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Abstract
Purpose Nonrigid registration of multimodal medical
images remains a challenge in image-guided interventions. A
common approach is to use mutual information (MI), which
is robust to the intensity variations across modalities. How-
ever, primarily based on intensity distribution, MI does not
take into account of underlying spatial and structural infor-
mation of the images, whichmight lead to local optimization.
To address such a challenge, this paper proposes a two-stage
multimodal nonrigid registration schemewith joint structural
information and local entropy.
Methods In our two-stage multimodal nonrigid registration
scheme, both the reference image and floating image are
firstly converted to a common space. A unified representa-
tion in the common space for the images is constructed by
fusing the structure tensor (ST) trace with the local entropy
(LE). Through the representation that reflects its geometry
uniformly across modalities, the complicated deformation
field is estimated using L1 or L2 distance.
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Results We compared our approach to four other meth-
ods: (1) the method using LE, (2) the method using ST, (3)
the method using spatially weighted LE and (4) the con-
ventional MI-based method. Quantitative evaluations on 80
multimodal image pairs of different organs including 50
pairs of MR images with artificial deformations, 20 pairs
of medical brain MR images and 10 pairs of breast images
showed that our proposed method outperformed the compar-
ison methods. Student’s t test demonstrated that our method
achieved statistically significant improvement on registration
accuracy.
Conclusion The two-stage registrationwith joint ST andLE
outperformed the conventional MI-based method for multi-
modal images. Both the ST and the LE contributed to the
improved registration accuracy.

Keywords Nonrigid registration · Structure tensor · Local
entropy · Mutual information

Introduction

Biomedical images are indispensable to improve the effec-
tiveness and safety ofmodern radiology and surgery.Medical
images often from multiple imaging modalities, collected at
various times, are processed and analyzed for more accurate
diagnosis and treatment planning of a wide range of can-
cers [1,2]. Medical image registration that creates alignment
and correspondence between the anatomical or functional
regions of different images is essential in adaptive image-
guided radiation therapy. Registration of the planning images
with the onsite images is critical to adjust radiation treat-
ment and dose delivery according to the changes introduced
by patient movements, the tumor regression or progres-
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sion, and invulnerable movement of the surround organs
[3,4].

Generally, image registration can be broadly divided into
feature-based and intensity-based techniques. Feature-based
methods rely on extracting and matching features of the
input image pair, such as contours, corners or manual mark-
ers. Such methods are challenged in matching images from
different modals although they are often more efficient to
compute. Intensity-based registrations directly measure the
degree of shared intensity information between images [5,6].
This category of methods optimizes the similarity measure
between the floating and reference image [7–9] via search-
ing the optimal transformation. Mutual information (MI) is
the most recognized metric for multimodal registration due
to its ability to handle large intensity variations [10]. How-
ever, it is worth noting that MI-based registration only takes
intensity distributions into account and does not consider the
underlying structure information, which might lead to local
optimization.

Structural representation for multimodal images has
gained great interest for multimodal registration. For exam-
ple, local patch-based entropy images are structural represen-
tations for multimodal images [11]. However, there might be
the possible ambiguities when several patches share a same
entropy value. Wachinger et al. [11] computed a location-
dependent weighting to address this issue. Structure tensor
analysis is considered to be a way of describing the image
structure, which has been applied to inspect and quantify the
tissue microstructure presented in diffusion tensor imaging
(DTI) images [12]. Although the structure tensor trace can
obtain the structural representation of medical images and
employs gray values instead of only binary values, however,
much internal information might not be preserved.

To address the above-mentioned problems, we propose
to construct a structural descriptor which fuses the local
entropy with a novel structure tensor trace using an integral
image-based filter to describe the geometric and structural
properties of data. With the unified structural representation,
the consequent nonrigid registration using a simple L2 dis-
tance similarity is performed on the continuum mechanics
constraint.

Methods and materials

As illustrated in Fig. 1, our proposed nonrigid registration
method includes two major components, namely structural
representation and estimation of geometric mapping. In
structural representation process, the reference image and
floating image are converted to the unified representation
using the trace of image structure tensor and the local entropy.
In the secondprocess, the displacementfield for the converted
image pair generated is estimated based on the continuum
mechanics model.

Structural representation based on structure tensor

In order to unify image modalities for registration, the
multimodal images are firstly converted to structural rep-
resentations. Generally, direct use of image gradient would
not be suitable across different modalities. However, the use
of the local gradient information upon neighborhood [13]
may provide a better solution. As a robust gradient method,
the structure tensor analysis is an good option for tracking
image microstructure; however, this method is problematic
in low-resolution images and is sensitive to image noises. To
tackle such a problem, we propose to combine the structure
tensor trace with the integral image average filter for such
a conversion. Such a strategy treats regions, edges, corners
and textures in a unified manner and is thus more meaningful
than only using intensities.

Average filter on integral images

Integral image can be computed in a recursiveway to improve
the calculation efficiency [14]. The entry of the integral image
I�(x) at point x = (x, y) represents the sum of all pixels in
a rectangular region formed by the origin and x in the input
image I .

I�(x) =
i≤x∑

i=0

j≤y∑

j=0

I (i, j) (1)

The average filtered result on the integral images can be
computed using other three additions (see Fig. 2) and four
memory accesses to calculate the mean value of intensity
inside a rectangular region of any size. Once the integral
image has been computed, the sum of the intensities inside
the rectangular region � can be calculated as follows:

S� = I�(xa) − I�(xb) − I�(xc) + I�(xd) (2)

The average filtered result at point x can be obtained as fol-
lows:

I f (x) = S�

M × N
(3)

where M, N is the size of the rectangle in x and y direction.

Structure tensor-based descriptor

Mathematically, the structure tensor Tk of an image I f at
position x = (x, y) can be defined as:

Tk =
[

< I f x , I f x >w < I f x , I f y >w

< I f x , I f y >w < I f y, I f y >w

]
(4)
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Fig. 1 The framework of our proposed nonrigid registration method

Fig. 2 Illustration of any rectangular � in the integral image

where I f x and I f y are, respectively, the partial derivatives of
the image I f computed at position x = (x, y), < ·, · >w is
a weighted inner product operator, e.g.,

< I f x , I f y >w=
∫∫

�2

w(x, y) · I f x (x, y) · I f y(x, y)dxdy

(5)

where w(x, y) is a Gaussian function with a specified neigh-
borhood size (σ = 5 in our paper). The trace value tr(Tk) of
the positive definite second-order tensor Tk in Eq. (4) rep-
resents the structure of the considered image. The larger the
value of tr(Tk) is, the more probable the pixel will be in the
image border or corner.

Salient representation based on local entropy

In order to alleviate the information loss problem arising
from the structure tensor descriptor, we propose to use the

local entropy to compensate the loss of information. Entropy
is an important concept for image registration. The widely
used mutual information similarity measure for multimodal
registration is computed based on the entropy of the joint
and marginal probability distribution. The Shannon entropy
Hl(x) defined on the neighborhood Nx around x is calculated
as:

Hl(X) = −
∑

i∈I
p(X = i) · log p(X = i) (6)

where X is a discrete random variable (with possible values
in I ) representing the intensity of pixels in the neighborhood,
p is the probability density function (PDF) of X .

Data fusion

Wecombine the low-resolution local entropywith the higher-
resolution structure tensor trace by fusion technique to
improve the interpretability of the fused data. Various image
fusion techniques are available in published literature. In this
study, data fusion is performed on a pixel basis using princi-
pal component analysis (PCA) which has been successfully
used earlier for fusion of optical and synthetic aperture radar
data [15].

Let D be the fusion output which is a linear combination
of the structure tensor trace value X1 and the local entropy
X2. Thus:

D = m1X1 + m2X2 (7)

wherem1 andm2 are the associated eigenvector components
with the largest eigenvalue of covariance matrix A. Figure 3
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Fig. 3 The process of data fusion with PCA

gives details of the fusion procedure using PCA. The fused
image reflects the multifaceted information of the source
images and is more suitable for consequent registration.

Multimodal image registration for the converted images

Our registration of two structural representations is achieved
by obtaining the displacement field froman elasticmodel that
is based on continuum mechanics. The deformation can be
described with the Navier–Cauchy partial differential equa-
tion (PDE) [16]:

E

2(1 + ν)
∇2u + E

2(1 + ν)(1 − 2ν)
∇(∇ · u) + f(x,u) = 0

(8)

where E is the Young’s modulus, and v is the Poisson’s ratio.
f(x,u) is the external constraint imposed by the image pairs’
similarity metric.

Since the intensities of different modalities can be uni-
fied as a modality independent descriptor, a variant of the
L2 distance metric, which is often used in mono-modality
registration, is employed to derive the external force:

f(x,u) = (Dm(x + u) − Dr (x)) · ∇Dm(x + u) (9)

where Dm(x+u) and Dr (x) are, respectively, the descriptors
values at points x + u and x of the floating and reference
images. ∇Dm(x + u) is the gradient of Dm(x + u).

Materials

To evaluate our registration method based on the fused struc-
tural representation (FSR), a realistically generated synthetic
brain dataset with registered T1, T2, FLAIR and post-
gadolinium T1c MR images from one subject was used to
generate image pairs for different methods. The skull in these
provided brain MR scans has been wiped off. The dataset
was obtained from the brain tumor segmentation (BRATS)
challenge [17]. Thirty B-spline-based synthetic deformation
fields were generated to deform the T2, FLAIR and post-
gadolinium T1c MR images to generate floating images.
Meanwhile, the original T1, T2 and FLAIR images were

used as the reference images. We performed nonrigid reg-
istration on 50 multimodal image pairs chosen from these
reference images and floating images.

We also evaluated the performance of our proposed algo-
rithm on clinical images from different organs including
20 brain MRI image pairs and 10 breast image pairs. The
MR brain images from healthy volunteers were used. This
database was collected and made available by the CASI-
Lab at The University of North Carolina at Chapel Hill
and was distributed by the MIDAS Data Server at Kitware,
Inc [18]. Images were acquired on a 3T unit under stan-
dardized protocols. Images include T1 and T2 acquired at
1 × 1 × 1 mm3, magnetic resonance angiography (MRA)
acquired at 0.5× 0.5× 0.8 mm3 and DTI using 6 directions
and a voxel size of 2 × 2 × 2 mm3. We chose one T1-Flash
image as the reference and randomly selected 20 T2 images
as floating images. The breast images were acquired from
10 patients who had been treated in the First Affiliated Hos-
pital of Soochow University. The cranio-caudal (CC) view
of mammography and the MRI image of every patient were
used as the reference image and floating image for registra-
tion evaluation.

Ethics statement

The study was carried out according to the Helsinki Declara-
tion and approved by the ethical committee of TheUniversity
of North Carolina at Chapel Hill. The need for informed
consent was waived, because the data used in this study had
already been collected for clinical purposes. Furthermore, the
present study did not interfere with the treatment of patients,
and the database was organized in a way that makes the iden-
tification of an individual patient impossible.

Methods for comparison

To evaluate the performance of our method and investigate
the contribution of structure tensor trace and local entropy
information in the deformable multimodal registration, we
compared our registration results with the following four
methods: (1) the method using local entropy (LE method);
(2) the method using structure tensor (ST method); (3)
the method using spatially weighted local entropy (WLE
method) proposed in the reference [11]; and (4) the con-
ventional MI-based method (MI method).

Accuracy was measured quantitatively and qualitatively.
Quantitative similarity measurements included NC (normal-
ized correlation) and NMI (normalized mutual information),
and the mean distance between the ground seeds and cor-
responding ones after registration. Qualitative assessments
include visual inspection on the subtraction images and the
checkerboard fusion images between the reference image and
the floating image after registration. The fusion checkerboard
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Fig. 4 Examples ofMR brain images with artificial deformations. The
top row shows the reference image of MR-T2 modality and its corre-
sponding representations by local entropy (LE), the structure tensor
(ST), the fused structural representation (FSR) and spatially weighted

local entropy (WLE). The bottom row shows the corresponding floating
image of MR-T1c modality and its corresponding structural represen-
tations

image highlights the edge continuity of the registration result.
The more the continuity in the fusion image, the better the
correspondence is achieved from registration.

The checkerboard fusion image is defined as below:

Iq =
{
Ire f (x, y), Ic(x, y) = 255
Ireg(x, y), Ic(x, y) = 0

(10)

where Iq(x, y) is the gray value of the fusion image,
Ireg(x, y) is the gray value of the image after registration,
Ire f (x, y) is the gray value of the reference image and
Ic(x, y) is the gray value of the checkerboard image.

Parameter setting

There are two types of parameters in ourmethod.Thefirst one
is the elasticmaterial-related parameters including the elastic
modulus E and Poisson’s ratio v. As those in [19], we set our
model as an isotropic linear elastic model with the elastic
modulus E = 100kPa and the Poisson’s ratio v = 0.45. The
second one is the parameters for multiresolution registration
including the pyramid level number L(L = 2) of levels and
the resolution of each level res(res = {8, 4}).

Results

Registration results of MR brain images with artificial
deformations

Figure 4 shows the unified structural representations (by
LE, ST, FSR and WLE, respectively) of the reference MR-
T2 image and the floating MR-T1c image. The floating
MR-T1c image was generated by elastically deforming the
original MR-T1c image, which was used as a ground truth
for evaluating the registration accuracy. With these unified
representations, the deformation could be estimated in the
common space.

Figure 5 illustrates the registration results of the reference
and floating images in Fig. 4 and also the result using MI-
based algorithm for visual inspection and evaluation. The
image shown in the first column of the top row is the origi-
nal MR-T1c image used as the ground truth. The subtraction
images between the results (by FSR, WLE and MI respec-
tively) and the ground truth are also illustrated in the bottom
row of Fig. 5.

Student’s t tests of the mean distance between the ground
seeds and corresponding ones after registration were per-
formed to assess whether the improvement of our FSR
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Fig. 5 Registration results of
MR brain images with artificial
deformations: the left column of
the top row is the original T1c
MR image from the dataset used
as the ground truth. The
registration results, respectively,
using LE method, ST method,
FSR method, WLE method and
MI-based method are shown in
the top row and middle row.
Images in the bottom row show
the subtraction images between
the ground truth and result
images of FSR, WLE, MI
algorithms

method is of statistical importance. The result illustrated in
Table 1 shows that at the 0.05 level, themean values for mean
distance of all 50 registration results using FSR method was
significantly less than the ones using LE,WLE andMI-based
method, while they were marginally less than the ones using
the ST method.

Additionally, the comparison results of the other four
methods and our FSRalgorithm in terms ofNCandNMI sim-
ilarity measurement are given in Tables 2 and 3. The results
indicated that at the 0.05 level, the mean values for NC and
NMI using our FSR algorithmwere significantly greater than

the ones using LE method, WLE and MI method, while they
were marginally larger than the ones using the ST method.

Registration results of real inter-subject MR brain
images

For the further evaluation of our proposed nonrigid registra-
tion algorithm, twenty real MR-T1-Flash and MR-T2 brain
images from different subjects were used as the reference
and the floating images, respectively. Figure 6 illustrates one
example of the inter-subject registration. Figure 6c illus-
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Table 1 Mean registration distances (in mm) from different methods [mean value (95% CI)]

Methods T1-FLAIR T1-T1c T2-FLAIR T2-T1c FLAIR-T1c

MI method 0.7852 0.694 0.8806 0.799 0.8024

(0.6489, 0.9215) (0.6039, 0.7841) (0.7918, 0.9693) (0.5653, 0.8328) (0.6741, 0.9306)

LE method 0.9361 0.9442 0.9614 0.948 0.8875

(0.8348, 1.0374) (0.8021, 1.0862) (0.8276, 1.0952) (0.8359, 1.0601) (0.7253, 1.0497)

ST method 0.6568 0.6043 0.6532 0.6187 0.6667

(0.5181, 0.7954) (0.5073, 0.7013) (0.4999, 0.8065) (0.5408, 0.6966) (0.5407, 0.7926)

WLE method 0.8367 0.891 0.8805 0.9419 0.8314

(0.6483, 1.0251) (0.7702, 1.0117) (0.7657, 0.9954) (0.8865, 0.9973) (0.6944, 0.9684)

FSR method 0.6369 0.6032 0.6479 0.6111 0.6323

(0.4976, 0.7761) (0.4991, 0.7073) (0.4920, 0.8038) (0.5253, 0.6970) (0.5389, 0.7257)

p value (except ST) <0.05 <0.05 <0.05 <0.05 <0.05

Table 2 Average NC values of different algorithms [mean value (95% CI)]

Methods T1-FLAIR T1-T1c T2-FLAIR T2-T1c FLAIR-T1c

MI method 0.9583 0.9455 0.9743 0.9565 0.9459

(0.9173, 0.9993) (0.9421, 0.9489) (0.9636, 0.9849) (0.9427, 0.9702) (0.9322, 0.9596)

LE method 0.9678 0.9551 0.9599 0.9536 0.9472

(0.9453, 0.9904) (0.9333, 0.9769) (0.9434, 0.9765) (0.9362, 0.9709) (0.9340, 0.9605)

ST method 0.9784 0.9713 0.9821 0.9774 0.962

(0.9468, 1.0100) (0.9506, 0.9921) (0.9672, 0.9969) (0.9658, 0.9889) (0.9487, 0.9753)

WLE method 0.975 0.9571 0.9729 0.9603 0.9567

(0.9548, 0.9953) (0.9436, 0.9706) (0.9609, 0.9849) (0.9535, 0.9672) (0.9466, 0.9658)

FSR method 0.9844 0.9736 0.9824 0.9778 0.9646

(0.9627, 1.0060) (0.9500, 0.9972) (0.9677, 0.9972) (0.9636, 0.9919) (0.9512, 0.9781)

p value (except ST) <0.05 <0.05 <0.05 <0.05 <0.05

Table 3 Average NMI values of different algorithms [mean value (95% CI)]

Methods T1-FLAIR T1-T1c T2-FLAIR T2-T1c FLAIR-T1c

MI method 1.3376 1.3235 1.3576 1.3312 1.3301

(1.2992, 1.3760) (1.3148, 1.3322) (1.3438, 1.3714) (1.3161, 1.3463) (1.3179, 1.3422)

LE method 1.3569 1.3332 1.3521 1.3315 1.3245

(1.3333, 1.3805) (1.3047, 1.3617) (1.3328, 1.3714) (1.3079, 1.3551) (1.3031, 1.3460)

ST method 1.3738 1.3565 1.3814 1.3528 1.3328

(1.3390, 1.4087) (1.3239, 1.3890) (1.3492, 1.4136) (1.3285, 1.3771) (1.3040, 1.3616)

WLE method 1.3519 1.3376 1.3524 1.3365 3.3284

(1.3337, 1.3821) (1.3130, 1.3623) (1.3237, 1.3811) (1.3235, 1.3496) (1.3134, 1.3434)

FSR method 1.3871 1.3613 1.3887 1.3586 1.3469

(1.3544, 1.4197) (1.3251, 1.3975) (1.3506, 1.4268) (1.3292, 1.3881) (1.3257, 1.3681)

p value (except ST) <0.05 <0.05 <0.05 <0.05 <0.05

trates the estimated deformation field. Figure 6d, e is the
registration results from the registration methods based on
the MI and our FSR method. Since no ground truth image
could be used in the medical inter-subject registration, our

visual assessment was performed by observing the enlarged
checkerboard fusion of the reference image and the registra-
tion results (Fig. 7a, b). In order to assess the continuities of
fused images, object contours were also sketched in Fig. 7a,
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Fig. 6 Registration results of MR-T1 and MR-T2 brain images: a ref-
erence image, b floating image, c the estimated deformation field, d
registrated floating image byMI method, e registered floating image by
FSR method, f checkboard mask

b. These images show that the registration result from our
FSR method was better aligned to the reference image when
compared to the results from MI-based method.

Quantitative accuracy evaluations of twenty image pairs
in terms of NMI are given in Fig. 8. As it is shown, the
proposed method achieved higher NMI values and in turn
further demonstrated that our method outperformed the MI-
based method.

Registration results for clinical mammography and
MRI images

As a clinical diagnostic tool, mammography is themost com-
monly used breast imagingmodality. Although the resolution
of a typical mammograph is reasonable, superimposition

Fig. 7 The checkerboard fusion of the reference with a the MI reg-
istration result and b the FSR registration result. The circle region in
b shows more continuity

Fig. 8 Statistical box-plots of the registration results in terms of NMI

of breast tissue and the low contrast between the healthy
fibro-glandular and the suspicious lesion make interpretation
difficult. MRI is generally used as a complementary modal-
ity to compensate the ambiguities in mammography. To fully
exploit the complementary information in MRI and mam-
mography, the large and complicated deformation between
them should be estimated by the multimodal registration
algorithm.

Figure 9 illustrates an example pair of the images used in
our registration method evaluation. Figure 9a is a CC mam-
mographic image used as the reference image. Figure 9b is
a MRI image used as the floating image acquired from the
same patient. Figure 9c is the registration result using MI
method, and Fig. 9d is the result using our FSR method. Our
visual assessment was performed by observing the overlay
of the reference image and the registration result from the
floating image. Figure 9e shows the overlay for (a) and (c),
and the contour lines with blue and red described the local
mismatch between the image pair usingMI-based algorithm.
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Fig. 9 Examples for experiments of real breast images from the same
patient. a Reference images of mammographic image, b floating image
of MRmodality. c The registration result fromMI method. d The result
from our method. e The overlay for a and c with the contour lines.
f The overlay for a and d with the contour lines

Table 4 The mean metric values of different algorithms [mean value
(95% CI)]

Metrics MI FSR p value

NMI 1.3716 1.4170 <0.05

(1.3509,1.3924) (1.3905,1.4436)

NC 0.7859 0.8117 <0.05

(0.7710, 0.8008) (0.7945, 0.8289)

The overlay (shown as Fig. 9f) of (a) and (d) illustrates that
the contour lines from two images were properly superim-
posed.

The quantitative comparisons between our FSR method
and the MI method in terms of NMI and NC are illustrated in
Fig. 10. The t test results at the 0.05 level (given in Table 4)
indicated that our method statistically outperformed the MI-
based method.

All algorithms were implemented with C on Windows 7
operating system and performed on a DELL desktop with
Intel(R) Core(TM) i7-4770 @ 3.4GHz CPU. The average
computation time for image structural representation using
our FSR method was 27.5 s, and average computation time
for image registration in the common space is 3min and 48s.

Discussion

In this paper, a new structural representation was constructed
by fusing the structure tensor trace with local entropy to
describe the geometric and structural properties of data.
Through the fused structural representation, the multimodal
data were converted into a new unified space that reflected its
geometry uniformly across modalities, so that images in this
new representation were matched using a simple L2 distance
as a similarity metric.

Fig. 10 Quantitative comparison of registration results fromMI method and FSR method in terms of a the normalized mutual information (NMI);
b the normalized correlation (NC)
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Experimental validation was performed on multimodal-
ity MRI brains images with artificial deformations and
that on real images from different subjects. We com-
pared our FSR method with other four methods: (1) the
method with local entropy (LE); (2) the method using struc-
ture tensor (ST); (3) the method using spatially weighted
local entropy (WLE); and (4) the conventional MI-based
method.

A visual assessment of registration results is performed
by observing the subregions marked with squares in Fig. 5.
The region in blue square represents a subregion with rich
structure information. Comparisons of those regions in the
squares in Fig. 5 indicate that our proposed FSR algo-
rithmoutperforms other four algorithms, because the squared
regions in the result image from the FSR method looks more
alike the corresponding parts in the reference image. Such
a result is plausible because structure information in these
regions is highlighted by incorporating the structure tensor
into the local entropy. Accuracy was quantitatively mea-
sured using the mean distance between the ground seeds
and corresponding ones after registration, which were sum-
marized in Table 1. From the table, we found that the
mean errors obtained from FSR method were significantly
smaller than the ones from LE method, WLE method and
MI method, while they were marginally less than the ones
using the ST method. The results indicated that using the
fused structural representation, the registration algorithm
could better correct the deformation between the reference
image and the float image. Although our FSR method out-
performed other four methods, we could see that structure
tensor-based descriptor played a leading part in these two
components. The same conclusion could also be obtained
from Tables 2 and 3, where our FSR method achieved higher
NC and NMI averages than other four methods. Both the
structural tensor and the local entropy played the positive
role.

Our method had some limitations in its current status.
The registration was carried out at image level, and there
was previous manual process for identifying the images with
same local structure(s), and for instance, the corresponding
multimodal MR images were all with tumor as shown in
Fig. 4.

The experimental validationdemonstrated that ourmethod
outperformed theothermethods in comparison for the images
with rich structural information, such as ventricle edges,
the tumor regions in brain and the veins in breast images.
However, the advantage of our proposed FSR method might
attenuate if the images had relatively uniform intensity dis-
tribution and were in lack of the fine detail.

All experiments in this paper were performed on 2D
images; however, our proposed method might be extended
to 3D volumes registration by using the local entropy and
structure tensor in the local hexahedron.

Conclusion

In this paper, a two-stage multimodal image registration
algorithm was proposed for multimodal images. Images of
different modalities were firstly converted to a unified com-
mon representation based on the structure tensor trace and
local entropy. Experimental validation on multimodal MR
brains images with artificial deformations and that on real
multimodal brain MR images and breast images demon-
strated that our proposed registration method outperformed
theLEmethod, the STmethod, theWLEmethod and the con-
ventionalMI-basedmethod. Both the structure tensor and the
local entropy played the positive role in the FSR.
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