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Abstract
Purpose Wepropose two software tools for non-rigid regis-
tration of MRI and transrectal ultrasound (TRUS) images of
the prostate. Our ultimate goal is to develop an open-source
solution to support MRI–TRUS fusion image guidance of
prostate interventions, such as targeted biopsy for prostate
cancer detection and focal therapy. It is widely hypothesized
that image registration is an essential component in such sys-
tems.
Methods The two non-rigid registration methods are: (1) a
deformable registration of the prostate segmentation distance
maps with B-spline regularization and (2) a finite element-
based deformable registration of the segmentation surfaces
in the presence of partial data.We evaluate themethods retro-
spectively using clinical patient image data collected during
standard clinical procedures. Computation time and Target
Registration Error (TRE) calculated at the expert-identified
anatomical landmarkswere used as quantitativemeasures for
the evaluation.
Results The presented image registration tools were capa-
ble of completingdeformable registration computationwithin
5min. Average TREwas approximately 3mm for both meth-
ods, which is comparable with the slice thickness in our
MRI data. Both tools are available under nonrestrictive open-
source license.
Conclusions We release open-source tools thatmay be used
for registration duringMRI–TRUS-guided prostate interven-
tions. Our tools implement novel registration approaches
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and produce acceptable registration results. We believe these
tools will lower the barriers in development and deployment
of interventional research solutions and facilitate comparison
with similar tools.
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Image-guided interventions · Image registration ·
Magnetic resonance imaging · Ultrasound

Introduction

Prostate cancer (PCa) is a leading cause of cancer-related
deaths in males in the USA and Canada [1]. Accurate and
early diagnosis of aggressive PCa is critical for adequate
patient management. Transrectal ultrasound (TRUS) and
Magnetic Resonance Imaging (MRI) are complementary
imaging modalities in visualizing anatomy of the prostate
and characterizing the tissue for cancer presence.WhileMRI
is the ideal imaging tool for PCa staging and characteriza-
tion [2], TRUS is the most widely used modality due to its
real-time nature, low cost and ubiquity. It is also the primary
modality used for interventional applications such as biopsy
and brachytherapy. In this paper, we present and compare
two practical software tools that can be used for non-rigid
registration of prostate TRUS and MRI data to enable joint
use of these modalities.

The concept of MRI–TRUS fusion targeted prostate
biopsy was first introduced in 2002 by Kaplan et al. [3].
MRI is typically acquired weeks prior to the biopsy, with
the patient in a different position (supine vs. lateral decubi-
tus) and often with an endorectal coil, leading to substantial
differences in prostate shape between the MR and TRUS
volumes. This leads to the need for a non-trivial technique to
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consolidate the data. Image registration can be used to bring
these two modalities in alignment.

Over the last decade, MRI–TRUS fusion biopsy has
evolved, and several solutions have been implemented in
commercial products [4]. Strong evidence exists that tar-
geted prostate biopsy, enabled in particular by such fusion
systems, improves accuracy of PCa sampling [4]. In a recent
study, Puech et al. conclude that software-based image regis-
tration does not currently offer any advantages over cognitive
registration done by visual re-identification of the biopsy tar-
gets between the two modalities [5]. In contrast, a study of
Delongchamps et al. confirmed the utility of software regis-
tration but produced no evidence that deformable registration
leads to any tangible improvements over rigid registration [6].
Most commercial MRI–TRUS fusion products implement
linear registration only [4]. Further studies are needed to eval-
uate the overall clinical value of software registration as well
as specific registration methods.

Comparison studies of image registration algorithms
for the purposes of targeted prostate biopsy are challeng-
ing. Commercial tools are typically constrained to the
manufacturer-specific registration algorithms, which are
often not described in sufficient detail, and do not allow
exporting of the registration results. Numerous registra-
tion algorithms have been proposed in the literature for
MRI–TRUS fusion [7–9], but very few academic papers are
accompanied by a software implementation (the study by
Moradi et al. [8] is the only study known to us that uses
a publicly available registration tool) that could be easily
used in a comparison study or considered for translation into
clinical research setting. Therefore, we believe open-source
solutions that could readily be applied to MRI–TRUS fusion
studies would greatly benefit the community.

MRI–TRUS registration approaches of prostate images
can be categorized into intensity-based and segmentation-
based methods. Efficient and accurate 3D non-rigid MRI–
TRUS registration is inherently challenging because of the
intermodality nature of the problem and the low signal-to-
noise ratio of TRUS. To the best of our knowledge, the
only fully intensity-based approach for MRI–TRUS fusion
is the method by Sun et al. [9]. All other methods rely
on TRUS segmentation [7,8,10]. Similar to all intensity-
based approaches, the method proposed by Sun et al. [9]
requires homologous anatomical features to appear in both
images. The challenge with MRI–TRUS fusion is that since
the imaging physics are substantially different between the
two modalities, there may be parts of the anatomy that can
be visible in one image but not the other.

MRI can be segmented in advance of the procedure with-
out sacrificing the procedure time.TRUS images are typically
segmented during brachytherapy workflow. In the biopsy
workflow, manual segmentation of the prostate gland is
considered acceptable in the commercial fusion tools. There-

fore, we can bypass difficulties associated with multimodal
intensity-based registration using a method that relies on
the availability of the prostate gland segmentation. How-
ever, especially for prostate interventions, even experts are
prone to over- and under-segmentation of the anatomy, as
discussed in [11]. This is also evident in the results pre-
sented in this paper. The discrepancy can be attributed to
the poor visibility of the prostate boundary near the base
and apex in TRUS. Therefore, a method that is robust to
this potential variability, or that can handle missing data
in regions where the prostate boundary is not clear, would
be highly valuable, as mid-gland segmentation can be done
robustly [11].

Contributions In this paper, we present two approaches to
registration of prostate images for MRI–TRUS fusion. The
first method described in “Registration of signed distance
maps with B-spline regularization” section represents the
deformation field interior to the prostate using B-splines. The
secondmethod is presented in “Biomechanically constrained
surface registration” section and relies on biomechanical
modeling to directly regularize the internal deformation field
and explicitly accounts for missing surface data [12].We val-
idate and compare the results of these registration methods
using the data collected for 11 PCa patients who underwent
standard MRI and TRUS imaging as part of their clinical
care. We make both approaches available as open-source
tools to facilitate development and evaluation of registration
methodologies and to support clinical research in image-
guided prostate interventions.

Methods

The registration approaches we propose consider clinical
setup consisting of the two stages:

1. Pre-processing (planning) stage: The MRI exam of the
patient is analyzed to identify the planned biopsy targets.
The prostate gland can be contoured in MRI, and post-
processing of the segmentation can be applied to recover
a smooth surface.

2. Intra-procedural stage:Avolumetric sweepof theprostate
gland with TRUS is obtained, followed by reconstruction
of a volumetric image. The prostate is segmented on the
volumetric image, and it is used to generate a smooth sur-
face of the gland. The MRI and TRUS surfaces are then
set as input to either of the registrationmethods described
further to compute displacements that can be used for tar-
get position computation or fused MRI–TRUS display.

In this section, we describe image acquisition and the various
processing steps in detail and discuss our approach to the
retrospective evaluation of the registration techniques.
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Image acquisition and pre-processing

The imaging data used in this evaluation were collected
as part of a HIPAA-compliant prospective study that was
approved by the institutional review board of the Brigham
and Women’s Hospital (BWH). Clinical indication for both
MRI and TRUS imaging was histologically confirmed PCa,
with low dose rate radiation brachytherapy as a preferred
treatment option. TRUS image acquisition was performed
during brachytherapy prostate volume studies, with the goal
of confirming suitability of the patient for the procedure (vol-
ume of the prostate gland is within the clinically acceptable
range, and there is no interference of the pubic arch with
the brachytherapy needle insertion plan). Per standard clin-
ical protocol, no anesthesia was administered to the patient
during either MRI or TRUS imaging.

Multiparametric MRI data were collected using the stan-
dard imaging protocols established at our institution [2]. All
MR imaging examswere performed on aGESignaHDx3.0T
system (GE Healthcare, Waukesha, WI) with the patient in a
supine position using a combination of 8-channel abdom-
inal array and endorectal coils (Medrad, Pittsburgh, PA).
The imaging study included anatomical T2-weighted imag-
ing (T2WI) (FRFSE sequence, TR/TE = 3500/102ms over
a 16cm2 FOV, reconstructed pixel size 0.3 × 0.3 × 3mm),
which was the series used for registration experiments pre-
sented in this work. The total time of the multiparametric
MRI exam was about 45min.

TRUS imaging was done in a separate session, with the
patient in a lithotomy position. Per standard clinical setup,
the TRUS probe (BK 8848) was attached to a motorized
mover (Nucletron EndoCavity Rotational Mover (ECRM))
and mounted on a rigid stand with the enclosure for the
TRUS probe (Nucletron OncoSelect stepper). Imaging was
performed using the sagittal array of the probe rotated by
the ECRM. Camera link and OEM research interfaces of the
BK ProFocus US scanner (BKMedical) were used to collect
radiofrequency (RF) TRUS concurrently with the clinical
image acquisition. A position tracking device equipped with
accelerometer, magnetometer and gyroscope (Phidget Spa-
tial 3/3/3) was attached to the handle of the probe to track
sagittal array orientation during motorized sweep. Synchro-
nous collection of the RF and tracking data was performed
using Public Library forUltraSound research (PLUS) [13] on
a workstation equipped with a camera link interface (Dalsa
X64 CL Express). The total time of the TRUS image collec-
tion was less than 5min.

The following pre-processing steps were applied to pre-
pare the data before applying the registration procedure.
We used PLUS for converting RF TRUS data into B-mode
images and for 3D reconstruction of the TRUS volumes from
the tracked data using the gyroscope sensor tracking informa-
tion. Volumetric TRUS images were reconstructed at 0.2mm

isotropic voxel size. TRUS and axial T2WI MRI volumes
were brought into initial alignment by rigidly registering
three fiducial points (left-most, right-most and anterior points
identified on the mid-gland axial slice of the prostate) placed
manually in reconstructed volumes using 3D Slicer [14] and
were aligned with the T2WIMRI images. The prostate gland
was contoured manually in both TRUS and T2WI volumes
using the 3D Slicer Editor module. For the purposes of sim-
plifying the segmentation procedure, TRUS volumes were
resampled to the resolution of the T2WI dataset (3mm slice
thickness). The manually segmented masks were resampled
back to the 0.2mm isotropic spacing and smoothed by apply-
ing a recursive Gaussian image filter with σ = 3. The
resulting masks were then used as input for the two regis-
tration tools we describe next. We make three of the datasets
used in the evaluation publicly available.1

Registration of signed distance maps with B-spline
regularization

We used the BRAINSFit [15] registration module of 3D
Slicer, which we earlier adapted to prostate MRI intensity-
based hierarchical registration [16]. Over the last few years,
this module has been used to support clinical trials of MRI-
guided in-bore transperineal prostate biopsy at BWH [17]. To
apply this registration approach to MRI–TRUS registration,
we implemented additional pre-processing of the segmen-
tations and modified the registration parameters as follows.
First, the isotropic segmentation masks were cropped using
a fixed size (≈10mm) margin around the bounding box of
the segmentation to reduce computation time of the sub-
sequent steps. Maurer signed distance transformation [18]
as implemented in Insight Toolkit (ITK) was applied to the
smooth segmentations of the prostate gland in both MRI and
TRUS. We chose Maurer implementation of the distance
transformation due to its improved (linear time) perfor-
mance as compared to other implementations available. The
resulting distance maps were registered using the standard
BRAINSFit module of 3D Slicer (v4.3.1) with affine and B-
spline (isotropic grid of six control points) registration stages
applied in sequence. We used the mean squared difference
similarity metric with a fixed number of 10,000 samples. All
of the processing was done either in 3D Slicer or using stan-
dard classes of ITK. This approach was developed by the
team at the BWH, and thus will be further referred as such
in the text.

The registration tool implementing the approach above is
available as a module within SlicerProstate extension of 3D
Slicer software.2

1 See http://www.spl.harvard.edu/publications/item/view/2718.
2 The source code and license are available at https://github.com/
SlicerProstate.
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Biomechanically constrained surface registration

Triangulated surfaces required by this algorithm were recon-
structed from the smooth segmentation masks by first apply-
ing the marching cubes algorithm, followed by an edge
collapse-based incremental decimation using ITK [19].

The following approach was developed independently by
the team at the University of British Columbia (UBC) and
will be further referred to as UBC. For the registration,
we recast the registration problem as a probability density
estimation, where point on the source surface represents cen-
troids of a Gaussian mixture model (GMM) [12], and the
target surface represents observations from that model. We
use the following notations:

XN×3 Observations, i.e., prostate
surface points on US

YM×3 GMM centroids, i.e., prostate
surface points on MRI

ΦM×J ,UJ×3 FE model interpolation matrix,
nodal displacements

K3J×3J Stiffness matrix
PM×N Posterior probabilities of GMM

components
x3N×1, y3N×1 and u3J×1 Rasterized representations of

X, Y and U
diag(v) Diagonal matrix of any vector v
I Identity matrix
P̃ = kron(P, I3×3) Kronecker tensor product of a

matrix P and I3×3
1 Column vector of all ones

Similar to the BWH method in “Registration of signed dis-
tance maps with B-spline regularization” section, we follow
an affine followed by a non-rigid registration approach to per-
form surface-based registration.Henceforth,we refer to these
methods as UBC-aff and UBC methods, respectively. UBC-
aff is exactly the “affine” solution detailed and derived by
Myronenko and Song [12]. The non-rigid component of reg-
istration is constrained by minimizing the volumetric strain
computed using a finite element (FE) model. To create this
model, a tetrahedral volumetric mesh is automatically gener-
ated from the triangulated MRI segmentation using TetGen
[20]. In place of setting boundary conditions, we drive the
surface of the model using implicit surface-to-surface forces,
from source to target. These forces arise naturally by min-
imizing the negative log-likelihood function based on the
GMM approach, with an added biomechanical regularizer.
The objective function to minimize is as follows:

E(U, σ 2) = 1

2σ 2

M,N∑

m,n=1

P(ym |xn) ‖xn − (ym + vm)‖2

+ 3NP

2
log(σ 2) + β

2
uT Ku, (1)

where xm is a point on the fixed observation surface (seg-
mented TRUS), ym a point on themoving surface (segmented
MRI), and vm is the displacement of ym induced by the FE
model. Since the first term only involves points on the sur-
face of the model, we use FE interpolation vm = ΦmU to
relate surface displacements to nodal displacements. P(·)
denotes the GMM probability density function, responsible
for “softly” weighting correspondences between the two sur-
faces. In the second term, NP = ∑

m,n P(ym |xn), and σ 2 is
the variance of the Gaussian components. The derivation of
the expression up to this point follows directly from that
of Myronenko and Song [12]. The last term is the added
regularizer, which represents the linearized strain energy
of an FE model. Note that since the motion of all three
coordinates is coupled, we use a rasterized form of the dis-
placements: u = [u0x , u0y, u0z, . . . , uJx , uJy, uJz]T . The
stiffnessmatrix, K , can be computed directly from the FEM’s
tetrahedral structure and a constitutive material model. We
currently assume a linear material, but the approach can be
readily generalized. The free parameter,β, controls the trade-
off between the tightness of the surface-to-surface fit and
regularization.

There are two unknowns in this model: the volumetric
displacement, U and the variance of correspondence, σ 2.
Initially, the displacements are set to zero, and the Gaussian
variance is estimated from the data as in [12]. These are opti-
mized using an expectationmaximization (EM) algorithm. In
the expectation step, we compute how likely an observation
corresponds to a GMM centroid using

P(xn|ym+φmU ) =
exp

(
− 1

2
‖xn−(ym+ΦmU )‖2

σ 2

)

∑M
j=1 exp

(
− 1

2
‖xn−(y j+Φ jU )‖2

σ 2

)
+ c

,

(2)

where c = (2πσ 2)D/2 w
1−w

M
N and 0≤ w ≤ 1 is the estimate

of outliers/missing data [12]. It can be shown thatminimizing
Eq. 1 w.r.t u results in the following system of equations:

[
Φ̃T diag

(
P̃1

)
Φ̃+βσ 2K

]
u=

[
Φ̃T P̃x−Φ̃T diag

(
P̃1

)
y
]
.

(3)

The algorithm iterates between expectation (updating Eq. 2)
andmaximization steps (updating σ 2, u) until it converges to
the solution. Updating σ 2 is exactly as in [12] and is excluded
for brevity. The algorithm was implemented in Matlab
(MathWorks, Natick, MA), with a mex-interface to TetGen.

There are a few free parameters in this registration scheme.
The first isw ∈ [0, 1), which controls a background uniform
distribution in the GMM to account for noise/outliers. Due to
the noise in the TRUS, we use w = 0.1 for the experiments
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conducted in the paper, although we have found results to
be relatively insensitive for values within a reasonable range
(e.g., [0.05, 0.15]). The next two involve the constitutive law
of the FE model, which affect the stiffness matrix K . We
assume a linearmaterial, with Young’smodulus E = 48 kPa,
and Poisson’s ratio of ν = 0.49. These values are derived
from a study by Krouskop et al. [21]. For linear materials,
the Young’s modulus can be factored out of the stiffness
matrix and combined with the last parameter: β, the regu-
larization weight. This controls the amount to which the FE
is used to limit deformation. Small values of β allow large
deformations, leading to better surface-to-surface fitting but
perhaps unrealistic deformations. This parameter should be
tuned depending on the context, increased until an acceptable
amount of deformation is observed. For our experiments, we
use β = 0.03 (so βE = 1.44). Thus, for linear materials,
there are three free parameters: w, ν and the product βE .

For the purpose of evaluating the capabilities of the UBC
method in registering partial data, partial surface datasets
were created for each case by cropping the full surface 10mm
from the end points using planes perpendicular to the prostate
glandmain axis. The choice of data to be discardedwasmoti-
vated by the practical difficulties in accurate segmentation of
the prostate at apex and base [11].

This registration tool implementing the method above is
provided as a set ofMATLAB scripts andC++ libraries under
nonrestrictive open-source license.3

Evaluation setup

The two registration tools described above were applied to
theMRI and TRUS datasets collected for PCa patients. Iden-
tical parameters were used for each of the algorithms across
the datasets used in the evaluation. Quantitative assessment
was done based on the observed computation time and TRE.
Computation time was measured for each of the processing
steps. The accuracy of registrationwas evaluated usingTarget
Registration Error (TRE) measured between the correspond-
ing landmarks identified by an interventional radiologist
specializing in abdominal image-guided interventions with
over 10years of experience in both MRI and ultrasound-
guided procedures (K.T.). The landmarks were localized
independently from the process of gland segmentation. The
landmarks used in the evaluation included anatomical land-
marks that could be consistently identified in each patient
(entry of the urethra at base (coded as UB) and apex (coded
as UA) of the prostate gland, and verumontanum (coded as
VM)) as well as patient-specific landmarks (calcifications or
cysts). The landmarks were marked using a setup where both
MRI and volume reconstructed TRUS images were shown to

3 The source code and detailed license are available at https://github.
com/siavashk/GMM-FEM.

Table 1 Volumes of the prostate gland segmentation in MRI (VMR)

and US (VUS)

Case ID VMR (mL) VUS (mL) Percent difference (%)

9 33.1 30.7 7.1

10 27.1 26.9 0.7

12 27.6 23.2 15.9

14 49.5 38.2 22.9

16 18.8 14.0 25.4

17 16.9 12.3 27.3

18 28.2 28.9 −2.3

19 24.4 22.3 8.8

20 55.9 44.2 20.8

21 17.8 16.4 8.0

22 32.7 28.4 13.3

Large discrepancies were observed in a number of cases, which is
attributed to the difficulties of accurately localizing prostate apex and
base inUS. Percent difference is calculated as (VMR−VUS)/VMR)∗100

the operator side by side using 3D Slicer to facilitate consis-
tent identification.

Normality testingwas performedusingShapiro–Wilk test,
and statistical comparisons were done using paired t test. Sta-
tistical analysis and plotting were performed using R version
3.0.1.4 Registration experiments were performed on a Mac-
Book Pro laptop (early-2011 model, 2.3GHz Intel Core i7,
8GB RAM, SSD, OS X 10.9.5). C++ code was compiled
using XCode 6.1 clang-600.0.54 compiler in Release mode.
MATLAB version 2013b was used for the UBC registration
tool.

Results

Evaluation was conducted using imaging data collected for
11 patients. Volumes of the segmented prostate gland for the
cases used in the evaluation are shown in Table 1. The volume
of the gland segmented in TRUS was typically smaller than
the one in MRI, the difference exceeded 20% in four out of
11 cases.

Computation time was as follows. BWH registration
pre-processing took on average 35s (range 31–51s), while
registration (including resampling) took 40s (range 32–56s).
Pre-processing for the UBC method was comparable and on
average took 40s (range 23–64s). Average registration time
for the UBC method was 93s (range 33–248s) while using
the full surface data, and 60s (range 19–137s) when partial
data was used. No statistically significant correlation was
observed between the volume of the prostate gland segmen-
tation and the registration time. A representative example of

4 http://www.r-project.org/.
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axial view sagittal view coronal view

Fig. 1 Example of the registration result for case 10 using BWH
method. The green outline corresponds to the smoothed surface of the
segmented prostate gland in the US image (both rows). Top row shows
views of the TRUS volume, bottom row corresponds to the registered

MRI volume for the same case. Annotations show examples of the land-
marks used in the evaluation: urethra entry at base (red arrow) and apex
(yellow arrow)

a registration result is shown in Fig. 1. Visualization of the
displacement fields obtained with both methods for the same
case is in Fig. 2.

The total of 48 landmarks across all cases were identified
for the purposes of TRE assessment. In the majority of the
cases (six out of 11), the landmarks corresponding to the UA
and/or UB anatomical locations were outside the gland seg-
mentation (also see Fig. 4 showing landmarks located outside
the gland segmentation). Only landmarks that were inside
the gland in both MRI and TRUS segmented volumes (the
total of 37) were considered in the quantitative evaluation,
to ensure the same set of landmarks is used in evaluating
both methods. Among those landmarks, mean initial TRE
was 7.8mm (range 1.7–15.3mm). The detailed summary of
the TRE statistics is shown in Table 2.

There was no sufficient evidence to reject the hypoth-
esis about the normality of the observed errors based on
Shapiro–Wilk test (p > 0.05). Both UBC and BWH led
to significantly smaller TREs as a result of an affine regis-
tration step (p < 0.0001), leading to mean residual TRE
of about 3.5mm (range 0.1–7.3mm) (the UBC-affine step
refers the “affine” version of [12]). The deformable com-
ponent of the registration did not result in a statistically

significant improvement of mean TRE. Comparison of the
registration results obtained using BWH and full surface
UBC methods do show a statistically significant difference
between them (p < 0.05). However, the difference between
the means was only 0.3mm. A detailed summary of the UBC
and BWH registration results for each landmark is shown in
Fig. 4. No significant difference was observed between the
TREs corresponding to the registration results obtained with
the UBC method while comparing full and partial surface
registration results. At the same time, we observed that visu-
ally the results can be noticeably different, as illustrated in
Fig. 3.

Discussion

In this paper, we presented two software tools that we believe
are practical for MRI–TRUS fusion in clinical research
concerned with prostate interventional applications. The
approaches we implemented both rely on the availability of
the prostate gland segmentation, but are quite different in
the methodology and capabilities. The BWH approach has
been implemented based on the easily accessible “off-the-
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axial view sagittal view coronal view

Fig. 2 Visualization of the deformation field for case 10 using both
BWH (top row) and UBC (bottom row)methods. The green outline cor-
responds to the MR surface before registration, and the purple outline
is the intersection of the TRUS prostate surface with the image plane.

Note that for the UBCmethod deformation is restricted to the inside the
gland segmentation, while BWH method produces continuous smooth
deformation field that extends beyond the prostate segmentation

Table 2 Summary statistics in mm of the initial Target Registration
Error (TRE) (Init.), TRE following affine registration using BWH
(BWH-aff) and UBC (UBC-aff) methods, and using deformable reg-
istration using BWH (BWH-bspline) and UBC methods with full

(UBC-full) and partial (UBC-part) surface information. Significant
reduction in TRE was observed as a result of affine registration, and
deformable registration component did not produce improvements

Init. BWH-aff UBC-aff BWH-bspline UBC-full UBC-part

Mean±SD 7.8 ± 4 3.7 ± 1.8 3.5 ± 1.7 3.8 ± 1.8 3.5 ± 1.7 3.6 ± 1.5

Range [1.7–15.4] [0.5–7.3] [0.3–7.1] [1.1–7.8] [0.5–7.3] [0.7–6.6]

Fig. 3 Example of the surface registration result using UBC method.
The surface of the prostate gland in TRUS used for registration is shown
as awireframe, and the registered surface is colored by the displacement
magnitude. The registration result that used full surface information is

on the left panel, whereas the partial surface registration result is on the
right. The differences are most apparent at the apex (yellow arrow) and
the base (red arrow) of the gland

shelf” components of 3D Slicer and ITK. TheUBC approach
has the benefit of utilizing a biomechanical model, which
has the potential to lead to a more realistic displacement
field and can handle partial surface information. However,

its implementation required significantly more custom code
development.

To the best of our knowledge, only two of the cur-
rently available commercial tools, Urostation (Koelis) and
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Fig. 4 Summary of the TREs for the datasets used in the evaluation.
Each point corresponds to a single landmark (“UA” is urethra at apex,
“UB”—urethra at base, “VM”—verumontanum, “Other” corresponds
to case-specific landmarks identified for calcifications or cysts), with
the BWH method TRE plotted on the vertical axis, and UBC method
(using full surface data in the top, and partial data in the bottom panel).

Red points correspond to the landmarks that were marked outside the
gland segmentation. Note that UBC TREs for the landmarks located
outside the gland include only the affine registration component, since
the deformation can only be estimated inside the tetrahedral mesh. For
this reason, only those landmarks that were located inside the gland in
both MRI and TRUS were considered in the quantitative evaluation

Artemis (Eigen), support elastic registration [4]. While both
of these operate on segmented prostate gland, none is using
distance map representation or biomechanical model for
registration, or is capable of handling partial surface data.
Numerous MRI–TRUS approaches have been presented in
academic literature, but most are not accompanied with reli-
able implementations for testing. We are aware of only one
publication that has an open-source implementation [8]. A
major innovation of our work is in streamlining translation
of theMRI–TRUS fusion capability into the clinical research
workflows. Possibly the closest work to ours in terms of
developing an open-source translational system for prostate
interventions is by Shah et al. [22]. Our work is complemen-
tary in that while Shah et al. investigate system integration,
we focus solely on software registration tools.

Once image data are collected and the prostate gland is
segmented, all the processing steps for both methods can
be completed without user interaction in under 5min. The
mean error we observed is in the order of 3mm, which is the
slice thickness for ourMRI data.We also note that we did not
attempt to quantify the error in localization of the anatomical
landmarks, as we did not have resources to conduct a multi-
reader study. Such study would require clinical experts that
are familiar with both MRI and TRUS appearance of the
prostate. This expertise is rare at our institution, since clinical
reads of prostate MRI is done by the radiology department,
whilemost of the TRUS-guided prostate procedures are done
by either radiation oncologyor urologydepartments.Overall,
we believe our tools are suitable for prospective evaluation in
the context of clinical research prostate biopsy applications.
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Our comparison did not reveal significant differences
between the two approaches in terms of TRE that are of prac-
tical value. Our evaluation was complicated by the possible
inconsistencies in the segmentation of the prostate gland,
and the difficulties in placement of some of the anatomi-
cal landmarks that resulted in UA/UB points being located
outside the prostate gland. Accurate and consistent segmen-
tation of the prostate is challenging in TRUS, especially at
the apex and base of the gland [11,23]. We note that the
differences between the prostate volumes estimated from
3D TRUS and MR have been recognized earlier in a num-
ber of studies. The average TRUS/MR volume ratio we
observed was 0.87, which is similar to Smith et al. [11] who
reported average ratio of 0.9. While we cannot with absolute
certainty determine the sources of variability, there are sev-
eral factors that could have contributed to the difference.
First, TRUS images have poor contrast at apex and base,
potentially leading to under-segmentation of these areas.
Second, the actual physical volumes of the gland could be
affected by the compression of the prostate gland to a dif-
ferent degree by both endorectal MR coil and ultrasound
probe. Heijmink et al. [24] observed average reduction of
17% in prostate volume due to the use of endorectal MR
coil.

We adopted 3D Slicer for implementing the BWH
approach presented here. 3D Slicer includes a variety of
registration tools and integrates ITK, thus enabling reuse
and sharing of the existing technology. Extensions frame-
work of 3D Slicer allows for contributing new functionality
without the need to change the core of the application, thus
various MRI–TRUS specific registration algorithms can be
contributed by the interested groups. The PLUS toolkit [13]
and OpenIGTLink [25] are tightly integrated with 3D Slicer
and thus data collection of tracking and intra-procedural
imaging data can be implemented for a variety of devices
using libraries such as PLUS [13]. This is supportive of
our longer-term goal of providing an open-source solution
in 3D Slicer for MRI–TRUS-guided prostate interventions.
We make the registration tools available under BSD-style
open-source license, permitting unrestricted academic and
commercial use.

Our work has several limitations. Image acquisition was
done during prostate brachytherapy volume studies. More
complex approaches based on electromagnetic or optical
tracking would be required for freehand TRUS volumetric
reconstruction. The use of data supplied by prostate vol-
ume studies could have potentially introduced selection bias
toward smaller prostate volumes. Further evaluation on a
larger biopsy cohort is warranted. We did not assess the
consistency of landmark identification and prostate gland
segmentation and did not evaluate the sensitivity of the reg-
istration tools to variability in the segmentation or extent of
missing data.

Conclusions

We proposed open-source tools that can be used as a com-
ponent of a system for MRI–TRUS fusion-guided prostate
interventions. Our registration tools implement novel reg-
istration approaches and produce acceptable registration
results, aiming to reduce the barriers in development and
deployment of interventional research solutions for prostate
image-guided interventions and facilitate comparison with
similar tools.
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