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Abstract
Purpose Malignant neoplasms of the liver are among the
most frequent cancers worldwide. Given the diversity of
options for liver cancer therapy, the choice of treatment
depends on various parameters including patient condition,
tumor size and location, liver function, and previous inter-
ventions. To address this issue, we present the first approach
to treatment strategy planning based on holistic process-
ing of patient-individual data, practical knowledge (i.e., case
knowledge), and factual knowledge (e.g., clinical guidelines
and studies).
Methods The contributions of this paper are as follows: (1)
a formalized dynamic patient model that incorporates all
the heterogeneous data acquired for a specific patient in the
whole course of disease treatment; (2) a concept for formaliz-
ing factual knowledge; and (3) a technical infrastructure that
enables storing, accessing, and processing of heterogeneous
data to support clinical decision making.
Results Our patient model, which currently covers 602
patient-individual parameters, was successfully instantiated
for 184 patients. It was sufficiently comprehensive to serve as
the basis for the formalization of a total of 72 rules extracted
from studies on patients with colorectal liver metastases or
hepatocellular carcinoma. For a subset of 70 patients with
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these diagnoses, the system derived an average of 37 ± 15
assertions per patient.
Conclusion The proposed concept paves the way for holis-
tic treatment strategy planning by enabling joint storing and
processing of heterogeneous data from various information
sources.

Keywords Cognition · Decision support · Ontology ·
Liver cancer · Computer-assisted intervention · Treatment
planning

Introduction

Primary liver cancer is one of the most common cancer
types worldwide with an estimated half a million cases
per year [1,3]. At the same time, attributed to its blood-
filtering function, the liver is the secondmost common site for
metastases, with some authors projecting a 40–50% chance
of developing liver metastases from primary extrahepatical
tumors [1]. The treatment for liver tumors is thus of enormous
clinical importance. However, the choice of treatment is usu-
ally not obvious, as it depends on a wide range of factors.
These include:
Patient-individual data represent all information that can
be acquired for a patient for whom the treatment plan is
prepared. This information can be (automatically) extracted
from images (e.g., liver volume, tumor number, size, and
location), laboratory reports (parameter values), or other
sources of information (e.g., clinical reports, hospital data-
bases, and genetic analyses). It can be related to the disease
(e.g., diagnosis and recurrence), the liver anatomy and func-
tion (e.g., parenchyma health and bilirubin levels), or general
information (e.g., age and habits). The amount and types of
data acquired at different hospitals may differ considerably.
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Factual knowledge has been written down in quotable
sources (e.g., clinical guidelines, studies, and educational
books). This allows the physician to make predictions about
the morbidity and mortality of the disease and the possi-
ble interventions on an objective basis. However, with an
estimated amount of 3000 contributions per year regarding
hepatocellular carcinoma (HCC) alone [9], it is impossible
for a single surgeon to know all necessary data by heart.
To address this issue, clinical guidelines make the amount
of studies manageable by deducing general recommenda-
tions about recurring cases. It has been shown, however,
that clinicians are often not familiar with written guide-
lines and thus are unable to observe them correctly during
the actual care process [6]. This leads to an upper limit of
guideline complexity. At the same time, highly condensed
guidelines cannot appropriately map uncommon cases and
complicated treatment plans, which is especially the case
for multimodal treatments. As a result, guidelines typically
give merely rough directions, taking into account only a frac-
tion of patient-individual parameters (e.g., size and number
of tumors), while detailed treatment decisions remain to the
surgeon (e.g., whether a resection is performed in a one- or
two-stage approach, if it is performed as an open surgical
interventions or laparoscopically, etc.). Furthermore, once
created, guidelines are static until updated and thus most of
the time do not reflect the latest state of knowledge.

Practical knowledge results from experience. It comprises
case knowledge that encompasses the ability to interpret
patient-individual data, deduce a prognosis and implications
for the treatment, as well as expert knowledge about treat-
ment options and their respective strengths, weaknesses, and
their practical application (e.g., one-stage or two-stage resec-
tion, and radiotherapy performed as a palliative, curative,
adjuvant, or neoadjuvant treatment). Due to the limita-
tions of clinical guidelines in providing treatment plans
that are optimized for each individual patient (see previ-
ous paragraph), hospitals increasingly employ tumor boards
consisting of a multidisciplinary team of experts (surgical
oncology, medical oncology, radiation oncology, etc.) who
derive (possibly multimodal) treatment plans, taking into
account not only factual knowledge and patient data but in
particular the practical knowledge contributed by the board
members.

Overall, the process of treatment planning is thus highly
complex, involves a variety of heterogeneous data, and
depends crucially on the experience of the physicians in
charge. On the other hand, the potential of computers for
storing and processing large amounts of data has not yet
been exploited. Hospitals have vast databases of liver cancer
patients with known clinical outcome (practical knowledge),
but these data are not yet systematically used for clinical deci-
sion making. Similarly, valuable factual knowledge, such as

new study results, is not automatically integrated into the
process.

To date, the literature on computer-assisted liver tumor
treatment has focused on surgical resection planning [7,
10,12,17] or intra-operative guidance for specific treat-
ments [2,13] by almost exclusively processing image data.
Contributions regarding strategy planning usually focus on
formalization and evaluation of guidelines [6,16]. Currently,
no concept allows to plan a treatment strategy multimodally
and under consideration of all knowledge sources.

The long-term goal of our work, which was conducted
within the Transregional Collaborative Research Center 125
“Cognition-Guided Surgery”, was to develop a system for
knowledge-based navigated liver surgery that assists the
physician in formulating a holistic treatment plan by making
use of all available knowledge, including patient-individual,
practical, and factual knowledge for the first time. This paper
presents a concept formodeling, storing, and accessing all the
data that are used throughout the process of patient diagnosis,
treatment planning, therapy, and follow-up. In this context,
we address the following research questions:

1. How can we model a patient?
2. How can we integrate factual knowledge, such as new

clinical guidelines and studies, into the decision-making
process?

3. How can we implement the infrastructure necessary for
storing, accessing, and processing the data?

Materials and methods

As illustrated in Fig. 1, our concept is based on holistically
processing of all the relevant data involved in the treatment
planning process to support the physicianwith all the relevant
information at the right time and thus to facilitate, optimize,
and objectify clinical decision making. Implementing our
vision requires a common semantic representation of patient
data to handle patient-individual data as well as case data
(practical knowledge) (“Modeling patient-individual data”
section) representing factual knowledge on the basis of the
patientmodel (“Formalizing factual knowledge” section) and
providing the technical infrastructure (“Infrastructure” sec-
tion).

Modeling patient-individual data

Core of the vision is a holistic patient model that comprises
all the relevant information on a patient and can be stored,
processed, and accessed throughout the clinical workflow.
This is not only relevant for covering all the patient para-
meters referred to in studies or clinical guidelines but also
for retrieving similar cases from the hospital database [case-
based reasoning (CBR)] and for discovering new causal
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Fig. 1 Vision of knowledge-based liver surgery. The core component
is the knowledge base, which dynamically acquires the patient data
and all formalized knowledge. The treatment process comprises four
stages. (1) Data acquisition and diagnosis: all the relevant patient data
are collected and converted into a computer-interpretable format.Where
possible, the system derives the data automatically from text or image
sources. (2)Multimodal treatment planning: based on the acquired data,

the system processes the patient-individual data and the information in
the knowledge base to derive a (possiblemultimodal) treatment plan. (3)
Navigated treatment: the system assists the surgeon by providing ade-
quate means of intra-operative navigation where necessary (which may
be modified dynamically due to intra-operative finding). (4) Follow-up:
in this phase, treatment outcome is documented, and the current case is
fed back into the knowledge base

connections between parameters (data mining). We chose
an iterative approach with the following steps to develop the
model:

1. Collection of hospital-specific parameters: the patient
model was initialized with all parameters that are col-
lected for liver surgery patients in the regular clinical
workflow at the University of Heidelberg.

2. Literature review: a team of four physicians performed a
literature review, searching PubMed® for publications on
liver tumor treatment published after 1980. A total of 213
relevant papers were selected, and factors related to diag-
nostics, treatment, or postoperative care in the context of
liver tumor treatment were extracted.

3. Initial parameter structuring: the physicians were asked
to organize the parameters into a form intuitive to them,
while technicians supported the process. A provisional
hierarchical model was created.

4. Refinement and prototyping: physicians started entering
data from real-life cases into a form representing the pre-
liminary model. In the process, usability, applicability,
and completeness of the recordwere evaluated. In regular
intervals, the datawere reviewed and changesweremade.

This process was repeated until changes became minor
and largely consisted of introducing additional data rather
than refining the model. At the same time, a computer-
interpretable semantic representation for the data was
developed. This representation was revised together with
the model to achieve a structure that allowed to enter all
types of data, represent it correctly, and make it available
to the user in an intuitive manner.

5. Productive phase: a version was chosen to be used for
large-scale data input for a retrospective case base (see
“Patient model analysis” section). To ensure high data
quality, we applied a three-stage supervision process,
where data were double-checked by a colleague after
each edit and a third time after a case was closed.

According to these steps, amodel was derived to represent
patient data. Most proposed systems are based on classical
database structures [8,14], which are unsuited for semantic
modeling. Our aim was to create a model that enables and
facilitates reasoning processes on our data. In this context,
the resource description framework (RDF1) has become an

1 http://www.w3.org/RDF/.
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Fig. 2 Structure of the factor model. Central entities are the factor
that models abstract knowledge about a factor and the observation that
models specific characteristics of a certain patient. A factor has a spe-
cific data type and a unit that describes its nature. It also has a range of
possible observation values, which might contain an interval for num-
bers or a list of strings. Each factor is also hierarchically organized,
which allows for a tree-like resolution and a quick classification into a

primary context. The observation contains everything about a specific
characteristic of a factor observed on a patient: the specific observation,
the time it was observed, and the time it was entered or modified. It also
contains information about the ontology version the observation was
made under, and the patient this observation belongs to. More than one
observation can exist for each factor, in which case the observations
may form a time line

important tool because it enables a flexible formalization of
information and provides the benefit that existing medical
ontologies can be linked easily.

To date, we have identified a total of 980 relevant para-
meters that describe a patient in the context of liver cancer
therapy. Each parameter is an atomic observation on that
patient, but can be of arbitrary type (e.g., a CT image, the
patient’s gender, the fact that a typeof surgerywas performed,
and a laboratory value). Often, some of these observations
can be considered a subset of a more general clinical Fac-
tor. For example, the fact that a patient takes tetracycline
and penicillin may be summarized under his prescription
of antibiotics. In this way, observations were grouped into
so-called factors. A factor is composed of several fields: a
unique name, the data type, unit, and a range of possible
observation values. See Fig. 2 for an example and for in-
depth explanation. Our 980 parameters were grouped into
602 factors. As a detailed description would be beyond
the scope of this paper, these factors will be made avail-
able on www.open-CAS.com and in a dedicated medical
publication.

Additionally, factors are placed inside a category tree con-
sisting of 23 root categories. Categories sort factors in a way
that is comprehensible for the clinician. An example of how
factors, categories, and additional information interact can
be seen in Fig. 3. Additional semantic information can be
stored for factors. This includes connections between fac-

tors, observations, and other abstract concepts (see Fig. 3).
Overall, this design gives us amodel with the following prac-
tical properties:
Heterogeneity: The abstraction of using a factor with
required information in the form of a type characterization
and a unit specification allows to insert arbitrary types of
information and data. This way, the model is able to rep-
resent heterogeneous information, comprising, e.g., image
data, pastmedical history, comorbidities, and treatment infor-
mation. Additional semantic information can be conveyed by
linking factors internally or to external sources (see Fig. 3).

Flexibility and extensibility: The data acquired for a patient
are highly dynamic. For example, new imaging modalities
and new laboratory parameters continue to be developed and
acquired. The model must be able to cope with such changes
over time. Adding a new factor requires only to add a name,
data type, and unit to the model. Adding or creating new
categories allows algorithms to automatically put the factor
into a context. For example, data entry masks can display
the new factor automatically to allow immediate input. This
can be done with any ontology modeling tool or a simple
Web-based tool provided with our model.

Multiplicity observations that have multiple instances or
change over time (e.g., previous interventions or labora-
tory values) can be instantiated as often as necessary. Each
instance has a time stamp for observation and modification,
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Fig. 3 Exemplary factors inside the category tree and additional information that links factors inside the model to outside concepts. Depicted here
is an equivalence relation between our HCC factor and the LOINC2 term of hepatocellular carcinoma

which allows to constrain analyses or reasoning to certain
points in time.

Global applicability: Workflows and parameter usage differ
between hospitals. Third parties can either use the presented
structure or adapt the category trees and used parameters to
their specificworkflow and needs. This is helpful, e.g., if only
a subset of factors can be used and if a certain laboratory test
or procedure is not performed in a specific hospital.

Robustness: The system should be able to detect erroneous
or conflicting input as early and often as possible. This is
addressed by restricting data input to the defined unit, type,
and possible observation values.

Usage of existing ontologies factors should be referenced
to existing ontologies (e.g., LOINC2 or SNOMED3). These
ontologies act as a source for nomenclature, semantic hierar-
chy, and interoperability with other systems. factors can be
linked to their counterparts in other ontologies to allow for
interoperability (see Fig. 3).

Formalizing factual knowledge

Besides practical knowledge, which can be formalized using
the patient model introduced in the previous paragraph (see
also Fig. 2), another important source of information is fac-
tual knowledge, extracted from clinical guidelines or studies
for example. This type of knowledge takes factors of a patient
into account in order to deduce new factors. Examples of fac-
tual knowledge include a study that finds an increased risk
of excessive bleeding in patients with a specific medication,
an expert that classifies patients as being in “good general
health” when they meet certain criteria or a widely accepted
fact that a certain combination of antibodies found in the
serum results in the diagnosis of an illness. We subsume
statements made by all sources under the term assertion.

Based on a comprehensive analysis of factual knowledge
from different sources (e.g., guidelines, studies, and litera-

2 http://loinc.org/.
3 http://ihtsdo.org/snomed-ct/.

ture), we decided to represent assertions in the form

(A?a) ∧ (B?b) ∧ · · · ∧ (X?x) → Z = z (1)

where capital letters represent a factor name of our patient
model, the question mark implies an arbitrary comparison
operator, and a lowercase letter implies a possible observa-
tion value. Subsequently, a focused formalization approach
for specific cases was started to test the applicability of asser-
tions on our data model. Since all derivations run on the
proposed factor model, a reasoning system was developed
that takes factors as input and produces factors as output.
The result of this approach can be seen in Fig. 4. Most
sourcesmake assertions on patients with specific characteris-
tics, which can usually be formalized using a single assertion.
For these type of rules, we provide a tool that allows to gener-
ate formalizations semiautomatically by selecting factors and
entering the conditions. However, more complex cases exist,
such as in the case of decision trees. Our current approach
is to normalize these trees by converting each edge between
twonodes into an assertionof its own.The computer-readable
interpretation of this assertion is then saved to afile of suitable
format (see Fig. 4). The proposed model has the following
properties:

Expressivity: By normalizing assertions to the given form,
we were able to represent all factual knowledge we encoun-
tered during the study. The source class carries a minimal set
of information that is required for all types of sources. Addi-
tional top classes can be chosen to define specific metadata
(e.g., authors, journal, and evidence level for studies).

Significance: Not all sources are created equal. Trust put into
results from a meta-analysis varies from that put in expert
opinions or case reports. By using a central trust value, all
sources have a commonmain variable to represent trust. Trust
must then be calculated or assigned based on the source types.
Studies, for example, are assigned a trust value based on
their evidence level as proposed by the National Guideline
Clearinghouse.4 In addition, each assertion can be assigned

4 http://www.guideline.gov/, for example, see http://hsl.lib.umn.edu/
biomed/help/levels-evidence-and-grades-recommendations.
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Fig. 4 Representation of factual knowledge. The source manages
metadata regarding assertions. It contains common information to all
sources: the date this sourcewas published and the trust level that is asso-
ciated with the source, which must be derived for each type of source
individually. In addition, it has a body which defines its specific type
in more detail. Each source has one or more assertions, which model a
distinct piece of information from the source. The mode of deduction is
the rule file, which contains a machine-interpretable query. The struc-

ture allows to query all rules eligible for a patient and retrieve their rule
files, which are then executed. The resulting factor is then added into
the category tree on the basis of his metadata. The assertion shown here
states that a patient (1) with a CEA level above 100 (note that units are
not saved in assertions), (2) with colorectal liver metastasis, (3) under-
going hepatectomy (4) with curative intent is expected to have a median
survival of 30 months

a p value that represents its level of correlation inside the
study.

Uncertainty:Most practical knowledge is uncertain, i.e., can-
not be represented using a binary true/false value. As an
example, a rule may predict that, under given circumstances,
the probability that a given patient will develop liver failure
will be 40%. Each rule has a probability attached that models
how probable the deduction is, if the assertion is considered
true.

Multilevel reasoning:Deductions are always saved as instances
of factors. As such, they can be used in further reasoning
processes automatically; for example, based on the antibody
presence, a Hepatitis B infection can be deduced, which in
turn can lead to a negative effect on effective liver remnant
volume.

Transparency: A deduced factor must always be identifiable
as such. It must always be clear what led to the deduction of
certain facts. Deduced factors are grouped in a parent cate-
gory and form subcategories based on their source and type
of statement. Thisway, factors can be grouped by their source
automatically. Using the metadata stored by the source, it is
always transparent how a piece of information was gener-
ated. Additionally, by using the explicit link to factors, all
involved factors can be displayed as well.

Flexibility: Factual knowledge changes frequently and must
be easily adaptable. This is of importance to be able to keepup

to datewith new studies.Using our approach, new studies can
be formalized at any time and are automatically integrated
into the reasoning process. As soon as they are introduced,
they can be included into the reasoning process.

Infrastructure

Application of our data modeling concepts for decision mak-
ing in the clinical workflow requires a dedicated infrastruc-
ture to enable efficient data exchange and processing. Our
concept for storing and accessing data is illustrated in Fig. 5
and is modeled along the following features:

Data storage: As mentioned above, the approach deals with
highly heterogeneous data for modeling the patient. The
storage system must not be limited in the data types that
can be stored. However, certain common types like Digi-
tal Imaging and Communications in Medicine (DICOM)
or RDF representations should be understood in particu-
lar by the system to allow for more structured access to it,
e.g., to supportmultimodal and longitudinal relationships
between data. To fulfill these requirements, the open-
source imaging informatics software platform XNAT5

was chosen as a basis for our developments.

5 http://www.xnat.org.
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Fig. 5 Overview of the collaboration-wide infrastructure. Clinical personnel performs diagnostic procedures. The resulting image data and patient
knowledge are stored anonymously on XNAT, where scientific projects can access the data

Patient data protection: To fulfill the legal requirements in
an interdisciplinary project setting of clinical and non-
clinical institutions, patient data must not be identifiable
for non-clinical users of the infrastructure. Since data
input comes from multiple sources at multiple time-
points, a reproducible de-identification is necessary to
merge the data of an individual case. To address this
issue, we apply a DICOM de-identification service that
generates reproducible subject IDs and feeds the data
throughXNAT’s DICOMgateway. Any other data can be
uploaded by a Representational State Transfer (REST)
API or interactively using a Web interface after a client-
side de-identification. This ensures only de-identified
data are kept in the system.

Data access: Data are accessed both interactively from users
through various interfaces as well as by algorithms. To
facilitate the deduction of new facts and the training
of algorithms, flexible data access has to be ensured
throughout the whole clinical and scientific workflow.
By offering access to anonymized data trough XNAT,
external projects can access binary and semantic data
for processing, algorithm training, and deduction of new
facts (e.g., tumor progression prognoses or segmenta-
tions of liver and tumor. On the other hand, physicians
have direct access to deanonymized data and can use the
full data to plan operations for the patient.

Resource linking: An instance of the SemanticMediaWiki6

called Surgipedia provides central ontology design fea-
tures and links to external ontologies. Additionally, we

6 https://semantic-mediawiki.org/.

developed a XNAT wrapper to semantically link data
from XNAT and the Surgipedia in a manner transparent
to the end user.

Experiments and results

For validation of our concept, we instantiated our patient
model with real cases from the database of the Heidelberg
University Hospital and formalized published studies using
the proposed concept for handling factual knowledge. We
then evaluated core usage statistics of our patient model
(“Patient model analysis” section) as well as the capabil-
ity of our concept to retrieve relevant patient-specific factual
knowledge based on the proposed infrastructure for storing
and accessing data (“Reasoning experiments” section).

Patient model analysis

To date, 184 patients are contained in the database with
about 20–30 new patients being added each month. The
database currently consists of a total of 84,475 observations
(on average 459 observations per patient). Of the 602 fac-
tors identified in the development process (see “Modeling
patient-individual data” section), 372 were covered by the
patients instantiated so far, and 139 are used in more than
50% of the patients. An in-depth analysis of the distribu-
tion of observations and factors can be seen in Fig. 6. In a
dedicated medical publication, the factor model and tools to
create and export sets of factors will be made available to the
public.
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Fig. 6 Statistical analysis of our database. Left: histogram of the dis-
tribution of observations per patient. The center mainly consists of
patients with common treatment scenarios. The peak to the right con-
tains patients who had extensive laboratory testing procedures or more
than one surgical intervention. Center: factor usage in our model.

Shown are the number of patients that each factor is used in. Right
number of derived assertions per patient. In both box plots, the boxes
span the 25–75% quartile, and the whiskers mark minimum and maxi-
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Reasoning experiments

To show the applicability of our approach for model-
ing factual knowledge, in this initial feasibility study, we
focused on mortality predictions for patients with either
colorectal liver metastasis (CRLM) or HCC. These cases
represent the most common primary and the most com-
mon secondary liver cancers [1] and could thus be expected
to yield an acceptable coverage of our case base. The
physicians in our project selected seven papers, which
they regarded as relevant to the target patients and rep-
resentative of available studies (i.e., differing in evidence
level and evaluated assertions). We manually extracted
the 72 assertions related to surgical outcome and sur-
vival.

Our patient model was sufficiently powerful to model all
the content of the rules extracted. Their execution on the
case base yielded a total of 70 matching patients who had
been diagnosed with either HCC or CRLM. The system
derived 38 ± 15 assertions per patient. In all 70 patients,
we were able to generate data for a Kaplan–Meier curve
to illustrate the predicted survival of the patient after the
operation. Based on comorbidities like extrahepatical disease
(EHD) and surgical outcome (e.g., R0-resection), additional
curves could be generated that were either more specific for
the patient (e.g., reduced survivability in case of extrahep-
atical diseases) or transported additional information (e.g.,
recurrence-free survival on basis of R0-resection). Addition-
ally, several other probabilities were derived, e.g., chance for
cure and perioperative mortality. A sample case for predic-
tions made on a patient for CRLM resection can be seen in
Fig. 7.

Discussion

The long-term goal of our work, which is conducted in
the scope of the Collaborative Research Center TRR125
“Cognition-Guided Surgery”, was to develop a system that
assists the physician in formulating a holistic treatment
plan for liver surgery while making use of all available
knowledge, including patient-individual, practical, and fac-
tual knowledge. To this end, we introduced a new concept
for modeling, storing, and accessing all the data that are
used throughout the process of patient diagnosis, treatment
planning, therapy, and follow-up. These data include patient-
individual data acquired from various different sources (e.g.,
imaging, laboratory, and demographic), practical knowl-
edge (i.e., case knowledge), and factual knowledge such as
clinical guidelines and studies. The following paragraphs
discuss our contribution in the context of the state of the
art.

Semantic patient model: Our model is flexible and extensi-
ble enough to adapt to the frequent changes in the clinical
landscape. Placing the parameters in a category hierarchy
allows us to organize parameters in a manner that is intuitive
for physicians. While we currently have only one category
hierarchy, factors can be placed in several distinct trees. This
allows collaboration projects to reuse the factors and at the
same time to create a view to our data, improving reusability.
We are collaborating with groups working on radiation ther-
apy, colorectal cancer resection, and heart surgery in order
to adapt the model to their use cases and enable data integra-
tion.Thedatabase currently contains 980parameters grouped
in 602 factors that are deemed relevant by either the litera-
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Fig. 7 Derived prognoses for a patient with a colorectal liver metasta-
sis (CRLM) scheduled for hepatic segmentectomy according to our pilot
study described in “Reasoning experiments” section. Two studies show
the 10-year survival for patients under the same primary parameters
(base), one of which has a lower case number but more data points [5],
while the other has a higher case number and only three predictions [15].
The line transparency relates to the relative study importance (currently
the case numbers). It can be seen that both studies predict similar prog-

noses for this patient. Additionally, a prognosis for disease-free survival
was generated [5]. Additional facts that cannot be shown in graph form
can also be displayed, e.g., perioperative mortality, chance for cure, and
more specificmedian survival rates given specific outcomes of the oper-
ation. Note that contradictory prognoses are possible if different studies
suggest different outcomes. In this case, both curves are shown in the
plot, and the physician is able to assess their trust levels and their study
parameters (see Fig. 7)

ture review or routine assessment in the University Hospital
Heidelberg, Germany. To our knowledge, this is the largest
collection of parameters for liver surgery that is currently
available. Other contributions used a large set of parameters
to establish a coefficient for patient similarity, but have not
published the parameters themselves, so reuse is currently not
possible (see., e.g., [8]). Currently, 57% of the factors in the
database are in use. One reason for this is that some of the fac-
tors refer to techniques that are not performed at our hospital,
such as fluorescence-guided liver surgery. Another reason is
the retrospective case selection: systematic input currently is
focused on patients who underwent liver resection; accord-
ingly, factors that are related to other therapies are not used in
the model. A critical factor is data portability to ensure data
validity throughout model updates. We track all changes to
the model. In case factors change, equivalence relations are
introduced to keep data comparable. Additionally, all data
are time-stamped, which allows to constrain operations to
certain time frames if historical versions should explicitly be
ignored.

One core research question to be addressed in the context
of incorporating practical knowledge in the decision-making
process is how to define patient similarity based on our
model. Previous approaches largely have usedmachine learn-
ing [4], image-based similarity [11], and known predictive
factors [8]. These approaches are of limited applicability to
our scenario because of the size of the problem domain (i.e.,
modeling of many therapeutical options) and data domain.
Currently, we intend to exploit the category tree to calculate
a semantic similarity between factors, which may allow us to
combine current machine learning approaches with semantic
constraints.

Factual knowledge: The second contribution is our concept
for handling factual knowledge. The proposed framework
allows to represent all relevant information and bring it
into a machine-interpretable form. Previous approaches
related to this challenge focused primarily on clinical guide-
lines [6,16] and are not concerned with knowledge from
other sources. Contributions from other domains, for exam-
ple, match patient data with information about prescriptions
to generate recommendations [4]. Standardized approaches
for formalization are valuable, because they enable automatic
import procedures. Accordingly, we intend to use results
from related work if the data are available and applicable
to us.

We have shown that our system is able to deduce relevant
information about patients from studies. Kaplan–Meier plots
have been generated for all patients matching our inclusion
criteria. Additionally, more specific information was gener-
ated for patients depending on their factors, e.g., disease-free
survival for patients with curative intent or reduced survival
predictions for patients with extrahepatic disease.

Infrastructure: Duringdata entry andprocessing,weactively
used the proposed infrastructure. Use of the provided
anonymization features allowsus to share data throughout the
collaboration. Additionally, the XNAT-Sever in combination
with Surgipedia allows us to semantically link binary image
data to the ontology. This is especially useful where research
projects provide algorithms to derive additional data. An
algorithm to segment the liver, for example, could be trig-
gered by a CT image of the abdomen being uploaded to
XNAT.The resulting segmentation is stored aswell and anno-
tated as belonging to the respective CT. Once a physician
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marks the new factors as checked and valid, the results are
available as annotated data to the treatment planning process
and for algorithmic training.

Future work Future work should be devoted to the following
aspects:

Large-scale data formalization: To investigate the clinical
benefit of our method, we will focus on the implementa-
tion of clinical guidelines and improving study coverage.
In this context, it would be interesting to establish an open
collaboration base for this type of knowledge. By opening
our collection of formalized data to the public and provid-
ing modeling tools for our framework, we take a first step in
this direction. Furthermore, our long-term vision is to auto-
matically formalize new studies published in PubMed via
automatic text processing and understanding.

Integration of further information sources: An interesting
aspect is the connection to other data sources. Establish-
ing equivalence relationships between our terms and terms
from other databases, such as the national database of liver
transplants and genome maps, provides interoperability and
completeness and offers opportunities for (semi)automatic
data import. We constrained factor modeling to liver surgery
in the first phase. With a growing number of additional infor-
mation sources and import automation, applications in data
mining become feasible. This would aid discovery of new
interrelations in medical data.

Information aggregation: With an increasing number of
studies, varying or even contradicting results will be more
common. Aggregating studies that make different or even
contradicting statements is a very difficult task. Results
between two studies are rarely comparable, and while vary-
ing results are to be expected (e.g., source A predicting 32%
chance of 5year survival, source B predicts 41%), it is gener-
ally not possible to directly derive averaged values. Although
possible from a modeling point of view, a statistically valid
meta-analysis does not seem feasible in the current state but
is an interesting outlook. However, with the trust level imple-
mented, we have taken a first step to model study precedence
andweighting. Still,more sophisticated approaches are being
researched.

Practical knowledge: With a growing case base, extraction
of knowledge from the database becomesmore feasible. This
includesmethodsworking on images [11] and heterogeneous
information [14].

Automatic data annotation: We intend to continue our sys-
tematic infrastructure integration into the clinical workflow.
One focus is to automate and to integrate as much of the
information acquisition as possible. At the same time, means

to automatically derive data as soon as new information is
available are being developed.

In conclusion, we have taken first steps toward treatment
strategy planning based on holistic processing of patient-
individual data, practical knowledge, and factual knowledge.
A validation study performedwith 184 patients indicates that
our concept for modeling, processing, and accessing data is
suitable and paves the way for holistic treatment strategy
planning by enabling the joint storing and processing of het-
erogeneous data from various information sources.
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