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Abstract
Introduction Hip resurfacing is a surgical option for osteoar-
thritis young and active patients. Early failures has been
reported due to improper implant placement. Computer-
assisted surgery is a promising avenue for more successful
procedures.
Purpose This paper presents a novel automatic surgical
planning for computer-assisted hip resurfacing procedures.
The plan defined the femoral head axis that was used to place
the implant. The automatic planningwas basedon aLie group
statistical shape model.
Methods A statistical shape model was constructed using
50 femurs from osteoarthritis patients who underwent com-
puter-assisted hip resurfacing. The model was constructed
using product Lie groups representation of shapes and non-
linear analysis on the manifold of shapes. A surgical plan
was drawn for the derived base shape. The base shape was
transformed to 14 femurs with known manual plans. The
transformed base plan was used as the computed plan for
each femur. Both actual and computed plans were compared.
Results The method showed a success by computing plans
that differ from the actual plans within the surgical admissi-
ble ranges. The minimum crossing distance between the two
plans had a mean of 0.75 mm with a standard deviation of
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0.54 mm. The angular difference between the two plans had
the mean of 5.94◦ with a standard deviation of 2.14◦.
Conclusion Product Lie groups shape models were proved
to be successful in automatic planning for hip resurfacing
computer-assisted surgeries. The method can be extended to
other orthopedic and general surgeries.

Keywords Surgical planning · Orthopedics ·
Computer-aided decision · Lie groups

Introduction

Hip resurfacing is a surgical treatment for osteoarthritis that
is gaining popularity over total hip replacement, mainly for
young and active patients [2,3,31]. Hip resurfacing proce-
dures preserve bone stock loss by less bone removal. The
preservation of original bone allows easier revisions. Also,
the implant has less chance of dislocation due to the larger
head size and has better wear properties.

Hip resurfacing is recognized as a technically challeng-
ing procedure with difficult surgical exposures [2,4,31,40].
Improper implant placement can produce postoperative com-
plications such as: notching of the femoral neck, with an
increased risk of postoperative fracture; incomplete ream-
ing of the head, resulting in poor bonding of prosthetic to
bone; an unstable joint, with an increased risk of postoper-
ative dislocation; and edge loading of the prostheses, which
may increase the production of metal particles through wear.

Conventional planning and computer-assisted planning of
the femoral component aim tomaintain the patient’s anatom-
ical stem–shaft angle (which is the angle of the component
stem to the femoral shaft) and simultaneously to avoid notch-
ing the femoral neck. Conventional technique, recommended
by most implant manufacturers, is to preoperatively plan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-015-1209-y&domain=pdf


708 Int J CARS (2015) 10:707–715

Fig. 1 Hip resurfacing plan using Mimics (Materialise, Leuven, BE)

from a standing anterior–posterior (AP) radiograph to esti-
mate the implant size and angulation. Computer-assisted
planning can replicate this process but, preferably, uses a
3D preoperative model to provide a full spatial plan and
ensure that the version angle of the implant also respects the
highly variable anatomy of the femoral neck. Because these
anatomical and biomechanical constraints are common to
all implants, they are largely replicated in computer-assisted
systems; in the Methods section, we describe the method of
Kunz et al. [30] as an example, but very similar methods are
used in other systems that have been reported.

Computer-assisted orthopedic surgery methods have been
used to enhance the procedure and to reduce the risk of
implant failure. Figure 1 shows a hip resurfacing surgical
plan drawn in our institution using Mimics (Materialise,
Leuven, BE). Hess et al. [27] reported the first use of 2D
fluoroscopy to navigate the femoral head for hip resurfac-
ing. Belei et al. [8] presented an alternative method for 2D
fluoroscopy. With the increase in 3D imaging technologies,
Hodgson et al. [28] presented using computed tomography
(CT) for resurfacing navigation. Davis et al. [12] adapted
image-free navigation approach. All those systems used
optoelectronic technologies for intra-operative tracking of
anatomy and instruments. Barrett et al. [7] described intra-
operativemechanical tracking system and reported improved

results over other tracking technologies. Kunz et al. [30]
presented the use of individualized drill guides using a 3D
printing technology.

A specific aspect of computer-assisted hip resurfacing is
the question of how accurate a plan must be for it to produce
good surgical outcomes. Our review of the literature sug-
gests that a stem–shaft angular difference of 10◦ is clinically
acceptable. Olsen et al. [33] deemed all of the 100 patients in
their series to have clinically acceptable results, with stem–
shaft angles limited to at most 8◦ of difference. Zhang et al.
[42] studied 20 patients with clinically acceptable results,
having stem–shaft deviations of 10◦ ± 1.5◦. Most recently,
Du et al. [13] found, for 16 patients, stem–shaft deviations
of at most 9◦.

These clinical data imply that if the error of the plan plus
implantation error is less than about 10◦, then the outcomes
are most likely to be acceptable. For all of the studies cited,
the implantation errors—both in vitro and in vivo—are at
most 2◦. Consequently, for the purposes of this study, a limit
of 8◦ of angular deviation was taken to be the goal of auto-
mated planning.

This paper proposes the use of Lie groups statistical shape
models to automatically plan a hip resurfacing procedure
with computer assistance. The method uses a class of matrix
manifolds, namely Lie groups, to construct a statistical shape
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model of the anatomy. Lie groups are powerful mathemati-
cal structures that are algebraic groups and smoothmanifolds
at the same time. Being algebraic groups enables perform-
ing efficient inexpensive computations, and being smooth
manifolds enables performing accurate nonlinear statistics
on the shape space. The derived base shape from the model
is planned for surgery and transformed to the patient anatom-
ical image. The transformed plan is used as the automatically
computed plan. The computed method is compared to actual
planned surgeries for validation and verification.

This work has two main contributions. First, it presents a
new method of statistical shape model construction using
Lie groups. The method differs from our previous work
[23,25,26] that it is directly applied to triangular meshes pro-
duced by most commercial applications and does not require
transforming the surfaces to quadrilateral meshes. Second,
this is the first report on using statistical shape models to hip
resurfacing surgical planning. All previous work required a
patient-specific plan.

The rest of this paper has a straightforward structure.
“Background” covers the required technical background for
both statistical shape models and matrix manifolds. The
methods are detailed in “Methods.” Results comparing the
computed plans using the method and actual plans are
presented and discussed in “Experiments and results.” “Con-
clusion” draws the conclusions of this study.

Background

This section covers the essential background to develop the
methods presented in this paper. It defines statistical shape
models and highlights the key developments in the literature
including both linear and nonlinear methods. It also summa-
rizes the related concepts frommatrix manifolds, mainly Lie
groups.

Statistical shape models

A statistical shape model is a mathematical structure repre-
senting the shape variability. Such a model uses measures of
statistics that come from geometrical descriptions of sam-
ples of a population. A highly influential development was
the point distribution model [10,11], which has been widely
used inmanygeneral applications.Apoint distributionmodel
relies on principal component analysis [29,34] and assumes
that shapes can be described in a Euclidean space. Shapes
that are better described in a nonlinear space confound such
analytical methods.

An object is represented by a set of landmarks that have
an established point correspondence over a population. Land-
marks can be anatomical features identified by an expert, or
might be geometrical features associatedwith amathematical
shape. In shape analysis, landmarks usually provide a rela-

tively dense representationof shape. For example, a computer
representation of a 2D contour is a set of connected points.

In this representation, training data typically consisted of
k objects. Each object is represented usingm points p ∈ R

n ,
where n is either 2 or 3. Because each object is naturally in a
R
n×m space, it is represented as a vector of high dimension.

For the 3D case, an object S is commonly represented as

S = ( x
1 p,

y
1 p,

z
1 p, . . . ,

x
m p, y

m p, z
m p

)

Distinct objects havedistinct representationvectors,with nat-
ural correspondences between the points from which each
representation vector is produced. Linear statistics can be
easily applied to those vector structures, and shapes can be
easily reproduced.

Nonlinear statistical shape analysis has been studied by
only few research groups. Fletcher et al. [16–18] presented
principal geodesic analysis (PGA). The method was initially
applied to medial representations and later to diffusion ten-
sor imaging [14,15]. PGAwas a generalization of PCA from
vector spaces to manifolds. PGA provided a general frame-
work for using exponential mapping to linearize manifolds.

PGA was an approximation of the data samples on the
tangent space that assumed localization of the data around an
intrinsicmean. Sommer et al. [41] introduced exact-PGA that
performed intrinsic computations on the manifold instead of
using the simplifyingmapping to the tangent space. Thework
concluded that PGA performed well on some data but did
not provide acceptable approximations for other data sets. It
was also observed that the exact-PGA computation was very
expensive, compared to the cost of PGA that used the tangent
vector space.

PGA was, overall, more efficient than exact-PGA but less
accurate when applied to some data sets. The application to
diffusion tensors required manipulating the data to fit the cri-
teria of symmetric positive-definite matrices, an alternative
that is not always possible for other empirical data.

Pennec et al. [35–37] used a random primitive as an equiv-
alent to a random variable on the manifold. Based on this
idea, the main statistical tools were defined. In related work,
Arsigny et al. [5,6] provided Log-Euclidean metrics as tools
to perform fast computations of smooth manifold spaces
using the exponential mapping to vector spaces. This was
based on finding a one-to-one mapping between symmetric
matrices and vector spaces that enabled the use of vector
addition and scalar multiplication via exponential maps. The
Log-Euclidean framework was an easier and less expen-
sive alternative to PGA that used matrices as Lie groups
and the matrix exponential as a linearization tool. The Log-
Euclidean framework was first developed for symmetric
matrices and applied to diffusion tensor images, which was
straightforward because those matrices are symmetric and
positive-definite.
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Freifeld et al. [20] developed the Lie bodies concept,
which modeled body shapes using principal geodesic analy-
sis on Lie group structures. They modeled shapes as a
collection of triangular meshes. A Lie group structure is con-
structed by the product of 3D rotation in space and shape
deformation on 2D plane. The method dropped the transla-
tion factor from the computation and analysis, and used a
least-squares fitting algorithm to construct the shapes after
analysis. The method was applied to analyze body scans of
adult women and has not been reported for any further use.

Hefny et al. [23] identified the Lie group of homogeneous
matrices as a matrix Lie group and used this group to analyze
shapes. The method was used to analyze 2D femoral head–
neck contours [24], 3D femoral heads [26] and 3D distal radii
[25]. The 3D version of the method required quadrilateral
meshes, which is suitable for tomographic imaging that deals
with shapes as slices and allows the easy construction of
meshes using a stack of 2D contours. The method was not
applicable to triangular meshes that are the legacy of 3D
shape meshes.

Matrix manifolds

The concept of the matrix manifold is at least one century
old [38] but has seen increasing recent use in mathematics
and physics. This concept is the foundation for many appli-
cations in mathematical physics, from elementary particles
to cosmological principles [39]. Only in the last decade have
matrix Lie groups, a special case of matrix manifolds, started
to attract the attention of computer scientists, primarily in
computer vision and image analysis. The use of a matrix
manifold, in particular, makes it possible to use differential-
geometry tools to analyze nonlinear spaces.

A Lie group GL is formally defined as a group G and a
smooth manifoldM such that the group operation g◦h → k
is a smoothmapGL◦GL → GL, and the inverse g → g−1 is
a smooth mapGL → GL [22]. The unification of group and
manifold properties into a Lie group arises from the smooth-
ness requirement imposed on both the group operation and
the inverse property [21].

Each Lie group has an associated Lie algebra. A Lie
algebra can be constructed by linearizing a Lie group. The
linearization is typically done by expanding the group combi-
natorial operator about the coordinates of the group elements
at any given group element. The linearization of theLie group
forms a new set of elements that are the Lie algebra. A Lie
algebra is a linear vector space, which permits linear opera-
tions and statistics to be computed on the Lie algebra.

An exponential map is amethod for transforming between
a manifold and a tangent space or, equivalently, between a
Lie group and a Lie algebra. For matrix Lie groups, this
transformation is simply thematrix exponential (tomap a tan-
gent vector to a matrix) or the matrix logarithm from which

non-trivial entries are extracted to forma tangent vector.Ana-
lytically, for every n × n real matrix M , the exponential eM

is a continuous function of M that uniformly converges; it
can be defined as a Taylor series

eM =
∞∑

k=0

Mk

k!

The matrix exponential has a straightforward computation.
An elementary observation in linear algebra is that any square
matrix is either diagonalizable, nilpotent, or decomposable to
both [22]. Here, we represent an affine transformation M̂ as
a homogeneous matrix; any such matrix can be expressed as
the product of a dilation or scaling matrix, pre-multiplied by
a shear matrix, pre-multiplied by a rotation matrix and pre-
multiplied by a translation matrix. This decomposition is

M̂ = L̂ R̂ Ĥ Ê Ĝ

The matrix logarithms of a translation matrix L̂ and a shear
matrix Ĥ is both nilpotent of degree 2; the logarithm of a
scaling matrix Ĝ is diagonal, and the logarithm of an orthog-
onal rotation matrix R̂ is a skew-symmetric matrix. Any
non-singular homogeneous matrix M̂ can easily be decom-
posed into products, fromwhich the logarithms can be found,
fromwhich the independent components canbe extracted and
assembled into a tangent vector.

From this brief mathematical background, it can be sup-
posed that a shapemight be represented as amatrix Lie group
using one or more representations. Such a representation
would provide a mapping of data between a nonlinear man-
ifold and the associated linear tangent space, thus enabling
simple computations to be performed on complicated struc-
tures. The principal advantage of using a matrix Lie group
is that one does not have to perform numerical estimations
on the manifold, which must be done for PGA and exact-
PGA: the transformation of one manifold point to another is
equivalent to transformation of one group element to another,
which is a closed-form computation in any Lie group and is
simply matrix multiplication in a matrix Lie group.

Methods

This section develops the methods that are the main contri-
bution of this paper. It describes the construction of a shape
model using a product Lie group, which is derived from tri-
angular meshes of anatomical shapes extracted frommedical
images. Using a product Lie group enables performing effi-
cient and accurate computations in the nonlinear space of
shapes, while standard point cloud methods assumes linear-
ity of the space. It also describes the use of the model to
automatically compute the plan.
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Model construction

A new product Lie group representation of shape is devel-
oped. This representation enables analyzing triangular mes-
hes with no extra processing either before or after the
analysis.

For model construction, a data set consists of a popula-
tion of shape samples consisting of triangular meshes with
some number of corresponding triangles. Each sample can be
handled as an ensemble of triangles. This method constructs
product Lie group elements to represent the transformation
between each triangle in the base shape to the corresponding
triangle in each sample shape.

A simple scenario is shown in Fig. 2. Any triangle �A in
3D Cartesian space can be mapped to another triangle �B
by a 3D rigid transformation T consisting of rotation and
translation and a 2D deformation D consisting of shear and
scale. First, the triangle �A can be transformed to the 2D
Cartesian xy-plane using rotation and translation. This is a
shape-preserving transformation, and the transformed trian-
gle is called canonical triangle. Second, the canonical triangle
�A shape can be deformed to the shape of canonical triangle
�B using 2D shear and scaling. Finally, the deformed trian-
gle �A can be transformed to the original triangle �B using
rigid 3D transformation.This sequence forms3Daffine trans-
formations in 3D space with a specific structure that allows
efficient and effective analysis with simple implementation.

A base shape in a 3D Cartesian space is identified. The
word base is carefully used instead of mean because in the
manifold space, a mean may not be unique or may not even
exist. The base shape is the shape that is most likely in equiv-
alent distance to all samples in the data set. On amanifold, the
mean can be approximated using Frèchet’s algorithm [19].
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Fig. 2 Triangle �A (blue) is transformed to the canonical form
(green), deformed to the canonical form of triangle �B (black), and
transformed to the original triangle �B (red)

We use the term “altered” to describe a shape other than the
base shape.

Each triangle forms a coordinate frame, in general not
rectilinear, consisting of an origin vertex and two vectors
in the 3D Cartesian space. Each coordinate frame could be
represented by a homogeneous matrix. The triangle can also
be transformed to a canonical triangle in 2D Cartesian space
by a translation and a rotation, that is, by a rigid homogeneous
transformation.

A non-degenerate triangle �P can be represented as

P =

⎡

⎢⎢⎢⎢
⎣

pxi pxj pxk
pyi pyj pyk
pzi pzj pzk
1 1 1

⎤

⎥⎥⎥⎥
⎦

(1)

where the order of the points pi , p j , and pk is arbitrary
selected. Geometrically, the triangle �P can be transformed
in 3D Euclidean space by the homogeneous rigid transfor-
mation

T̂ =
[
R d
0T 1

]

where R ∈ SO(3) is a 3D rotation matrix and d ∈ R
3 a

3D translation vector. The matrix T̂ is in the homogeneous
transform Lie groupH(4) [23]. Equivalently, a matrix trans-
formation T̂ of the triangle �P is a point in the manifold
H(4) of homogeneous transform matrices of degree 6. The
matrix T̂ ∈ H(4) is an operator that drags one point to another
on themanifold. One interesting transformation takes a trian-
gle to a canonical form by translating one vertex to the origin
and rotating the triangle to align one of the edges with the
x-axis. For such a transformation, T̂ , pi is restricted to the
origin [0 0 0]T , so the canonical triangle �P is represented
by the matrix

D̂ =
[
pxj pxk
0 pyk

]

The matrix D̂ of a canonical triangle represents its shape. A
canonical triangle can be scaled by independently varying
pxj or pyk or sheared by varying pxk and pyk . The matrix D̂
belongs to the group B(2) which is the Lie group of square
upper triangular matrices of degree 2.

The transformation Lie group H(4) and the deformation
Lie group B(2) can be combined by the product Lie group

M(6) = H(4) × B(2)

A particularly convenient representation of the Cartesian
product of two matrix Lie groups is to create a larger matrix
with a block-diagonal structure. For spatial triangles, the ele-
ments of the M(6) group will have the form
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M =
[
T̂ 0
0 D̂

]

(2)

The transformation and deformationmatrices do not inter-
act through the new group operation, which implies that the
properties of the original manifolds are preserved. This can
readily be seen by the simple matrix computation

[
T̂2 0
0 D̂2

] [
T̂1 0
0 D̂1

]

=
[
T̂2T̂1 0
0 D̂2 D̂1

]

The great utility of the representation in Eq. 2 is that it
decouples the rigid transformation of a triangle in 3D space
from its canonical shape. This has 9◦ of freedom, which is
a lower dimensional representation than using a 3D affine
transformation that has 12◦ of freedom.

In preparation for analysis, any altered triangle �A can
be mapped to a base triangle �B through a transformation
C as A = CB. The transformation C is equivalent to

C = T̂−1
B D̂AT̂A

where TA is transformation of the altered triangle �A to its
canonical form, DA is the deformation of�A in its canonical
form to the canonical form of the base triangle �B, and TB
is the transformation of �B to its canonical form.

For each matrix C , there is a unique logarithmic mapping
to a matrix K such that e(K ) = C . For each such matrix
K , there is an associated vector k. All such vectors k that
transform an altered shape A to the base shape B can be
assembled in a vector m, and all such vectors for a set of
shapes can be assembled into a matrix M . The singular-value
decomposition of each matrix is the familiar M = UΣV T .

The matrix exponential maps the transformations from
the nonlinear manifold space to the linear space of its tan-
gent. Mathematically, this enables using the singular-value
decomposition which is one form of principal component
analysis.

Plan computation

The planning of the operative cases used in this study fol-
lowed the methodology described by Kunz et al. [30]. In
hip resurfacing computer-assisted surgery, a plan is manu-
ally drawnbya surgeonusing the navigation software system.
This plan defines, amongother parameters, the femoral head–
neck axis. This axis is used to guide the drilling and prosthesis
alignment. The automatic computation of the plan presented
here was done using the shape model constructed in the pre-
vious subsection.

Briefly, the preoperative plan could be performed using
custom software or recent versions of commercial software.

The proximal femur was segmented in the preoperative CT
scan by a single technician who prepared most of the opera-
tive cases for the research team. A 3D computational model
of a proposed femoral component was brought into the seg-
mentation and visually aligned to the femoral head by the
surgeon who performed the surgery (author JFR). The com-
ponent’s stem axis was visually aligned to the femoral neck
axis and positioned to completely cover the cartilage that was
damaged by osteoarthritis. This alignment process included
selection of the component size and component position,
because along with the stem angle, these geometric parame-
ters interacted in providing adequate bone coverage without
notching or excessive gap filling with bone cement.

The base shape of the statistical shape model was then
transformed to the patient femur. The plan of the base shape
was also transformed to the patient anatomy along with the
surface shape. This transformed plan defined the computed
plan of the patient. This method required the manual plan to
be done once for the base shape and could subsequently be
used for any number of patients. Only a simple automatic reg-
istration was required to compute the patient-specific plan.

Experiments and results

This section describes the experiments conducted to validate
and verify the methods presented in the previous section. It
presents the data collection and preparation processes. Then,
it evaluates the methods when applied to the prepared data.

Data collection and preparation

CT scans were obtained from patients who underwent
computer-assisted hip resurfacing surgeries in our affiliated
hospital. All patients consented using their medical images
in research. The data collection was approved by the relevant
institutional review board (IRB). The images were acquired
using a GE Lightspeed 16-slice CT scanner (General Elec-
tric, Milwaukee, USA) with a moving gantry; axial images
had a 1.25-mm slice thickness reconstructed from automatic
tube current modulation.

The femurs of the patients were segmented, and corre-
sponding meshes were constructed in the CT scans as part
of the procedure. All CT image processing were performed
using Mimics (Materialise, Leuven, BE). The data meshes
were post-processed for gap filling using MeshLab [1]. All
meshes were reduced to have 2000 triangles and 1002 points.
The meshes were aligned to an arbitrarily selected base mesh
using the iterative closest point registration algorithm [9]. A
non-rigid registration was performed, to establish the point
correspondences between meshes, using coherent point drift
[32]. Both registration methods were implemented using
MATLAB (Mathworks, Natick, USA).
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Fig. 3 Actual plan (yellow) and
computed plan (green) are
drawn against the triangular
meshes of a patient femur (red)
and fitted mesh (blue)

A data set of 50 femurs was used to construct the shape
model. One shape was selected to be deformed to other
shapes for establishing points correspondence. This base
shape was removed from the data set to eliminate any bias of
dominating features of this shape.

Validation and verification

To verify the automatic planning, a data set of 14 femurs
was selected from the overall 50 samples. The drilling plans
were created by an orthopedic surgeon for actual performed
surgery. In order to verify our method, we chose to compare
our results with successful plans created by a senior surgeon;
a successful plan was one that did not require a surgical revi-
sion. Here, we refer to the successful plan created by the
surgeon as the actual plan. The base shape was transformed
to each data sample. The plan of the base shape was trans-
formed along with shape. The transformed base plan was
defined as the computed plan. The computed plan was com-
pared to the actual plan in terms of the minimum crossing
distances and the angular differences between the two axes.A
representative automatic plan and the actual plan are shown
in Fig. 3. The results are reported in Table 1.

Most of the automatic plans showed a minimum crossing
distance with less than one millimeter which is negligible in
orthopedic procedures. With the exception of two outliers,
all distances were less than 2 mm. The mean without the
outliers was 0.75 mm with a standard deviation of 0.54 mm.

Table 1 Minimum crossing distances and angular differences

Sample Minimum crossing
distances (mm)

Angular differences
(degrees)

1 0.98 11.28

2 0.11 9.72

3 0.85 7.54

4 0.45 7.73

5 0.47 5.89

6 0.44 8.54

7 0.67 3.24

8 5.45 6.85

9 4.40 2.68

10 1.97 6.83

11 0.75 4.24

12 1.53 5.43

13 0.11 4.39

14 0.70 4.18

This results show that the difference between the lines is less
than the diameter of the drill bit.

Also, most of the samples showed angular differences
between the automatic plan and the actual plan<10◦ with the
exception of one sample. The mean angular difference with-
out the outlier was 5.94◦ with a standard deviation of 2.14◦.
The computed angular differences are within the acceptable
ranges for such surgeries, as identified from the existing lit-
erature in the Introduction.
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The results show that the computed plans are the accept-
able plans for hip resurfacing computer-assisted surgeries.
This provides a reliable recommendation for the surgeon
and enhances the outcomes. One benefit of the auto-
matic planning is using an accurate plan created by a
senior surgeon to assist less senior ones. In sum, the
novel automatic method is valid for immediate clinical tri-
als.

Conclusion

Hip resurfacing is the procedure of choice for young and
active osteoarthritis patients due to its better outcomes. Poor
surgical planning is implicated in early prosthesis failures.
This work aims to enhance the planning process by using
shape models constructed using Lie groups.

Medical images of femurs were obtained from patients
who underwent computer-assisted hip resurfacing surgery.
Each femur had an associated actual plan drawn by the
performing surgeon. A statistical shape model was con-
structed using 50 femurs. A base shape was derived from
the data set. The base shape was transformed to each of
14 patient femurs. The plan associated with the base shape
was transformed with the same registration. The transformed
plan was identified as the computed plan for each patient
femur. The actual plans are compared to the computed
plans.

The variation between the computed plans and the actual
plans was within the surgical acceptable limits. A mean of
0.75mmwith a standard deviation of 0.54mmof infinitemin-
imum distance and a mean of 5.94◦ with a standard deviation
of 2.14◦ of the angular difference were calculated between
the two axes. In this study, themethodwas compared to plans
created by one surgeon. Inter-surgeon variability is a subject
for future work.

In sum, this paper presents a first report on using Lie
groups shape models for automatic planning of computer-
assisted hip resurfacing surgery. The method can enhance
computer-assisted hip resurfacing planning by automating
accurate planning that reduces revisions by creating a clin-
ically acceptable drilling path. The drilling path determines
the location of the implant with respect to the anatomy. A
tilted implantmay cause complications that require revisions.
Immediate extensions to other orthopedic and general surg-
eries, such as image-guided percutaneous scaphoid fixation
and prostate cancer brachytherapy, are possible and promis-
ing.
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