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Abstract
Purpose This paper introduces a novel decomposed graph-
ical model to deal with slice-to-volume registration in the
context of medical images and image-guided surgeries.
Methods We present a new non-rigid slice-to-volume reg-
istration method whose main contribution is the ability to
decouple the plane selection and the in-plane deformation
parts of the transformation—through two distinct graphs—
toward reducing the complexity of the model while being
able to obtain simultaneously the solution for both of them.
To this end, the plane selection process is expressed as a
local graph-labeling problem endowed with planarity satis-
faction constraints, which is then directly linked with the
deformable part through the data registration likelihoods.
The resulting model is modular with respect to the image
metric, can cope with arbitrary in-plane regularization terms
and inherits excellent properties in terms of computational
efficiency.
Results The proof of concept for the proposed formula-
tion is done using cardiac MR sequences of a beating heart
(an artificially generated 2D temporal sequence is extracted
using real data with known ground truth) as well as mul-
timodal brain images involving ultrasound and computed
tomography images.We achieve state-of-the-art resultswhile
decreasing the computational time when we compare with
another method based on similar techniques.
Conclusions We confirm that graphical models and discrete
optimization techniques are suitable to solve non-rigid slice-
to-volume registration problems. Moreover, we show that
decoupling the graphical model and labeling it using two

B Enzo Ferrante
enzo.ferrante@ecp.fr

1 Center for Visual Computing (CVN), CentraleSupelec –
Galen Team, INRIA, 92295 Chatenay-Malabry, France

lower-dimensional label spaces, we can achieve state-of-the-
art results while substantially reducing the complexity of our
method and moving the approach close to real clinical appli-
cations once considered in the context of modern parallel
architectures.
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Introduction

The problem of slice-to-volume deformable image registra-
tion consists in aligning a sliced 2D image (e.g., ultrasound
or US) to its corresponding plane from a 3D volume (e.g.,
computer tomography or CT). We call it deformable regis-
tration because the 2D image can be deformed during the
registration process.

This problem finds applications in many medical image-
related contexts such as computer-aided biopsy [19], motion
correction for image reconstruction [5], tumor ablation [22]
and image-guided surgery (IGS) [23]. In the case of image-
guided procedures, a preoperative 3D image and several
intra-operative 2D acquisitions are to be fused toward pro-
viding position and navigation information to the surgeons.
Nowadays, this fusion is mainly performed using two differ-
ent tracking technologies: optical (OTS) and electromagnetic
(EMTS) tracking systems. In the first case, OTS requires a
line of sight to be maintained between the tracking device
and the instrument to be tracked; this fact can disturb doctors
during their work and is not always convenient. In the second
case, EMTSdoes not have line-of-sight requirements, but it is
very susceptible to distortion from nearby metal sources and
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presents limited accuracy compared to optical tracking [4].
Moreover, neither OTS nor EMTS can deal with deforma-
tions between intra- and preoperative images. In this work,
we propose to use 2D–3D slice-to-volume registration algo-
rithmswhich are purely image based to solve this challenging
problem and overcome the limitations presented by current
technologies.

The problem of deformable image registration has been a
pillar of computer vision (optical flow) and medical imaging
(image fusion), and therefore, one can cite numerousmethods
to perform 2D–2D and 3D–3D registration [1,11]. How-
ever, the problem of 2D–3D registration, and particularly the
problem of slice-to-volume registration, deserves separate
investigation and specificmethods development.While a sin-
gle 2D slice contains less information than a 3D volume, the
solution remains a 3Dmapping function (a deformation field
in case of non-rigid registration or a transformation matrix in
case of rigid registration) as in the case of 3D–3D registration.
This fact converts 2D to 3D slice-to-volume registration in a
really challenging problem. The other case of 2D–3D regis-
tration problems, where projective 2D images such as X-ray
images are registered with volumetric images (CT, for exam-
ple), has received more attention in the last years [15,18] and
is not covered in this paper.

A variety of methods has been proposed to deal with
slice-to-volume registration. In [3], standard optimization
approaches and heuristics (as simplex and simulated anneal-
ing algorithms) are applied on FluroCT to CT registration,
testing with different intensity-based similarity measures.
Dalvi and Abugharbieh [6] present a feature-based method
that performs slice-to-volume registration, using several
slices in order to improve the quality of the results. Gill et al.
[10] track intra-operative MRI slices of prostate images with
a preoperative MRI volume. This monomodal registration
(MRI intra-operative slices to MRI preoperative volume) is
designed to provide patient tracking information for prostate
biopsy performed under MR guidance. A similar problem is
tackled by [25] where a two-step algorithm (rigid registration
in the first step and deformable registration in the second one)
is applied to register three orthogonal intra-operative MR
slices with a preoperative volume. San José Estépar et al. [23]
propose a method to register endoscopic and laparoscopic
US images with preoperative CT volumes. It is based on a
new phase correlation technique called LEPART, and it man-
ages only rigid registration in quasi-real time. Osechinskiy
and Kruggel [21] present a flexible framework for intensity-
based slice-to-volume non-rigid registration algorithms that
was used to register histological sections images to MRI of
the human brain.

The main limitations of the aforementioned methods are
their specificity to the clinical context (they are derived and
can be used for specific clinical applications), the require-
ment of anatomical segmentations in some of them that

increases their complexity and often their sequential nature
where first plane is selected and then in-plane deformation is
determined. Graphical models are powerful formalisms that
could be amended to overcome these limitations. Casting
computer vision problems as labeling ones through the use
of Markov random field (MRF) theory has gained attention
since [9]. It has been widely used to solve non-rigid image
registration in the last years [11,16,17], mainly for 2D–2D or
3D–3D. In [26], a method based onMRFs to perform 2D–3D
registration is presented, but it estimates just rigid trans-
formations and works with projective images. Regarding
slice-to-volume registration using MRF, our previous work
[7] presents a MRF framework based on a high-dimensional
label space to solve this problem; we will refer to it as the
overparameterized method.

In this work, our aim is to introduce a low-rank graphical
model that is able to simultaneously perform plane selec-
tion and estimate the in-plane deformation between the 2D
source image and the corresponding slice from the 3D vol-
ume. We decouple a physical control point of a regular grid
in two nodes of the MRF graph, one taking labels from the
plane selection label space and the other one from the in-
plane deformations label space. In that way, the complexity
of the model reduces to the square of the cardinality of the
biggest label space (instead of being quadratic in the product
of the cardinalities of the two spaces), with a slight increase
in the graphical model connectivity. This technique has been
previously applied in 2D–2D registration [24]. The main
advantage is related to the fact that, while the number of
nodes augments linearly, the number of labels is decreased
in a quadratic order.

The main contributions of our paper with respect to our
previous work [7] are therefore two-fold. Firstly, we propose
a new way of decoupling the plane selection and the in-plane
deformation label spaces toward a novel low-rank model of
order 3 (instead of a model of order 5 as in [7]); it results in a
more tractable problem in terms of getting the optimal solu-
tion. Secondly, we obtain a substantial decrease in the search
space size (order of 10), allowing much richer sampling of
the label space, thus in theory more precise solutions. More-
over, by decoupling the label spaces, it is possible to explore
both of them with different sparseness levels.

The framework is intensity based and independent of the
similarity measure, so it can be adapted to different image
modalities or new measures. We tested our approach on
two different datasets: a monomodal dataset where 2D MRI
images of the heart are registered with MRI volumes and
another multimodal dataset where 2D US images are fused
with CT volumes [20]. Both datasets were also used in [7].

The paper is organized as follows: In Sect. 2, we present
the decoupled MRF formulation together with a complete
explanation about the label spaces and the energy terms. In
Sect. 3, the validation tests and results are presented and
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discussed. Finally, Sect. 4 concludes our paper and provides
some ideas on relevant future directions.

Method description

Non-rigid slice-to-volume registration can be seen as an opti-
mization problem. We aim at optimizing an energy function
by choosing the optimal plane (slice) π̂ [J ] from target vol-
ume J and the optimal deformation field T̂D as indicates the
following equation:

T̂D, π̂ = argmin
TD,π

D(I ◦ TD(x), π [J ](x)) + R(TD, π), (1)

where I is the source 2D image, D represents the data term,
andR is the regularization term. Given the 2D source image
I and the 3D target volume J , we seek the slice π̂ [J ] from
volume J that best matches the image I . We call it non-rigid
registration because image I can be deformed by the defor-
mation field T̂D . The data term D measures the similarity
between the source and the target, while the regularization
term imposes smoothness constraints on the solution.

From this general optimization problem, we can derive
different formulations. In [7],weproposed ahigh-dimensional
label space-based approach considering local labels of
dimension five (plane + in-plane deformations). One of the
main problems related to this high dimensionality is its con-
sequently high computational cost. In this work, we try to
avoid this problem by decoupling the label space in two dif-
ferent ones and reforming the structure of the graph to still
capture rigid plane displacements and in-plane deformation.

Our formulation consists in an undirected pairwise graph
GD = <V, E> with a set of nodes V = VI ∪ VP and a
set of edges E = EI ∪ EP ∪ ED . VI and VP have a four-
neighbor grid structure and the same cardinality. Nodes in
VI are labeled with in-plane deformation labels, while labels

used in VP represent the plane position. Edges from EI and
EP correspond to a conventional pairwise neighborhood con-
nection system for nodes in VI and VP , respectively; they
are associated with regularization terms (EI corresponds to
in-plane deformation regularizers, and EP to the plane selec-
tion regularizers). Edges in ED link every node from VI to
its corresponding node from VP , creating a graph with a
sort of three-dimensional structure (see Fig. 1); those terms
associated to ED encode the data terms (i.e., the similarity
measure).

In order to get a better understanding of the model, we
can think of a single hypothetical grid similar to the one
defined in [7], where every control point pk from this grid is
associated with two nodes from our approach, i.e., v I

k ∈ VI

and vP
k ∈ VP . This idea is depicted in Fig. 1, and it will be

useful to understand the energy terms.

Label space

We define two different label spaces: One associated with
nodes in VI (called L I ) and the other one associated with
nodes in VP (called LP ).

The first label space, L I , is a bidimensional space that
models in-plane deformation using displacement vectors
l I ∈ EI = (dx , dy).

The second label space, LP , indicates the plane in which
the corresponding control point is located. It consists of labels
l P associated with different planes. In order to specify the
plane and the orientation of the grid on it, we store an ortho-
normal basis of this plane together with the position of a
reference point in this plane. Using this information, we can
reconstruct the position of the rest of the control points in the
grid. Thiswayof storing the planes allowus to implement dif-
ferent plane space sampling methods. In this work, we chose
a simple uniform sampling around the current plane position,
varying rotation and translation parameters in a given range.

Fig. 1 Structure of the decoupled graph. The green nodes (top grid)
are included in VI and orange ones (bottom grid) in VP modeling in-
plane deformations and plane position, respectively. Edges connecting
VI nodes are part of EI and those connecting VP nodes are part of EP ;
they are associated with regularization terms. Dotted lines represent

cliques in ED that encode the matching similarity measure. Using this
information, we can reconstruct a deformed grid that is interpreted as a
free-form deformation model. In the image, we can appreciate how we
associate two nodes of the graph with one control point of the grid
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This is an important advantage of our method: We could use
prior knowledge to improve the way we explore the plane
space, just by changing the plane space sampling method.

To compute the final position of a control point, we use
both labels. First, the corresponding label in LP defines a 3D
point belonging to a plane space with a given basis. Then,
we use the corresponding label in L I to move the point in
the 2D plane thanks to its basis.

Objective function

The energy that guides the optimization process is defined
on the pairwise terms. Two types of edges represent regular-
ization terms, while the last one represents the data terms;
the energy is thus defined as:

E(I, P, D) = min

{
γ

∑
(i, j)∈EI

eIi, j

(
l Ii , l

I
j

)

+α
∑

(i, j)∈EP

ePi, j

(
l Pi , l Pj

)

+β
∑

(i, j)∈ED

eDi, j

(
l Ii , l

P
j

)}
, (2)

where γ, α and β are positive weighting factors, eIi, j ∈ I

are the in-plane regularizers (associated with edges in E I ),
ePi, j ∈ P are the plane regularizers (associated with edges in

EP ), and eDi, j ∈ D are the data terms (associated with edges

in ED). l Ii and l Pi are labels from both label spaces L I and
LP , respectively. Data and regularization terms are detailed
in the following sections.

Data likelihood

The data term is defined for interconnected pairs of nodes
(i, j) between the two graphs (where i ∈ V I , j ∈ V P ) and
their corresponding labels l I ∈ L I , l P ∈ LP . It is encoded in
the pairwise terms eD ∈ ED . Aswe described before, a plane
and an in-plane deformation 2D vector are associated with
every control point. Combining both labels, we calculate the
final position of the control point pk and extract an oriented
patch�k over the plane πk (centered in pk) from the volume
J , so that the similarity measure δ can be calculated between
that patch and the corresponding area over the 2D source
image:

eDi, j

(
l Ii , l

P
j

)
=

∫
�k

δ(I (x), πk[J ](x))dx. (3)

The patch-based similarity measure δ (defined on the sub-
domain �k) can encompass a wide choice of intensity-based

measures. One of the simplest and most used similarity mea-
sures is the sum of absolute differences (SAD). It is useful
in the monomodal scenario, where two images of the same
modality are compared. Its formulation is as follows:

eDSADi, j
(l Ii , l

P
j ) =

∫
�k

| (I (x) − πk[J ](x) | dx . (4)

In multimodal scenarios, where different modalities are
compared (e.g., CT with US images), statistical similarity
measures such asmutual information (MI) are generally used
since we cannot assume that corresponding objects have the
same intensities in the two images. MI is defined using the
joint intensity distribution p(i, j) and the marginal intensity
distribution p(i) and p( j) of the images as:

eDMIi, j

(
l Ii , l

P
j

)
= −

∫
�k

log
p(I (x), πk[J ](x))

p(I (x))p(πk[J ](x))
dx . (5)

As we could see in the previous examples, our framework
can be endowed with any similarity measure defined on two
bidimensional images. In this work, we use SAD for the
monomodal heart dataset and MI for the multimodal brain
dataset.

Regularization terms

We define two different regularization terms, one regular-
izing the plane selection and the other one the in-plane
deformation. The first regularization term penalizes the aver-
age distance between the nodes i, j ∈ V P and the plane
corresponding to the neighboring one. If Dπ ( p) indicates the
point-to-plane distance between the point p and the plane π ,
we define the regularization term eP as the average of these
distances for two neighboring points i , j and their corre-
sponding planes:

ePi, j

(
l Pi , l Pj

)
= 1

2

(
Dπ j ( p

′
i ) + Dπi ( p

′
j )

)
, (6)

where p′
i and p′

j are the positions after applying label l Pi ,

l Pj to pi , p j , respectively. This value is 0 when both points
lie in the same plane.

The second regularization term controls the in-plane
deformation and is defined between nodes i and j included
in VI . We use a distance-preserving approach which is sym-
metric, based on the ratio between the current position of the
control points pi , p j and their original position po,i , po, j :

ψi, j

(
l Ii , l

I
j

)
= || ( pi + l Ii ) − ( p j + l Ij ) ||

|| ( po,i ) − ( po, j ) || . (7)

Once defined ψi j , we need our regularizer to fulfill two
conditions: First, we want it to be symmetric with respect
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to the displacement of the points, i.e., to penalize with the
same cost whenever the control points are closer or more
distant; second,we need the energy to be zerowhen the points
are preserving distances and bigger than zero otherwise. The
following regularization term fulfills both conditions for a
couple of nodes i, j ∈ V I labeled with labels l Ii , l

I
j :

eIi, j

(
l Ii , l

I
j

)
=

(
1 − ψi, j (l Ii , l

I
j )

)2

+
(
1 − ψi, j

(
l Ii , l

I
j

)−1
)2

. (8)

Note that both types of pairwise terms are not sub-modular
since we include the current position of the points (which
can be arbitrary) in their formulation and therefore sub-
modularity constraint is not fulfilled.

Implementation details

We adopt a pyramidal approach, using different grid resolu-
tion levels, from coarse to fine spacing between the control
points. For each grid resolution, some iterations of the regis-
tration algorithm are performed, choosing the best possible
set for each one and updating the control point positions with
this information. During the inner iterations of one grid level,
the size of the displacement vectors that form the deforma-
tion label space as well as the parameter variation of the
plane label space is reduced in order to improve the search
space sampling. A pseudocode of the algorithm is shown in
Algorithm 1.

Algorithm 1 Pseudocode corresponding to the pyramidal
approach based slice-to-volume registration
1: procedure 2D3DRegistration(I : Source,J :Target,T0:Initial

guess)
2: G ← ini tiali zeGraph(T0) � Initialize the graph in the

position indicated by T0
3: bestEnergy ← ∞
4: for i=1 to gridLevels do
5: L ← updateLabelSpace(L , i) � Update the label space

for the given level
6: for j = 1 to iterationSteps do
7: newEnergy, newLabeling ←

optimizeGraphicalModel(G, L)
8: if newEnergy < bestEnergy then
9: applyLabeling(G, newLabeling)
10: bestEnergy = newEnergy
11: end if
12: re f ineLabelSpace()
13: end for
14: end for
15: return bestEnergy, G
16: end procedure

The pairwise graphical model is optimized using the
loopy belief propagation algorithm (other discrete optimiza-

tion algorithms can be used as well) implemented in the
OpenGM2 library [12]. In [7],we usedFastPD [14] instead of
loopy belief propagation for optimizing our pairwise model,
which is among the most efficient optimization algorithms.
However, due to its construction (lifting of the duality gap
minimization), FastPD requires in general (toward optimiz-
ing complexity) an equal number of labels for all nodes,
which is an issue in our setting given the different dimen-
sionality of the graph spaces (3D and 2D). Furthermore,
while it can converge to aminimumeven for non-submodular
graphs, it is known that the quality of the linear programming
(LP) relaxation is far from being satisfied and therefore the
solution itself might be a very bad local minimum. Message
passing methods like loopy belief propagation do not inherit
the computational constraints of FastPD while it is known
(at least experimentally) that they do good job as well even
with highly non-submodular pairwise functions.

Validation and results discussion

We validate our method in two different scenarios, and we
compare the results with our previous method [7]. The first
one corresponds to a monomodal sequence of 2D MRI
images randomly extracted from a 3DMRI temporal series of
a beating heart. The second one is a multimodal brain dataset
formed by 2D US images and 3D CT extracted from [20].

In order to compare bothmethods in a fairway,we exhaus-
tively tested different parameter configurations (empirically
for every dataset) on a grid of discretized values, and we took
the best combination for each method.

Heart dataset

The MRI heart dataset consists of ten sequences of twenty
bidimensional MRI slices each, which are registered with
a MRI volume, giving a total of 200 registration cases. In
order to generate them, as it was described in [7], we took a
temporal series of 20 MRI volumes of a beating heart, and
we extracted ten random trajectories of twenty slices Ii each
(one slice for every volume Mi ). Starting from a random
initial rotation R0 = (Rx0 , Ry0 , Rz0) and translation T0 =
(Tx0 , Ty0 , Tz0), we extracted a 2D slice I0 from the initial
volume M0. In every sequence, the position of slice Ii was
generated adding Gaussian noise to the position of slice Ii−1

with σr = 3◦ and σt = 5mm to every translation (Tx , Ty, Tz)
and rotation (Rx , Ry , Rz) parameters, respectively. It gives
maximum distances of about 25mm between the current and
its succeeding slice. TheMRI resolution was 192×192×11,
and the voxel size was 1.25 × 1.25 × 8mm3.

For every sequence, we initialize the registration adding
the same noise (with the same parameters than before) to
the ground truth. During the registration process, given two
consecutive slices of the same sequence, the estimated trans-
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Fig. 2 12 registration cases of the same sequence, before and after
registration. The overlapping images (in light blue, we show the source
image, and in red, the target) showed before registration correspond to
the source image and a slice taken from the volume at the initial position.

The overlapping images after registration correspond to the deformed
source image and the slice taken from the volume at the estimated plane
position

Fig. 3 Comparison of the error estimation for plane parameters (Rx ,
Ry , Rz) and (Tx , Ty , Tz) for our decoupled method (figures (a) and (b))
and the overparameterized approach presented by [7] (figures (c) and

(d)). For presentation clarity, three outliers between 0.02 and 0.05 rad
as well as one at 4mm have been removed at figures (c) and (b), respec-
tively

formation for slice Ii was used as initialization for the
registration of slice Ii+1.

Figure 2 shows the overlapping between the source image
and the corresponding target plane, before and after registra-
tion, for 12 cases of one sequence. As we can observe in a
qualitative way, the overlapping increases after registration.

Figure 3 compares our results in a quantitative way
with the ones obtained using our previous method. We
measure the error between the estimated transformation
parameters and the ground truth. The mean error was
(0.0036, 0.0024, 0.0029) rad for rotation and (0.5403, 0.2713,
0.2966)mm for translation parameters, with a standard
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deviation of (0.0034, 0.0024, 0.0024) rad and (0.4914,
0.2296, 0.2236)mm, respectively. The average running time
was around 60s for every registration case. Using the
method presented in [7], we obtained (0.0051, 0.0051,
0.0031) rad and (0.4164, 0.2874, 0.4847)mm for rotation
and translation parameters error, and standard deviation
equal to (0.0122, 0.0134, 0.0051) rad and (0.4720, 0.2976,
1.1546)mm. Results are presented in Table 1. Every regis-
tration case took around 220s (almost 3.5 times more than
our method). As we can see, the quality of the results was
preserved (and improved in some cases), while the compu-
tational time was reduced approximately 3.5 times (keeping
equivalent grid and label space sizes, sampling patch size and
number of algorithm iterations).

Validation of in-plane deformation was performed over
20 registration cases, deforming an initial segmentation of
the left endocardium using the estimated deformation field

Table 1 Error estimation for plane parameters (Rx , Ry , Rz) and (Tx ,
Ty , Tz) for our decoupled method and the previous overparameterized
approach presented in [7]

Rx Ry Rz Tx Ty Tz

Decoupled method

Mean 0.0036 0.0024 0.0029 0.5403 0.2713 0.2966

SD 0.0034 0.0024 0.0024 0.4914 0.2296 0.2236

Overparameterized method [7]

Mean 0.0051 0.0051 0.0031 0.4164 0.2874 0.4847

SD 0.0122 0.0134 0.0051 0.4720 0.2976 1.1546

TDi . We measure the average DICE coefficient between the
segmentations, before and after deforming the initial one, to
measure the impact of the deformation on the registration
process. The average DICE before deformation was 0.858
and after registrationwas 0.907, showing that ourmethod can
capture in-plane deformations and select the correct plane at
the same time.

Common parameters used for both methods were 3 grid
levels, 5 iterations per level, initial control point distance
of 40mm and minimum sampling patch size of 20mm. In
case of the decoupled model, we use γ = 1, β = 0.2, α =
0.8, 41 labels in the plane label space and 91 labels in the
deformations label space. In case of the overparameterized
model, we use 13,122 labels and α = 0.9 (for a complete
understanding of these parameters, refer to [7]). We run the
experiments on an Intel Xeon W3670 with 6 Cores, 64bits
and 16GB of RAM.

Brain dataset

The brain dataset consists of a preoperative brain MRI
volume (voxel size of 0.5 × 0.5 × 0.5mm3 and resolu-
tion of 394 × 466 × 378 voxels) and 6 series of 9 US
images extracted from the patient 01 of the database MNI
BITE presented in [20]. The size of the US images was
48 × 38mm, and the pixel resolution 0.3 × 0.3mm. The
ventricles were manually segmented by specialists in both
modalities and used to calculate DICE coefficient and con-
tour mean distance (CMD) to evaluate and compare the
quality of the results. Initializations were done following the

Fig. 4 Figures show a quantitative comparison of the two methods,
before (BR) and after (AR) registration for the six sequences of brain
data. Figures (a) and (c) show results for our decoupled method (DICE

and CMD, respectively), while figures (b) and (d) show results for the
overparameterized approach presented in [7] (DICE and CMD, respec-
tively)
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Fig. 5 Results for one slice from four of the six brain sequences (each
row correspond to a different sequence). a Source 2D ultrasound image.
b Slice extracted from the MRI corresponding to the initial position of
the plane. c Deformed source image overlapped with the estimated

deformation field. d Blending between initial images (US and corre-
sponding MRI slice). e Blending between final images (deformed US
image and estimatedMRI slice). fOverlapping between initial segmen-
tations. g Overlapping between segmentations after registration

same methodology that we described for the heart dataset
(Section 3.1).

Figure 4 summarizes the average DICE and CMD coef-
ficients for each series while Fig. 5 shows some qualitative
results. It shows that, using our decoupled method, the mean
DICE increases after the registration process an average of
0.0405, a little bit more than the 0.0380 obtained with [7]
method. Regarding the CMD, the average decrement for our
method is 0.3654mm while for the other one is 0.3943mm.
Even if our new method performs better in average, we can
observe that results are almost equivalent in terms of DICE
and CMD. However, there is a big difference in terms of
computing time: while our method is taking around 3min
per registration case, the overparameterized method takes
around 10min running in the same computer using the same
configuration. To perform the experiments with both meth-
ods, we used the same configuration given by 3 grid levels,
initial control point distance of 8mm, 4 iterations per level
and minimum sampling patch size of 13mm. In case of the
decoupled model, we set γ = 1, β = 0.05, α = 0.2, 41
labels in the plane label space and 91 labels in the deforma-
tions label space. For the overparameterized method, we set
α = 0.8 and 6174 labels.We run the experiments in the same
Intel Xeon W3670 with 6 Cores, 64bits and 16GB of RAM
used for the heart dataset (Fig. 5).

Discussion and comparison with other methods

As we have shown, our method is able to achieve state-of-
the-art results while decreasing the computational time when
we compare to another MRF-based method (namely [7]). In
the monomodal case, we reduce it from around 3.5 to 1min,
while in the multimodal one, we go from 10 to 3min, giving
a time factor reduction of about three times.

The main strength of the proposed formulation is the lin-
ear complexity of the inference process with respect to the
product of the label spaces. This allows to go even further
for challenging cases (brain tumor removal) where precision
is required to substantially increase the label space. This is
not the case for the approach presented in [7] due to the com-
plexity of the label space.

An interesting point to discuss about is the five-fold
improvement in the standard deviation error of parameter Tz
that we obtain with the new method. In [7], the justification
for the poor performance of the method when estimating Tz
was told to be that image resolution in z axis was lower than
in x and y.We think that the new algorithm is less sensitive to
image resolution anisotropy mainly because of the different
way we explore the plane selection label space by allowing a
deeper exploration when decoupling it without exponentially
increasing the amount of labels.
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It is important to remark that both, the decoupled and
overparameterized methods, are highly dependent on the ini-
tialization given for the first slice of the sequence. Since these
algorithms optimize the energy based on a limited search
space (determined by the label space), if the solution is not
reachable from the initial position using the current label
space, the algorithm will fail. Another factor that is crucial
for the success of the algorithm is the similarity measure
used to decide whether or not two patches coming from
different images correspond to the same anatomical struc-
ture. The study of different similarity measures is outside
the scope of this paper; however, note that in order to use
the method in other image modalities, it will be necessary
to choose an accurate similarity measure and calibrate the
parameters accordingly.

Comparison with other methods in the field of slice-to-
volume registration is a complicated task, mainly because
of the lack of public datasets. Here, we include some of the
results reported by other state-of-the-art methods for their
own datasets, in terms of accuracy and/or performance. In
[10], for example, authors report a mean target registration
error (TRE) lower than 1mm when estimating rigid trans-
formations in a monomodal MRI dataset of prostate images
(for a pixel size of 1.5×1.5×3mm). Random initializations
were generated by modifying the ground truth position with
displacements of 10mm and rotations of 10◦ maximum. The
MATLAB implementation of their algorithm took between
36 and 107s depending on the algorithm configuration. In
[23], authors tested on a multimodal dataset formed by 2D
ultrasound and CT volumes of the heart. They report errors
around 1.56 ± 0.78mm when estimating rigid transforma-
tions on CT images with 0.6mm isotropic resolution, using
initializations with uniformly random shifts in the range −5
to 5mm. They achieve quasi-real-time performance with
execution times around 4s. Another interesting example to
compare with is the multi-slice-to-volume registration case
tackled [25], who applies it to MRI-guided transperineal
prostate biopsy. Authors report that deformable registrations
were accurate to within 2mm in images with a slice spacing
of 3.6mm. The execution time for the complete deformable
registration algorithm is about 30 s. Even if it is not possi-
ble to do a fair comparison mainly because of the lack of
standard benchmarks, by observing these examples, we can
clearly remark that our results are in the state-of-the-art level.
Moreover, visual assessment on the obtained results seems to
confirm that these are satisfactory in the context of a clinical
setting.

In termsof complexity, it is interesting to remark the differ-
ence with respect to our previous method. The optimization
complexity/difficulty heavily depends on themaximumnum-
ber of label combinations that the pairwise cliques can take
(this is the bottleneck for most optimization algorithms).
In this perspective, the complexity of the overparameter-

ized model is given by O(|L|2), where |L| is the cardinality
(number of labels) of the label space. In our new approach,
we introduce two label spaces L1 and L2 that decouple the
previous one. To give an idea about the reduction in the com-
plexity of our new model, let us say that |L| = |L1.L2|.
Because of the way in which we construct our decoupled
graph (as it is indicated in Fig. 1), it is straightforward to
show that the complexity of the new model reduces now to
O

(
max(|L1|, |L2|)2

)
. Therefore, because of the decoupling

strategy, the complexity of the model reduces to the square
of the cardinality of the biggest label space (instead of being
quadratic in the cardinalities of the joint space), with a slight
increase in the graphical model connectivity. Consequently,
while the number of nodes augments linearly, the number of
labels is decreased in a quadratic order.

Conclusions

We presented a new method to perform slice-to-volume reg-
istration based on a decoupled model that associates two
local graphs to the plane selection and the in-plane deforma-
tions while imposing consistency through direct connections
between the corresponding nodes. In order to solve this prob-
lem, we seek the plane and the in-plane deformation that best
matches our energy function. It is important to remark that
we just look for the in-plane deformations given the nature
of the problems we are trying to solve (mainly image fusion
for IGS), where it is not useful to find out-of-the-plane defor-
mations at least for visualization purposes, even if they can
exist.

As we have shown in the previous section, our method
achieves state-of-the-art results while decreasing substan-
tially the time of computation when it is compared to
our previous MRF-based method that uses a unique high-
dimensional label space [7]. It confirmsour initial hypothesis,
meaning that decoupling the graphical model and labeling it
using two lower-dimensional label spaces,we can achieve the
same results while reducing the complexity of our method.

We have also shown that the method is robust with respect
to the type of images we are registering. Since slice-to-
volume registrationhasmultiple applications, other problems
are under investigation (it should be noted that such a task
is complex due to the complete absences of public ground
truth). To this end, two clinical scenarios are currently under
investigation, the first refers to liver tumor resection guid-
ance, while the second toUS guidance during prostate biopsy
through fusion of intra-operative ultrasound and preoperative
CT/MR.

In order to improve the quality of the results, specially
in multimodal cases, feature engineering must be consid-
ered. Future work includes adapting and using features
specifically designed for multimodal registration such as
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the LC2 presented in [8] and the MIND descriptor pre-
sented in [2]. Furthermore, energy regularizers inspired on
precise biophysical modeling and tissue properties could
lead to accuracy improvements as well. The underlying idea
is to adapt the “smoothness” constraint of the deforma-
tion model by explicitly taking into account organ-specific
motion/deformation constraints, for example, in the context
of liver biopsies or brain tumor ablation.

Finally, we are investigating new methods to improve the
parameters estimation procedure. Energy parameters estima-
tion based on machine learning techniques [13] have to be
considered as a future work if we want to exploit at the max-
imum level the potential of the proposed method.
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