
Int J CARS (2015) 10:1435–1447
DOI 10.1007/s11548-015-1238-6

ORIGINAL ARTICLE

A study of crowdsourced segment-level surgical skill assessment
using pairwise rankings

Anand Malpani1 · S. Swaroop Vedula1 · Chi Chiung Grace Chen2 ·
Gregory D. Hager1

Received: 15 December 2014 / Accepted: 4 June 2015 / Published online: 30 June 2015
© CARS 2015

Abstract
Purpose Currently available methods for surgical skills
assessment are either subjective or only provide global eval-
uations for the overall task. Such global evaluations do not
inform trainees about where in the task they need to perform
better. In this study, we investigated the reliability and valid-
ity of a framework to generate objective skill assessments
for segments within a task, and compared assessments from
our framework using crowdsourced segment ratings from
surgically untrained individuals and expert surgeons against
manually assigned global rating scores.
Methods Our framework includes (1) a binary classifier
trained to generate preferences for pairs of task segments
(i.e., given a pair of segments, specification of which one was
performed better), (2) computing segment-level percentile
scores based on the preferences, and (3) predicting task-
level scores using the segment-level scores. We conducted
a crowdsourcing user study to obtain manual preferences
for segments within a suturing and knot-tying task from a
crowd of surgically untrained individuals and a group of
experts. We analyzed the inter-rater reliability of preferences
obtained from the crowd and experts, and investigated the
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validity of task-level scores obtained using our framework.
In addition, we compared accuracy of the crowd and expert
preference classifiers, as well as the segment- and task-level
scores obtained from the classifiers.
Results We observed moderate inter-rater reliability within
the crowd (Fleiss’ kappa, κ = 0.41) and experts (κ = 0.55).
For both the crowd and experts, the accuracy of an automated
classifier trained using all the task segments was above par
as compared to the inter-rater agreement [crowd classifier
85% (SE 2%), expert classifier 89% (SE 3%)]. We pre-
dicted the overall global rating scores (GRS) for the task
with a root-mean-squared error that was lower than one
standard deviation of the ground-truth GRS. We observed
a high correlation between segment-level scores (ρ ≥ 0.86)
obtained using the crowd and expert preference classifiers.
The task-level scores obtained using the crowd and expert
preference classifier were also highly correlated with each
other (ρ ≥ 0.84), and statistically equivalent within a margin
of two points (for a score ranging from 6 to 30). Our analy-
ses, however, did not demonstrate statistical significance in
equivalence of accuracy between the crowd and expert clas-
sifiers within a 10% margin.
Conclusions Our framework implemented using crowd-
sourced pairwise comparisons leads to valid objective sur-
gical skill assessment for segments within a task, and for the
task overall. Crowdsourcing yields reliable pairwise compar-
isons of skill for segments within a task with high efficiency.
Our frameworkmaybe deployedwithin surgical training pro-
grams for objective, automated, and standardized evaluation
of technical skills.

Keywords Robotic surgery · Training · Skill
assessment ·Feedback ·Taskflow ·Crowdsourcing ·Pairwise
comparisons · Activity segments · Task decomposition
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Introduction

Objective assessment of surgical technical skills and com-
petence is an integral part of graduate surgical training
curricula. Surgeons must be technically competent to pro-
vide safe and effective patient care. Inferior technical skills
are associated with a higher risk of postoperative compli-
cations, including readmission, reoperation, and death [4].
Surgical trainees acquire technical skills through observation
in the operating room and deliberate practice. Tradition-
ally, faculty surgeons imparted technical skills to trainees
in the operating room, and assessed trainees’ technical skills
using subjective, non-standardized measures. Recent policy
set forth by the American Council of Graduate Medical Edu-
cation (ACGME), the governing body for graduate medical
training in the United States, mandated that trainees’ compe-
tence (including technical competence) be determined using
objective measures [28].

Lack of efficiently computed, reliable, and valid objec-
tive measures is a major limitation for academic surgical
training programs in implementing ACGME’s policy man-
date. Currently available methods for surgical technical
skills assessment rely upon the subjective opinion of fac-
ulty surgeons. For example, structured skills assessment tools
such as the Objective Structured Assessment of Technical
Skills (OSATS), Global Operative Assessment of Laparo-
scopic Skills (GOALS), and Global Evaluative Assessment
of Robotic Skills (GEARS) require manual evaluation by
the supervising surgeon [14,22,30]. Thus, use of these tools
within surgical skills training curricula is limited by avail-
ability of faculty time.

Severalmethods have been developed for objective assess-
ment of technical skills to supplement or substitute subjective
manual evaluations. These objective methods use data cap-
tured while surgeons perform the operation. Some simple
methods include computing measures of time and motion
efficiency [9,10,16,17]. Other methods involve modeling
surgical toolmotion data or video images of surgical task per-
formance, and derive objectivemeasures of skill based on the
models. Previous works have explored various approaches
for developing suchmodels, including graphicalmodels [23–
25,29], and linear dynamical systems [15,31] using tool
motion or video data, or both [26,31].

In this paper, we explore two key ideas. First, OSATS,
GOALS, and GEARS, and other comparable alternatives
(based on tool motion or video data) for skill assessment
only provide a global evaluation of surgeons’ skills. Such
global, task-level assessments do not inform trainees about
where in the task they need to perform better in order to
operate like an expert. In contrast, we would expect that
skill assessment at the level ofmeaningful semantic segments
may be more effective for skill acquisition in trainees. How-
ever, segment-level skill assessment is challenging because

it requires significant manual resources to both segment and
assess skill at a finer level of granularity than existing task-
level methods. Furthermore, no existing reliable and valid
tools exist to do so.

Second, we note that crowdsourcing has been utilized in
the medical imaging domain to train image classifiers [19] as
well as to generate reference correspondence regions in endo-
scopic images [20] with success. Similarly, a prior study has
shown that crowdsourcing is an effective means of generat-
ing absolute surgical skill assessment based on GEARS [5].
However, it has proven difficult to perform absolute assess-
ment of segment-level skill. Pairwise comparisons have been
shown to yield valid assessments when absolute assessment
is difficult—examples include assessing disease severity,
movie recommendations, and information retrieval [11,13,
18]. Thus, pairwise comparisons performed by a crowd may
provide efficient, reliable, and valid solutions for objective
assessment of segment-level surgical technical skills.

In a previous pilot study, using a limited sample, we
demonstrated that crowdsourcing can yield reliable and valid
pairwise comparison of surgical skill at the segment-level
[21]. In this paper, we extend our analysis with a larger sam-
ple size, and also explore the computation and validation of
global rating scores using ranking-based methods.

In summary, our goals in this paper are: (1) to establish
reliability and validity of a framework to objectively assess
surgical skill using pairwise comparisons of task segments,
and (2) to compare assessments obtained fromour framework
using pairwise comparisons from two sources—a surgically
untrained crowd and a group of expert surgeons. The remain-
der of this paper is structured as follows: we describe our
framework for objective surgical skill assessment using pair-
wise comparisons of task segments in the “Methods” section,
the user study and experimental setup for validating our
framework in the “Experiments” section, results from our
analyses in the “Results” section, discussion on the results
and limitations of our study in the “Discussion” section, and
our conclusions in the final section.

Methods

Our skill assessment framework consists of three compo-
nents as shown in Fig. 1. The first component is an automated
classifier to assign skill-based preferences in pairwise com-
parisons of task segments. We then use this classifier to
compute percentile scores for task segments as an objec-
tive measure of segment-level skill. Finally, we compute an
OSATS-like score for the overall task using the segment-level
percentile skill scores.

Preference classifier

The first component in our framework is a binary classifier
that selects the better-performed task segment from a given
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(a)

(b)

Fig. 1 Components of our framework (shown in pink blocks) for objec-
tive surgical skill assessment: (1) preference classifier, (2) percentile
segment-level scores, and (3) overall task score. a The set R represents
manual preferences assigned to pairs of segments in the set P by the

raters. b Given a new instance of a task T , our framework assigns per-
centile scores to the constituent segments by comparing them against a
library of performances L . An overall task-level score ST is computed
using the segment-level scores

pair of segments. We refer to this selection as a preference.
We denote the preference relation using the symbols ≺ and
� and define it as follows:

m1 ≺ m2 if m2 is better than m1

m1 � m2 if m1 is better than m2

where m1 and m2 are task segment performances. Based
on this definition of preference, the binary classifier C is
described as below:

C(f1, f2) =
{

1 if m1 � m2 ,

0 otherwise
(1)

where fi is a feature vector representing the segment-level
performance using metrics for surgical skill. We use sim-
ple quantitative metrics (listed in Table 1) derived from
data on surgical tools and endoscopic camera motion. We
compute path length, ribbon area, movements, gripper acti-
vations, working distance, console path length, and console
workspace separately for the left and right instruments/hands
(2 × 7 = 14 features) and two time-based features. Thus, fi
is a 16 dimensional vector for each task segment. We train
the classifier using manually assigned pairwise preferences
as the ground-truth labels.

Percentile scores for task segments

The second component of our framework involves computing
an objective skill score for individual task segments. Con-
sider a task performance, T consisting of t segments and
the j th such segment, mTj . We apply C to compare mTj

with all instances of a segment performance from a corpus,
L = {mL1 ,mL2 , . . . ,mLn } containing n samples (Fig. 1b).
Subsequently, we compute the percentile score (STj ) formTj

as follows:

STj = 1

n

n∑
i=1

C(fTj , fLi ) (2)

where fTj and fLi are feature vectors corresponding to the
segmentsmTj andmLi , respectively. The percentile score STj

for instance mTj is the proportion of pairwise comparisons
betweenmTj and each instancemLi inL wheremTj � mLi .

Overall task score

The third component of our framework involves comput-
ing an objective measure of surgical skill for the overall
task based on automated assessments of the constituent task
segments. We hypothesize that a linear summation of the
percentile scores for all segments within a task will yield an
objective and valid overall task score. Accordingly, we train a
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Table 1 Quantitative metrics
using instrument and camera
motion data from [8–10,16,17]

Metric Description

Time Time in seconds to complete the task segment

Time fraction Fraction of overall task time spent in performing the
segment

Path length Distance traveled by the instrument tip

Ribbon area [8] Area swept by the instrument shaft

Movements [9,10] Number of peaks in magnitude of velocity of the
instrument tip

Gripper activations Number of times the instrument gripper was closed

Working distance Distance between the instrument tip and camera along
the view direction

Console path length [16,17] Distance traveled by the manipulators at the console

Console workspace [16,17] Bounding volume of the console range of motion

linear regressionmodel to learn parameters for each segment-
level score in a task using expert-assignedglobal rating scores
(GRS) as the ground-truth. The model is described below:

ST = β0 +
t∑

j=1

β j STj + βe eT (3)

where ST represents ground-truth GRS for an instance of the
task (T ), STj represents the percentile score for a segment
mTj which was performed as part of the task performance,
T (see Fig. 1b). We include eT to account for the fraction
of total task time spent in portions of the task which did not
constitute a semantically meaningful activity segment.

Experiments

For our experiments, we used an existing data set of surgical
training task segments. We surveyed a surgically untrained
crowd and a group of expert surgeons to obtain the ground-
truth1 for training our preference classifier (“Preference
classifier” section).

Surgical task data set

The surgical task data set we used was collected in a pre-
vious study [17]. The data set includes instances of a study
task (suture throw followed by a surgeon’s knot) performed
on a bench-top model using the da Vinci Surgical System
(dVSS, Intuitive Surgical, Inc., Sunnyvale, CA). Four expert
and 14 trainee surgeons performed 135 instances of the study
task in 45 sessions, with three instances in each session. An
expert surgeonwatchedvideo recordings for each session and
assigned a single GRS using a modified OSATS approach

1 The term ground-truth, here and henceforth, has been used to denote
a reference value obtained by pooling the crowd/expert responses.

[22]. The expert assessed skill using six criteria, each on
a five-point Likert-like scale (with 1 being poor skill and
5 being excellent skill): respect for tissue, time and motion,
instrument handling, knowledge of instruments, flowof oper-
ation, and knowledge of specific procedure. Thus the overall
score has a range of 6 to 30. We applied the session-specific
GRS as a task-level skill score for each instance of the study
task performed during that session.

The surgical task data set is comprised of: (a) kinematic
data describing the motion of the manipulator tips on the
patient- and surgeon-sides of the dVSS, (b) stereo endoscopic
video recordings, and (c) manual annotations of constituent
maneuvers for each instance of the task. Maneuvers repre-
sent circumscribed segments or milestones that describe a
semantically meaningful portion of a surgical task [21].

Figure 2 shows the flow of maneuvers constituting the
study task in our data set. We grouped the maneuvers in our
study task into the following five categories to account for
variability in how different surgeons performed the study
task:

• ST1—suture throw performed in two steps; passing the
needle separately through each side of the incision or
repair (n = 60);

• ST2—suture throw performed in one step; passing the
needle through both sides of the incision or repair in a
single motion (n = 104);

• GPR—running suture out of tissue following a suture
throw (n = 154);

• KT1—the first knot (n = 135);
• KT2—any knot thrown subsequent to the first knot (n =

203).

In addition to the maneuver categories listed above, our
vocabulary for maneuvers in the study task included inter-
maneuver segments (IMS; denoted by green circles in Fig. 2).
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Fig. 2 Maneuver flow in the
study task of suturing and knot
tying

Suture Throw

Knot Tie –
Double Loop

Knot Tie –
Single Loop

Inter-maneuver Segment

Grab-Pull-Run

ST – Suture Throw, 
GPR – Grab-Pull-Run,
KT – Knot Tie (Double/Single Loop)
IMS – Inter-maneuver Segment

IMS represent portions of the task wherein the surgeons per-
formed certain actions in preparation for the next maneuver.

Crowdsourcing user study

We conducted a crowdsourcing user study (approved by The
Johns Hopkins Homewood Institutional Review Board) to
generate twodifferent sources of ground-truth for training the
preference classifier in our framework—surgically untrained
individuals (crowd), and faculty surgeons (experts). We
hosted a survey on a website for the crowd and expert par-
ticipants to complete the specified human intelligence tasks
(HITs), which in our case was to provide preferences for
pairs of maneuvers. The study call was voluntary and open
to all within the Johns Hopkins community. We generated
the HITs by forming pairs of maneuvers belonging to the
same category. We did not include IMS when generating
HITs because the actions performed across instances of IMS
in our data set were highly variable in nature and in the goals
they accomplished. The maneuver videos were typically 20–
30s in length.

Based on a priori sample size calculations, we sampled a
total of 360 HITs for the crowd and a subset of 120 of those
360 HITs for the experts. We assumed that the proportion of
pairs with correct ordering will be 85% for the crowd and
90% for the experts. Accordingly, we computed that we will
be able to estimate the proportionof pairswith accurate order-
ing of videos with a 95% confidence interval (CI) of width
of 0.1 (10%) if we recruited 49 crowd participants and 35
expert participants. Furthermore, we computed the sample
size to test a hypothesis of equivalence comparing accu-
racy of the preference classifiers trained using preferences
obtained from crowd and expert participants. We assumed
that the accuracy of classifier trained with crowd ratings will
be 80% and accuracy of classifier trained with expert ratings
will be 85%. We estimated that we would have 90% power

to establish equivalence within a 10%margin with 52 unique
pairs of videos.

We grouped HITs into 12 surveys of 30 HITs each for
crowd participants, and two surveys of 30 HITs and six
surveys of 15 HITs for experts. This division satisfied the
required sample size while making the overall length of the
surveys shorter to encourage expert participation. A study
participant was required to complete all the HITs belong-
ing to a survey in order for their participation to be complete.
Additionally, attentionHITs, consisting of an obviously good
performance versus an obviously poor performance, were
presented to the participants at regular intervals (every 10
HITs). Participants who did not provide correct preferences
for suchHITswere automatically disqualified from the study.

The participants were asked to sign an informed consent
for the study on the welcome page and were registered using
their name and email address. The participants were allowed
to participate in any number of surveys, but only once in
each survey. Participants who failed an attention HIT were
not allowed to participate in any other survey. Additionally,
the crowd participants were provided a compensation of $10
gift card per survey. They were given a period of three days
starting from the time they sign up for a particular survey,
after which they would be automatically disqualified. The
expert participants were given a period of seven days to fin-
ish their survey once they signed up for it. There were no
restrictions on the amount of time spent by a participant on
an individual HIT.

The image in Fig. 3 illustrates a typical screen visualized
by study participants. We asked the participants to specify
which of the twomaneuvers displayed on the screen appeared
to have been performed with greater skill (preference), and
to specify their level of confidence in choosing the prefer-
ence (as shown in Fig. 3) on a Likert-like scale. The answer
options were enabled, only when the participant had com-
pletely viewed both the videos.
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Fig. 3 The Web-based survey page showing a sample HIT

We recruited 147 crowd participants across the 12 surveys,
most were students from the engineering, arts and sciences
programs at the Johns Hopkins University. We restricted the
total number of crowd participants per survey (Survey 1: 52
participants, Surveys 2 through 9: 11 participants, Surveys
10 through 12: 5 participants). We were able to recruit eight
expert participants across the eight surveys, all of whomwere
faculty surgeons at the Johns Hopkins Medical Institutions.
We restricted the recruitment to three experts per survey to
get multiple responses for each of the 120 HITs sampled. We
obtained preferences from all the crowd participants within a
period of three days, whereas it took about four weeks to cap-
ture preferences from the experts. For this reason, we were
not able to recruit the number of experts suggested by our
power analysis, although, as we note later, the consistency
of the experts suggests our analysis was overly conservative.
The time spent (in seconds) per HIT2 across the 120 over-
lapping HITs were: experts (mean 117.36, σ 230.52), and
crowd (mean 71.52, σ 87.91).

HIT agreement and HIT confidence

For each HIT, we computed two properties viz. agreement
and confidence. We computed the agreement (agr) property
as the percentage of participants completing the HIT that

2 The participants could take breaks and come back and answer these
HITs at a later time. Thus, we cannot draw any reliable conclusions
based on these numbers.

gave the same preference with a confidence level of five as
defined in Eq. 4 below:

agrh = max

(
rh
kh

,
kh − rh

kh

)
(4)

where kh is the total number of participants who provided
their preference rating for the HIT h, with a confidence level
of 5, rh is the number of participants preferring one segment
among the pair presented in the HIT. To ensure that our pref-
erence classifier was trained on a meaningful ground-truth,
we used only those HITs for training where agr ≥ 0.75.

Another characteristic property of the HITs is the con-
fidence (conf), which was computed as an average of
confidence level weights (Table 2) assigned by participants
responding to that HIT as shown in Eq. 5.

confh = 1

kh

kh∑
j=1

wh j (5)

wherewh j is the confidence weight (Table 2) associated with
the confidence level indicated by the participant j for their
preference for the HIT h, and kh is the total number of partic-
ipants who performed the HIT h. By doing so, the classifier
was trained using data where the raters were more confident
about their preferences. We used HITs with conf ≥ 0.5 in
our sensitivity analysis.
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Table 2 Confidence levels elicited in the survey and corresponding
weights for ratings

Survey phrase Level Weight

Very confident 5 1.0

Somewhat confident 3 0.5

Not at all confident 1 0.0

Pooled preferences from the participants

To obtain a single ground-truth preference per HIT (pair
of segments), we investigated three different approaches for
majority pooling and one approach for weighted pooling.

In the first approach, we simply selected the majority rat-
ing (Rall) from all the preference ratings obtained for a given
HIT. In the second approach, we selected themajority among
ratings where the confidence level was at least three (R3).
In the third approach, we selected the majority among rat-
ings where the confidence level was five (R5). We used all
three approaches for reliability analyses, but only the simple
majority rating approach (Rall) for validity analyses due to
sample size limitations with the remaining majority pooling
approaches.

In the weighted pooling approach, we selected the pref-
erence using a weighted count of preference ratings for a
given HIT (Rw). Table 2 shows the weights we used for each
level of confidence associated with the ratings. Ratings with
confidence level 5 contributed a full count and those with
confidence level 3 contributed one-half of a count toward the
preference ratings. Ratings with confidence level 1 did not
contribute to the preference rating.

Reliability and validity of manually annotated
preferences

We evaluated the inter-participant reliability of preferences
separately for the crowd and experts using the Fleiss’ kappa
(κ), which is a standard measure of agreement when multi-
ple participants provide ratings onmultiple tasks [12]. Fleiss’
kappa represents the agreement beyond what is expected due
to chance. A value of κ = 1 indicates perfect agreement and
κ ≤ 0 indicates no agreement or disagreement among raters.
We also evaluated validity of preferences obtained from the
crowd assuming preferences obtained from the experts were
the ground-truth. We computed the percentage agreement
or accuracy as the measure of validity. Additionally, we
computed the Fleiss’ kappa statistic for the confidence level
ratings assigned by the crowd and expert participants. We
compared the agreement within crowd and expert groups in
selecting the majority confidence rating. For this, a metric
similar to HIT agreement property (agr) defined in “HIT
agreement and HIT confidence” section was calculated as
in Eq. 6:

agrh = max

(
r1
kh

,
r3
kh

,
r5
kh

)
(6)

where kh is the total number of participants who provided
their preference rating for the HIT h; ri is the number of
participants who selected their confidence level for the rating
to be i for the HIT h.

Validity of preference classifiers

We trained two separate linear support vector machines
(SVM; [7]), one using preferences from the crowd and the
other from experts.We explored anAdaBoost classifier using
stump-based weak learners as well. However, the SVMs
performed better than the boosted classifier and thus fur-
ther analyses were performed using SVMs. We trained each
of these SVMs using two different sets of features; the
first set (SVM7) matched the 7-D feature vector used in
[21] for comparison [time, path lengths (2x), ribbon areas
(2x), and movements (2x)], and the second set (SVM16)
included the 16 dimensions described in Table 1. We trained
a separate classifier for each category of maneuvers (“Sur-
gical task data set”), as well as one overall classifier for
all categories of maneuvers pooled together. In addition,
we trained separate classifiers for preferences obtained with
two pooling approaches - Rall and Rw (“Pooled preferences
from the participants”). We evaluated crowd- and expert-
based preference classifiers against the respective manually
assigned preferences as the ground-truth. We used a tenfold
cross-validation approach and computed accuracy between
the classifier-assigned preferences and participant-assigned
preferences.

We computed the accuracy of the crowd preference clas-
sifier while varying the number of training samples used. A
fraction (20%) of the HITs was held out as a fixed test data
set. The number of training samples (n) was incremented in
steps of 10 samples at a time. For each n, an average accuracy
was calculated using 20 bootstrap iterations for sampling the
training data.

Validity of our framework for objective skill assessment

We compared the task-level scores obtained using the expert
preference classifier against ground-truth GRS. We trained a
simple linear regression model (Eq. 3) to predict the ground-
truth GRS in a leave-one-out cross-validation approach. The
predictors for the model included the segment-level scores as
a four-dimensional vector (ST, GPR, KT1, KT2), the number
of IMS, fraction of total task time spent performing IMS, and
the fraction of total task time that was not annotated with
any maneuver label. The latter three terms in the predictors
formed eT fromEq. 3. The segment score for STwas obtained
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from the score for ST1 or ST2, whichever was performed in
the given instance of the task.

We computed the root-mean-squared error (RMSE) and
the Spearman’s correlation coefficient (ρ) between predicted
and ground-truth scores as measures of validity. The Spear-
man’s correlation is a nonparametric measure of association
between two ranked variables. A value of ρ = +1 indi-
cates perfect monotonic dependence, while a value of zero
indicates no correlation. In addition, we learned similar
regressions to predict scores for each of the six individual
components within GRS [22] listed in the “Surgical task data
set” section.

Comparison of crowd and expert preference classifiers

We assessed the crowd and expert preference classifiers for
three outputs of our framework pipeline:

Accuracy We tested the equivalence of the crowd and expert
preference classifiers by checking whether the accuracy of
the crowd preference classifier is within the 10% margin of
accuracy of the expert preference classifier. For hypothesis
testing purposes, we performed cross-validation using the
set of HITs rated by both the crowd and the experts (n =
75),3 while training the respective classifiers using all of the
held out data available per group of users. Additionally, we
performed a sensitivity analysis using only those HITs rated
by both the crowds and experts for training as well as testing
in a leave-one-out cross-validation approach. More training
datawere available for the crowd classifier as compared to the
expert classifier in the former analysis, whereas the training
data for the two classifiers remained fixed in the latter case.

Segment-level scores We computed a Spearman’s correla-
tion coefficient between the segment-level scores obtained
from the crowd and expert preference classifiers, separately
for each maneuver category.

Task-level scores Wecomputed a Pearson’s correlation coef-
ficient (ρ) between the task-level scores obtained using
the crowd and expert preference classifiers. The Pearson’s
correlation measures the linear correlation between two con-
tinuous variables. A value of +1 for the Pearson’s correlation
indicates total positive correlation, 0 indicates no correlation,
and −1 indicates total negative correlation. In addition, we
tested whether the task-level scores obtained using the crowd
and expert preference classifiers were statistically equivalent
to each other within a prespecified margin of two units on
the GRS scale.

3 The number ofHITs rate by both the crowd and expertswas 120.How-
ever, filtering the HITs based on the agreement metric (“HIT agreement
and HIT confidence”) drops the count to 75.

Results

Reliability and validity of manually annotated
preferences

As shown in Table 3, we observedmoderate inter-rater agree-
ment within both the crowd and expert participants. Experts
appeared to have a higher inter-rater agreement compared
with the crowd, as one would expect.

The crowd preferences were at least 83% accurate when
taking expert preferences as the ground-truth. This accuracy
was robust across all four approaches for pooling preferences
(“Pooled preferences from the participants”) for a given HIT,
as shown in Table 4. The accuracy increased with the R3 and
R5 pooling approaches, as one would expect with ratings
having higher confidence.

Inter-participant agreement seemed to be higher for rat-
ings with higher confidence levels for both the crowd and
experts, as shown in the Table 5. However, the agreement
(based on Fleiss’ kappa) within the group of participants on
their confidence level rating was observed to be very low
−0.08 (crowd) and 0.22 (experts).

Table 3 Inter-participant reliability for crowdsourced preferences
using percentage agreement (agr) and Fleiss’ kappa (κ)

Group # HITs # Workers agr 95% CI (agr) κ 95% CI (κ)

Crowd 360 147 0.81 (0.80, 0.83) 0.41∗ (0.40, 0.42)

Expert 120 8 0.88 (0.85, 0.91) 0.55∗ (0.45, 0.64)

∗ P value <0.001

Table 4 Agreement between pooled preferences for HITs which were
rated by both the crowd and expert participants

Statistic Pooling approach

Rall R3 R5 Rw

# HITs 120 118a 89a 120

perc agr 0.83 0.85 0.87 0.84

95% CI (0.77, 0.90) (0.78, 0.91) (0.79, 0.94) (0.78, 0.91)

perc agr percentage agreement
a HITs that did not get ratings with confidence levels of at least 3 and at
least 5, respectively, were omitted while computing the above statistical
measures

Table 5 Inter-participant agreement for crowdsourced confidence lev-
els using agreement (agr) property (Eq. 6)

Confidence level 1 3 5

Crowd 0.499 0.577 0.652

Expert 0.535 0.728 0.848
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Validity of preference classifiers

A preference classifier trained using ratings obtained from
the crowd was able to predict the crowd’s pooled preferences
with an accuracy of 85% (SE 2%). The preference classi-
fier trained by expert preferences had an accuracy of 89%
(SE 3%). As noted before in Table 3, the crowd participants
agreement across the HITs was 81 with a 95% confidence
interval of (80,83), while the experts had an agreement of
88% with a 95% CI of (85,91). Thus, the performance of
our classifier is above par compared to the inter-observer
agreement.

The accuracy of the crowd preference classifier improved
when the training data were filtered to only include HITs
with an overall confidence of 0.5 or more (see Table 6). But
this was not the case with the expert preference classifier,
where the accuracy appeared to decrease when we filtered
the training data to include HITs with an overall confidence
of 0.5 or more. Extending the set of training features did not
appear to consistently improve accuracy of either the crowd
or expert preference classifier.

Accuracy of the preference classifiers did not appear to
be sensitive to whether we pooled preferences using Rall or
Rw. Accuracy for the expert preference classifier for Rall was
consistently greater than those for Rw, but the difference was
small inmagnitude.We did not observe a consistent direction

for these differences with the crowd preference classifier (see
Table 6).

Table 6 also shows that classifiers specific to somemaneu-
ver categories (KT1 and KT2) appeared to be more accurate
than the overall classifier in predicting manual preferences.
This was not the case for classifiers specific to other maneu-
ver categories (ST1, ST2, and GPR).

The average accuracy of the crowd preference classifier
trained using a varying number of training samples is shown
in Fig. 4. The accuracy plateaus after n = 120 training sam-
ples with a value of 0.80 showing a change in the order of
0.2 as the number of training samples varies in the range
of (120, 220). We did not conduct a similar analysis for the
expert preference classifier due to a small sample size.

Validity of our framework for objective skill assessment

Using the expert preference classifier, we predicted expert-
assigned overall GRS with RMSE lower than one standard
deviation (σ ) of the ground-truth (RMSE = 5.54; 0.85 σ ).
The Spearman’s correlation between the predicted and
ground-truth GRS was 0.55 (P value <0.001).

For components within GRS, the RMSE was 1.05 for
respect for tissue, 0.95 for time and motion, 1.16 for instru-
ment handling, 1.01 for knowledge of instruments, 1.20 for
flow of operation, and 1.14 for knowledge of specific proce-

Table 6 Accuracies for
preference classifiers with
crowd and expert preferences

Pooling Segment HITs (agr ≥ 0.75) HITs (agr ≥ 0.75, conf ≥ 0.5)

N SVM7 SVM16 N SVM7 SVM16

Preference classifier trained using crowd preferences

Rall ST1 30 0.73 (0.08) 0.40 (0.09) 20 0.75 (0.10) 0.65 (0.11)

ST2 53 0.74 (0.06) 0.70 (0.06) 46 0.76 (0.06) 0.78 (0.06)

GPR 54 0.78 (0.06) 0.74 (0.06) 41 0.78 (0.06) 0.78 (0.06)

KT1 62 0.92 (0.03) 0.85 (0.04) 60 0.92 (0.04) 0.85 (0.05)

KT2 78 0.88 (0.04) 0.88 (0.04) 73 0.90 (0.03) 0.89 (0.04)

Rall ALL 277 0.81 (0.02) 0.82 (0.02) 240 0.82 (0.02) 0.85 (0.02)

Rw ALL 277 0.81 (0.02) 0.80 (0.02) 240 0.85 (0.02) 0.86 (0.02)

Preference classifier trained using expert preferences

Rall ST1b – – – – – –

ST2 15 0.47 (0.13) 0.80 (0.10) 14 0.50 (0.13) 0.71 (0.12)

GPR 20 0.85 (0.08) 0.75 (0.10) 20 0.90 (0.07) 0.75 (0.10)

KT1 25 0.88 (0.06) 0.92 (0.05) 23 0.87 (0.07) 0.87 (0.07)

KT2 26 0.92 (0.05) 1.00 (0.00) 24 0.83 (0.08) 0.96 (0.04)

Rall ALL 89 0.89 (0.03) 0.89 (0.03) 84 0.85 (0.04) 0.86 (0.04)

Rw ALL 89 0.87 (0.04) 0.87 (0.04) 84 0.83 (0.04) 0.85 (0.04)

Training data were filtered using agreement (agr) and confidence (conf) of a HIT as defined in the “HIT
agreement and HIT confidence” section. N is the number of HITs available for cross-validation after the
filtering. The numbers are reported as accuracies in predicting the manual preference (standard errors)
a SVM7 was trained using a subset of metrics listed in Table 1 to match our previous work [21], SVM16
was trained using all the metrics
b N was too low to perform cross-validation
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Fig. 4 Crowd preference classifier accuracy versus the number of
training samples available. The points on the plot are mean accuracy
over a bootstrap sampling of 20 iterations for each setting of the number
of training samples. The error bars indicate the standard deviation in
the accuracy of the classifier

dure. The corresponding Spearman’s correlations were 0.52,
0.56, 0.53, 0.63, 0.45, and 0.33, respectively. The correlation
coefficients for all the components were statistically signifi-
cant.

Comparison of crowd and expert preference classifiers

Accuracy As shown in Fig. 5a, our analyses did not demon-
strate equivalence between the crowd and expert preference
classifiers within a margin of 10%. Our observation is con-
sistent for SVM7 and SVM16 using training data obtained
with different pooling approaches and filtered based on con-
fidence property of the HITs. Using the same training data
for the crowd and expert preference classifiers did not alter
the outcome of the analysis, as can be seen in Fig. 5b.

Segment-level scores In the case of SVM7, segment-level
scores obtained using the crowd preference classifier were
highly correlated with those from the expert preference clas-
sifier (ρ ≥ 0.86 for all maneuver categories). But in the case
of SVM16, the correlation between the segment-level scores
from the two preference classifiers was very sensitive to the
sample size specific to the maneuver category. The correla-
tion coefficient was as low as 0.11 for ST1 and as high as
0.85 for KT1.

Task-level scores Task-level scores predicted using segment-
level scores from the crowd preference classifier were also
highly correlated with those from the expert preference clas-
sifier (ρ ≥ 0.84). As shown in Fig. 5c, the task-level scores
obtained using the crowd preference classifier were statisti-

cally equivalent to those obtained using the expert preference
classifier within a margin of two units on the GRS scale.

Discussion

Our findings in this study are strongly supportive of our
framework for objective surgical skill assessment using pair-
wise comparisons of task segments. Our data indicate that
assessments of segment-level skill can be obtainedwithmod-
erate reliability from surgically untrained individuals as well
as from expert surgeons. Further, we show that crowdsourc-
ing is an efficient, reliable, and valid solution for assessing
surgical skills at the segment-level. The crowd yielded pref-
erences for maneuvers with high validity when compared
with expert surgeons (Table 4), and within three days com-
pared with about four weeks for experts. The experts in our
sample were affiliated with various surgical divisions and
represented a wide range of experience (number of years in
practice). Given the agreement among these diverse experts
that we observed in our sample, we expect that our findings
will be robust to ground-truth specified by a larger group of
experts.

Accuracy of manual preferences by the crowd translated
directly into validity of all aspects of our framework. Given
ground-truth pairwise preferences for task segments, we
demonstrated that a classifier can be trained with sufficient
accuracy to yield valid and objective skill assessments at
both the segment- and task-levels (Table 6). We did not
observe a consistent improvement in the accuracy of the
preference classifier by extending the set of features from
SVM7 to SVM16. Even though the accuracy for the crowd
and expert preference classifiers was not equivalent, both
segment- and task-level scores obtained from the two clas-
sifiers were highly comparable (Fig. 5). Furthermore, our
framework yielded task-level GRS with an error that is com-
parable in magnitude to the variability we observed in our
data set for task-level GRS assigned by an expert surgeon.

Our study establishes a basis for evaluating the educational
value of targeted feedback based upon segment-level skill
assessment. Segment-level assessments obtained from our
framework can be used to provide traineeswith targeted feed-
back on where in the task they need to perform better. Such
targeted feedback may facilitate deliberate practice and con-
sequently, effective and efficient skills acquisition. Targeted
feedback in the form of coaching by amentor has been shown
to reduce errors in performance and improve skill acqui-
sition [6]. Our framework may also be usefully deployed
for standardized evaluation of acquisition, maintenance, and
retention of technical skills in the training laboratory. Using a
common library of maneuver performances that span a wide
spectrum of surgical skill (novice to expert) allows standard-
ized evaluation of trainees across institutions and over time.
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Fig. 5 Equivalence testing of
the crowd and expert preference
classifiers. The X-axis is the
difference in property/outcome
measure from the crowd and
expert preference classifiers.
The dashed lines illustrate the
equivalence margin on either
side of the null value (solid
line). The solid diamonds
represent the estimate of the
difference in property/outcome
obtained from the two
classifiers. The horizontal bars
are the 95% confidence
intervals (CI) for the estimates.
Equivalence holds if the 95% CI
lie entirely within the region
bounded by the dashed lines.
a Accuracy of preference
classifiers using all available
training data. b Accuracy of
preference classifiers using
common training data. c
Task-level scores obtained from
the preference classifiers
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Surgeons and educators acknowledge the need for such stan-
dardization of training and evaluation [3]. Finally, we note
that our approach may be deployed on any surgical platform
where we can capture the data necessary to compute quanti-

tative measures of surgical skill. This includes robotic, open,
conventional laparoscopic, and endoscopic surgery. We used
only tool motion data to compute features to train the pref-
erence classifiers, but other sources of data such as video
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images may also be used for this purpose either alone or
in combination with each other. For example, Ahmidi et al.
capture motion data in an open procedure to preform reliable
skill assessment in [2].

One remaining limitation of this work is the fact that
our approach requires prior segmentation of the study tasks
into constituent segments. This assumes both that such con-
stituent segments exist and that the resources or infrastructure
to perform this segmentation exist. While crowdsourcing
annotation of segmentswithin a task is, in principle, possible,
the reliability of such an approach has yet to be established.
Several tools have been developed for automatic segmenta-
tion of tasks into finer segments (gestures), but none exist
for segmentation of tasks into maneuvers [1,15,27,29,31].
Finally, we studied a single surgical task, suturing and knot
tying, performed on the robotic surgical platform. Further
studies validating our framework may focus on other tasks
within typical surgical skills training curricula performed
using non-robotic surgical platforms.

An interesting and open question iswhether pairwise com-
parisons provide a more effective means for crowdsourced
skill assessment than global assessments, and whether the
effectiveness of the framework is sensitive to the granularity
of analysis. Conversely, the most effective level of analysis
for teaching is also not yet established. Feedback at levels
finer than maneuvers in the task, such as gestures, may be
important for surgical skills acquisition. For example, errors
in performance of the task are typically articulated at the
gesture-level, and thus, gesture-level assessments using our
framework may yield effective feedback for trainees. The
effectiveness or educational value of gesture-, maneuver-,
and task-level assessment for acquisition, maintenance, and
retention of surgical technical skills remains to be investi-
gated in future studies. We also note that technical skills is
one component of the overall performance in the operating
room, and further work to incorporate preoperative and post-
operative skills can help predict patient outcomes.

Conclusion

We have presented a framework for crowdsourced skill
assessment that yields valid objective surgical skill assess-
ments both for the overall task and for maneuvers within a
task.We have shown that crowdsourcing can provide reliable
pairwise comparisons for maneuvers within a task and that
pairwise comparisons by a surgically untrained crowd used
within our framework yield segment- and task-level assess-
ments that are comparable to those obtained using pairwise
comparisons by expert surgeons.
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