µs 4 µs

SU 4 2655 2644 58 µs 3 µs

SU 5 1739 1730 59 µs 4 µs

SU 6 1701 1694 56 µs 3 µs

impact of locking.We have used the threemodels with differ-
ent resolutions and have run our framework with six threads
per model. During the segmentation, we have measured the
average times for updating the mesh and calculating the
forces. Furthermore, we have measured the time that was
spent waiting for locks in these parts. The results are listed
below for the low-resolution (Table 1), medium-resolution
(Table 2) and high-resolution (Table 3) models. A visual rep-
resentation of the results can be found in Fig. 6 (PSU), Fig. 7
(PU) and Fig. 8 (SU).

The first result we found is that the partial update strategy
always is the fastest. In the calculation time, it can be seen
that the time linearly grows with model size (as indicated by
the different threads). For the per step update strategy, the first
thread has the shortest lock time. This can be explained by
the fact that it requires the longest calculation and therefore
the other threads already have reached the synchronization
point. With growing model size, the differences between the
strategies become more visible. While in the low-resolution
model, the difference between PU and SU and PSU is in the
area of ms, it grows at medium resolution. At high resolu-
tion, PU takes 7–11ms, PSU between 30 and 115ms and SU
between 29 and 70s. The locking time per thread increases
with the resolution for PSU strategy. It can be seen that PU
causes the least time waiting for locks.

Table 2 Timingmeasurement of themedium-resolutionmodel for total
duration of update, the time waiting for locks during the update, the
duration of the calculation of the force and the time waiting for updates
during force calculation

Sync Thr. Update Lock Calc Lock

PSU 1 76.9ms 76.9ms 906 µs 440 µs

PSU 2 79.9ms 79.9ms 387ms 386ms

PSU 3 79.7ms 79.7ms 454ms 453ms

PSU 4 79.8ms 79.8ms 474ms 473ms

PSU 5 79.9ms 79.9ms 484ms 483ms

PSU 6 79.9ms 79.9ms 489ms 488ms

PU 1 0 µs 0 µs 459 µs 0 µs

PU 2 13 µs 0 µs 395 µs 26 µs

PU 3 12 µs 6 µs 375 µs 12 µs

PU 4 15 µs 15 µs 349 µs 0 µs

PU 5 16 µs 3 µs 245 µs 3 µs

PU 6 9 µs 6 µs 270 µs 3 µs

SU 1 141ms 141ms 500 µs 0 µs

SU 2 5.2ms 5.2ms 334 µs 15 µs

SU 3 25.3ms 25.3ms 324 µs 9 µs

SU 4 32.1ms 32.1ms 351 µs 44 µs

SU 5 30.2ms 30.2ms 268 µs 5 µs

SU 6 27.6ms 27.6ms 280 µs 20 µs

Table 3 Timing measurement of the high-resolution model for total
duration of update, the time waiting for locks during the update, the
duration of the calculation of the force and the time waiting for updates
during force calculation

Sync Thr. Update Lock Calc Lock

PSU 1 26.8ms 25.4ms 8216 µs 0 µs

PSU 2 69.5ms 69.1ms 6470 µs 23 µs

PSU 3 75.7ms 75.2ms 6849 µs 382 µs

PSU 4 89.3ms 88.8ms 7922 µs 424 µs

PSU 5 98.8ms 98.3ms 7714 µs 517 µs

PSU 6 107.9ms 107.5ms 6494 µs 487 µs

PU 1 2255 µs 1754 µs 9020 µs 0 µs

PU 2 167 µs 0 µs 8686 µs 1503 µs

PU 3 167 µs 0 µs 7851 µs 1837 µs

PU 4 167 µs 0 µs 6681 µs 0 µs

PU 5 963 µs 869 µs 6734 µs 818 µs

PU 6 987 µs 889 µs 6376 µs 310 µs

SU 1 70.1 s 70.1 s 10.1ms 1.1ms

SU 2 70.0ms 70.0 s 8.2ms 1.0ms

SU 3 19.4 s 19.4 s 6.1ms 60 µs

SU 4 42.4 s 42.4 s 7.2ms 1.2ms

SU 5 24.1 s 25.1 s 6.1ms 189 µs

SU 6 28.5 s 28.5 s 6.8ms 1.1ms
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Fig. 6 Timing measurement of the per step update approach for total
duration of update, the time waiting for locks during the update, the
duration of the calculation of the force and the time waiting for updates
during force calculation. The locking times are dashed

Discussion

Total calculation duration is sensitive to model resolution.
This can be seen from the timing data independent of the syn-
chronization strategy. The overall computation time (ignor-
ing the locks) goes down with the resolution as expected.

By looking closely at these strategies, we found the partial
update strategy to be the fastest. This is achieved by reduc-
ing the synchronization alignment dependencies between
the threads. The only locking is around updating and force
calculation for memory safety, but there are no global syn-
chronization approaches. This is supported by the measured
data that show that the PU strategy has the shortest lock
times. For the lower-resolution threads, we can see a higher
share of locking time. Since these threads are simulated
faster, they reach the locks more often. Furthermore, the
higher-resolution threads take longer for updating and force
calculation and therefore block the locks longer.
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Fig. 7 Timing measurement of the partial update approach for total
duration of update, the time waiting for locks during the update, the
duration of the calculation of the force and the time waiting for updates
during force calculation. The locking times are dashed

The PSU strategy shows that the thread with the highest
resolution spends the shortest time waiting for locks. Since
this thread, by pure resolution, always takes the longest time
to simulate, all other threads are waiting already when the
locking point is reached. In the high resolution, it can be
seen that the total force calculation times no longer consists
of locking. This propagates to the update locks and causes to
be stalled for more time than in the low-resolution models.

The SU strategy is very sensitive to proper selection of
the scaling. We can see the expected timing results, all in the
same region, for low- and medium-resolution model, but not
for the high-resolution model. The large variation in values
(19–70s) indicates that the scaling factors are not chosen
well.

Overall, we found the PU strategy to be the most ben-
eficial. It enables a fast coupling with only very little
synchronization overhead. The behavior follows user expec-
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during force calculation. The locking times are dashed

tation and does not block the user’s interaction with model
through long locking times.

Limitations of the study and outlook

For now, we have only tested our proposed method on a
single machine. An interesting outlook would to extend it
to a multi-machine approach. Possible scenarios would be
off-site versus on-site: A coarse simulation running locally
allows smooth interaction, whereas a more powerful remote
server runs thefine simulation on the samedata. Similarly, the
coarse simulation could be run on a phone or tablet computer
while the fine model is simulated in the hospital data center
or the cloud.

Withmodel synchronization already in place, another out-
lookwould be the collaborative interactionwith themodel. A
distributed group of user could work in parallel on themodel,
if desired at different scales, and could collaboratively place
interaction points. That way, additional knowledge could be

included for critical parts of the segmentation process, e.g.,
in image region with artifacts or unclear model boundaries.

Conclusion

In this work, we have presented a framework to perform
multi-resolution mesh coupling for medical image seg-
mentation. We have discussed approaches for the coupling
through vertex propagation, averaging and springs. We have
investigated the synchronization of the parallel models and
introduced three locking approaches. On the implementation
side, we have shown how a single-model framework can be
transformed into a multi-model framework. To better under-
stand the impact of locking, we have evaluated the different
models with different resolution with all locking strategies.
The results show the partial update strategy as a clear win-
ner. For the future, calculation across multiple machines and
collaborative interactions seem promising. To better under-
stand the impact on users, a comprehensive user study should
follow.
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