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Abstract
Objective The aim of this study is to provide an automatic
framework for computer-aided analysis of multiparametric
magnetic resonance (mp-MR) images of prostate.
Method We introduce a novel method for the unsupervised
analysis of the images. An evidential C-means classifier was
adapted for use with a segmentation scheme to address mul-
tisource data and to manage conflicts and redundancy.
Results Experiments were conducted using data from 15
patients. The evaluation protocol consisted in evaluating the
method abilities to classify prostate tissues, showing the same
behaviour on the mp-MR images, into homogeneous classes.
As the actual diagnosis was available, thanks to the correla-
tion with histopathological findings, the assessment focused
on the ability to segment cancer foci. The method exhibited
global sensitivity and specificity of 70 and 88%, respectively.
Conclusion The preliminary results obtained by these ini-
tial experiments showed that the method can be applied in
clinical routine practice to help making decision especially
for practitioners with limited experience in prostate MRI
analysis.
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Introduction

A current challenge in prostate cancer is the development of
new strategies to improve the diagnosis of significant can-
cers while excluding insignificant ones. Presently, a volume
threshold is used, and cancers more than 0.5 cc are consid-
ered as significant. Systematic transrectal ultrasound biop-
sies (TRUS-B) remain the gold standard for prostate cancer
diagnosis; however, these biopsies are invasive and miss a
significant percentage of cancers. In contrast, prostate mag-
netic resonance imaging (MRI) can be used noninvasively for
reliable characterization of prostate tissues/lesions, by taking
advantage of multiparametric protocols [1].

A typical prostate multiparametric MR study includes
a morphological T2-weighted (T2-W) series and a func-
tional series, including diffusion-weighted imaging (DWI)
sequences and perfusion T1-weighted sequences, acquired
before, during and after contrast agent administration (also
called dynamic contrast enhanced [DCE] MRI). In some
cases, these studies also include spectroscopic analysis. For
multiparametric analysis, severalDWI sequenceswith differ-
ent diffusion gradients are acquired and used to compute the
apparent diffusion coefficient (ADC) map. The DCE images
are used to analyse the tissue enhancement, either visually
or using time/intensity curves and semi-quantitative parame-
ters, such as the area under the enhancement curve, wash in
and wash out rates and time to peak. Computation of phar-
macokinetic parameters can also be used to characterize tis-
suemicrocirculation, for example, using Tofts’ model, where
Ktrans is the transfer constant between the blood plasma
and the extra-vascular extra-cellular spaces (EES), Kep is
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Fig. 1 Examples ofmultiparametricmagnetic resonance images:aT2-
weighted sequence,b diffusion-weighted images (DWI), cT1-weighted
dynamic contrast enhance (DCE) images, d the apparent diffusion coef-
ficient map computed from the diffusion-weighted sequences and e, f
pharmacokinetics parameters computed from the DCE sequences. The

transfer constant between the blood plasma and the extra-vascular extra-
cellular spaces (Ktrans) and the exchange constant rate between the
extra-vascular extra-cellular spaces and the blood plasma (Kep) were
determined in e and f, respectively

the exchange constant rate between the EES and the blood
plasma, and Ve is the extra-vascular extra-cellular volume
[2,3] (Fig. 1).

In this context, and because MRI involves an enormous
number of data to interpret, many authors have investigated
automatic classification algorithms to design MRI-based
computer-aided diagnosis (CAD) tools and software for can-
cer characterization. The current standard paradigm for CAD
systems is as a second reader. After the radiologist has eval-
uated multiple imaging sets, CAD is used to indicate the
likelihood that a given suspicious region is malignant. Most
of the employed methods are based on supervised classifica-
tion techniques, in which a set of preinterpreted patient data
must be used as a learning step (Table 1). These approaches
have presented two main limitations. First, the performance
of the algorithm depends on the quality and volume of the
training data. Second, the learning step requires retrospective
data, which might be either obsolete or centre specific.

In this study, we began with the assumption that a multi-
parametric approach would be optimal for all of the images.

We then proposed an unsupervisedmethod for prostate tissue
classification frommultiparametricMR images. Thismethod
was not designed for the detection of cancer or suspicious
lesions but rather was intended to be used as an analysis tool,
allowing us to merge information from all available sources
to address conflict and redundancy and to provide a unique
homogeneous pattern (tissues) map.

We investigated the use of evidence theory. This approach,
also known as belief functions theory, is becoming widely
used in multisource data analysis. It provides an advanced
modelling of fusion, conflicts among sources and outliers
[4]. Several applications of this reasoning in medical image
analysis and CAD can be found (e.g. in brainMRI segmenta-
tion and tumour detection) [5,6].Our proposed approach is an
adaptation of the evidential C-means classifier (ECM) intro-
duced by Masson and Denoeux [7]. We successfully applied
this method to multiparametric prostate MR data in a pre-
vious work, in which the aim was to segment and separate
the prostate into two compartments: peripheral and transition
zones [8].
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Table 1 State of the art of classification and clustering methods applied for prostate magnetic resonance image analysis

MR Data Clustering/classification
Algorithms

Region of interest Validation—
correlation with
histopathology
maps

Supervised

Chan et al. [9] T2W, ADC and proton den-
sity

Support vectorsmachine and
Fisher linear discriminant

Peripheral zone No

Madabhushi et al. [10] Ex vivo MRI Bayesian + Fusion Prostate Yes

Vos et al. [11] DCE MRI Support vectors machine Peripheral zone Yes

Puech et al. [12] DCE MRI Decision tree Prostate Yes

Vos et al. [13] DCE MRI and T2W Support vectors machine Peripheral zone Yes

Lopes et al. [14] T2W Support vectorsmachine and
Adaboost

Peripheral zone Yes

Niaf et al. [15] T2W, ADC and DCE MRI 4 Classifiers Peripheral zone Yes

Shah et al. [16] T2W, ADC and DCE MRI Support vectors machine Peripheral zone Yes

Chesnais et al. [17] T2W, ADC and DCE MRI 4 Classifiers (method from
Niaf et al. [15])

Peripheral zone Yes

Hoeks et al. [18] T2W, ADC and DCE MRI Support vectors machine
(method fromVos et al. [13])

Transition zone Yes

Hambrock et al. [19] T2W, ADC and DCE MRI Support vectors machine
(method fromVos et al. [13])

Peripheral zone and transi-
tion zone

Yes

Unsupervised

Tiwari et al. [20] Spectroscopy Hierarchical Prostate No

Liu et al. [21] T2W, ADC and DCE MRI Markov random fields Peripheral zone Yes

Comparison

Ozer et al. [22] T2W, ADC and DCE MRI Supervised methods sup-
port vectors machine and
relevance vector machine
with unsupervised method;
Markov random fields
(method from Liu et al. [21])

Peripheral zone Yes

The methods are grouped into two categories: supervised and unsupervised. Classification is also performed according to the criteria for the MR
image sequences used: T2-weighted (T2W), dynamic contrast enhanced (DCE), apparent diffusion coefficient (ADC) computed from the diffusion-
weighted (DW) sequences and spectroscopy images, as well as the proton density sequence. The clustering technique used, region of interest (entire
gland or specific area, such as the peripheral zone) and the validation with the ground truth from the histopathological maps are also indicated

Methods

Figure 2 depicts the pipeline of the method.

Data preparation: spatial registration and feature extraction

The multiparametric MR sequences could not be processed
directly for two reasons. First, most of the images were
acquired from different fields of view and thus had different
spatial resolutions. Second, there were patient movements
between acquisitions. Therefore, the first step was spatial
registration and normalization. Because T2W images are
regarded as the cornerstone for prostate morphology eval-
uation, these images were considered the reference space,
and the other sequences were strictly registered to this space
using standard affine registration algorithms based on maxi-
mization of mutual information.

Only a simplest affine registration was considered due to
the fact that all the images are acquired during the same MR
exam, and thus, we can consider that morphological changes
due to rectum and bladder pressures are negligible and there-
fore noneed to the applicationof amore sophisticatedmethod
to compensate the deformations.

Following this spatial matching, resampling and interpo-
lation were used to match the other sequences with the T2W
images in terms of resolution.

After this preprocessing, eachprostate voxelwasdescribed
by a feature vector containing the image features as grey lev-
els from the T2W images, the ADC and the pharmacokinetic
parameters (Ktrans, Kep and Ve).

A previous study [23] demonstrated that the local para-
meters, computed using fractal geometry, allowed for better
detection of heterogeneities in prostate tissues fromT2WMR
images than from the native grey level values. Fractal geom-
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Multiparametric MR images 

Spatial registration 
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Tissues classes map 

Fig. 2 The pipeline of the method. The multiparametric data are first
spatially registered. After feature extraction, evidential theory-based
clustering is used to reduce the data into homogeneous classes

etry is a powerful tool for texture analysis that can be used to
process medical imaging data efficiently. The fractal geome-
try can be measured using the fractal dimensions (FDs). We
computed the local 3D FDs for each 7 × 7 × 3 region of
interest (ROI) using the variance method [24]. Thus, instead
of considering the T2W image grey levels, a local fractal
dimension was estimated for each voxel.

By combing all of the MR data, a feature set including the
local fractal dimension, the ADC value and the pharmacoki-
netic parameters Ktrans, Ve was associated to each voxel as
follows:

Voxel(Vi ) = {FD,ADC, Ktrans, Ve} (1)

After processing, the data were normalized and standard-
ized for the range of different features. For each feature, the
mean and the standard deviation were computed. For each
feature value, the mean was then subtracted, and the result
was divided by the standard deviation.

Source modelling and clustering

Initialization

Our method was designed to assist radiologists in analysing
large numbers of images by fusing the sources into a single
map. The voxels were described by their features (Eq. 1) and
were grouped into homogeneous patterns. Class initializa-
tion is a key step in any clustering process for addressing this
issue. Our proposed approach was inspired by radiologists’
behaviour when cognitively analysing MR images. Gener-
ally, the most sensitive images, typically pharmacokinetic

and ADC images, are analysed first to detect and highlight
the suspicious regions. To refine the analysis, several cross-
analyses are performed using all of the image sequences.

In this regard, the Ktrans map could be used to define
the initial classes map. First, the image histogram was con-
structed, and a mode recognition algorithm [25] was applied
to detect the class number. Then, the K-means algorithmwas
used for clustering. The results were applied to the remaining
image sources to obtain the configuration of the first classes.

Evidential modelling

Evidential reasoning associates a data source or sensor, S,
with a set of propositions, also known as the “frame of dis-
cernment”. In a classification context, the frame of discern-
ment, denoted asΩ , is the set of classes. Ifω1, . . . , ωk denote
these classes, then Ω = {ω1, . . . , ωk}.

Let P = {P1, . . . , PN } be the set of patterns/objects to
be assigned to one of the Ω classes. Evidential reasoning
allows for the extraction of the partial knowledge of this
assignment, called the “basic belief assignment” (bba). A
bba is a function that takes values in the range [0, 1] and
defines the 2Ω subsets ofΩ({∅, ω1, . . . , ωk,ω1 ∪ ω2, . . . ,}).
For each pattern Pi ∈ P , a bba (denoted as mi ) allows us to
measure the assignment to each subset A of Ω such that the
following relationship is true:

∑

A⊆Ω

mi (A) = 1 (2)

The higher the value of mi (A) is, the stronger the belief
for assigning Pi to A. For instance, mi

({
ω j

}) = 1 implies
that

(∀A ⊆ Ω, A �= {
ω j

})
,mi (A) = 0. This means that

Pi is assigned to
{
ω j

}
. However, if mi

({
ω j

}) = 0.5,
mi ({ωl}) = 0.2 andmi

({
ω j , ωl

}) = 0.3, there is a stronger
belief for assigning Pi to

{
ω j

}
than to {ωl}. It also highlights

that there is a 20% belief for assigning Pi to the union of
the 2 classes, which can be interpreted as a doubt regarding
pattern membership. In contrast to the fuzzy set model, evi-
dential reasoning can extend the partial membership concept
by assigning beliefs not only to classes but also to unions of
classes. This feature is particularly useful in cases in which
the classes overlap.

Using this model, Denoeux andMasson [26] introduced a
new type of data partition called the “credal partition”. This
partition can be seen as an extension of the fuzzy partition,
with bba functions replacing the fuzzy membership func-
tions. The authors later proposed an evidential version of the
C-means classifier (the ECM) that used a credal partition,
which was inspired by the fuzzy C-means (FCM) algorithm
[7]. This algorithm classifies N patterns into k classes of Ω ,
based on the class centres and theminimization of a cost func-
tion. As is the case for fuzzy partitions in FCM, the credal
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partition (in which each line is a bbami associated with a
pattern Pi ) is optimized iteratively. Further details on this
generic classification method can be found in [7].

Spatial relaxation

The ECM model, as previously described, extracts and opti-
mizes partial knowledge for pattern assignments. The ECM
model can be used to classify voxels directly as independent
data objects. However, the voxel neighbourhoods, defined
by the connexity system, provide valuable information. In
fact, the image segmentation supposes that the image regions
share common features. Connexity and neighbourhood sys-
tems model this assumption using region-oriented segmen-
tation methods, such as growing regions or hidden Markov
field models.

In a homogeneous region or class, a bba not only provides
information on a pattern but also on its connected neigh-
bours. Corrupted information, extracted from outliers/noise
patterns, can be relaxed using the information from neigh-
bours. Thus, introducingneighbourhood information inECM
modelling can provide the following advantages:

• Modelling of contextual region information by extracting
information from the patterns/voxels;

• Reduced corrupted information related to outliers and
noise; and

• Assimilation of the ECM classifiers into region-based
segmentation processes.

The bbami of pattern Pi (associated with voxel Vi ) was
relaxed by combining it with bba functions from spatially
connected neighbours. Spatial connection was defined by
a 3D connexity system (26 in this study). A combination
was performed using a conjunctive bba combination opera-
tor [27].

Let mi be the bba of the pattern Pi and {mi1, · · · ,mi26}
be the bba functions from Pi ’s 26 connected neighbours
{Pi1, · · · , Pi26}. We denote as m′

i , the result of combining
mi and {mi1, · · · ,mi26}

∀A ⊆ Ω

m′
i (A) = ∑

A1∩···∩Af=A
A1···Af⊆Ω

mi (A1) · · ·mi26 (Af) (3)

However, the contribution of each neighbour to this combina-
tion should be weighted by its distance from the considered
voxel. This combination is particularly relevant for prostate
MRI, in which the voxels are significantly anisotropic. Based
on this reasoning, the neighbouring bba functions were
weighted as follows.

Let m j
i j be the result of weighting mi j

∀A ⊆ Ω{
m

α j
i j (A) = α j .mi j (A)

m
α j
i j (Ω) = 1 − α j + α j .mi j (Ω)

(4)

where

αj = γ

d2ij
(5)

0 ≤ γ ≤ 1 is a parameter, and di j is a normalized Euclidean
distance betweenvoxelvi and its spatial neighbourvi j .Using
Eq. (3) and replacing the neighbouring bba functions with
the weighted ones (4), we define m′

i as follows.

∀A ⊆ Ω

m′
i (A)= ∑

A1∩···∩Af=A
A1···Af⊆Ω

mi (A1) · mα1
i1 (A2) · · ·mα26

i26 (Af) (6)

This combination is used as a relaxation step that allows for
correction of the evidential assignment of a voxel based on
the information from its neighbours.

Decision making

At the level of bba function extraction and optimization, we
measure belief for themembership of each voxel to one of the
classes ω ∈. However, we also measure belief for the empty
set and subsets A, which could be interpreted as “doubt”
regarding the membership of the voxel. A decision still must
be made to classify the voxels into one of the classes. This
decision is reached by transforming the bbami into a proba-
bility measurement, as calculated by

∀ωi ∈ Ω

Prob (ωi ) = 1
1−mi (φ)

∑

ω∈A
A⊆Ω

mi (A)

|A| (7)

where |A| denotes the number of elements in A and φ is the
emptyset.

Finally, we define the decision rule R that associates the
pattern Pi with one of the classes of as follows.

R (Pi ) = argmax
ω∈Ω

(Prob (ωi )) (8)

Results presentation

For the presentation of the results, two levels are proposed.
The first level displays a single 3D class map with a colour
associated with each class. This map labels all of the vox-
els with one of the ({ω1, . . . , ωk}) classes. It also renders
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the tissue distribution homogeneous. For interpretation pur-
poses, the map can be merged with any of the original image
sources.

The second display level provides amore detailed descrip-
tion of the clustering results. The different probability maps
resulting from the belief membership conversion (Eq. 7) are
displayed using colour maps. These maps could be very
useful in addressing conflict regions. Indeed, they include
the empty set probabilistic distribution. The empty set is
associated with the reject class, grouping all of the vox-
els that could not be clearly associated with one of the
classes (i.e. the probability of the empty set was the great-
est).

The maps also include all of the other subset cases.
For instance, for a typical case with 2 classes, ω1 =

healthy tissue and ω2 = suspicious tissue, the clustering
produced 4 maps: a probability map for each class and a
probability map for the 2 class unions in which a voxel has
the same probability of being in either class. The last map is
the empty set map, which groups the outliers.

The first level display creates the homogeneous tissuemap
by combining the 2 results of classes ω1 and ω2.

Experiments and results

In this section, we report the results of the method applied to
synthetic datawith a knownground truth for class distribution
and clinical images correlated with histopathology findings.

Simulated image experiments

The aims of these experiments were to test and evaluate the
clustering process with regard to noise.

Creation

Simulation of multiparametric MR images is a difficult
process. Moreover, a complete simulation should model and
simulate the tumour behaviour for all of the MR sequences
(T2W, DCE, DWI and spectroscopy). To our knowledge,
these behaviours are not yet well known.

Nevertheless, to highlight the performance of the ECM
clustering combined with spatial neighbouring relaxation on
multisource data, we rendered multiparametric images using
3 MR clinical sequences: T2W, DCE and DWI. For each
sequence, a radiologist delineated the peripheral and tran-
sition zones. The transition zone (TZ) was then filled with
its mean value. The peripheral zone (PZ) level was deduced
using a predetermined contrast value C defined as

C = |ITZ − IPZ|
|ITZ + IPZ| (9)

where ITZ and IPZ are the mean MR signals of TZ and PZ in
the considered sequence, respectively.

Gaussian noise was added, and amedian filter was applied
to reduce the salt-pepper aspect of the noisy images so that
they would be more similar to the real data. Figure 3 illus-
trates this process.

The signal-to-noise ratio of the simulated datawas defined
as:

SNRdb = 10log

[ ∑
i=1,...,n (I0)2

∑
i=1,...,n (I − I0)2

]
(10)

where I0 and I are the intensities before and after adding the
Gaussian noise, respectively.

Finally, the rendered images had different quality levels.
The signal-to-noise ratios ranged from 18.21 to 7.77dB, and
the contrast levels (C , Eq. 9) ranged from 0.1 to 0.25.

Results

The evaluation of the classification method for the synthetic
data consisted of the accurate segmentation of the peripheral
and transition zones. The evaluationwas performed using the
classification error from the voxel labelling.

Figure 4 illustrates the classification errors observed for
different noise levels.

Real data evaluation

Description

For clinical evaluation, we considered the abilities of the
method to segment cancerous regions. For this purpose, a
retrospective study was done. Multiparametric MR images
were collected from 15 patients using a Philips ACHIVA
1.5T machine. The data consisted of T2W images with a
0.48 × 0.48 × 4.00 mm3 voxel size (15 slices by volume),
T1WDCEMRI images with a 0.61×0.61×4.00 mm3 voxel
size (15 slices by volume, 20 dynamics) and an ADC map
computed from 2 DWI acquisitions using b=0 and b=600
with a 1.12 × 1.12 × 4.00 mm3 voxel size (15 slices by
volume). The DCE images were processed in-house using
software implementing Tofts’ model to generate the phar-
macokinetic Ktrans, Ve and Kep maps.

As described above, the MR volumes were registered and
interpolated to fit the T2W resolution.

All of the patients underwent radical prostatectomy. To
have a true diagnosis, the histological findings were corre-
lated with MRI data. The prostate specimens were stained,
fixed and sectioned according to theStanford protocol [28].A
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Fig. 3 The image simulation process. From left to right, original MRI
with predelineated peripheral and transition zones, the zones labelled
with their respective mean level, data with Gaussian noise and data after

a smoothing median filter. The first, second and third lines represent the
T2W, DWI and DCE images, respectively
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4.50%

5.00%

18.21 15.74 13.79 12.22 10.88 9.7 8.68 7.77

Classification error

SNR (dB)

Fig. 4 The results expressed as classification errors for labelling voxels
belonging to either the peripheral or transition zones from multisource
data with different noise levels

reconstructed histological map of each prostate was created.
The contours of the histological zones, as well as the outlines
of each cancer, were drawn on the slides under a microscope
(Fig. 5a). The results from these analyses were reported on
the MR images by manual correspondence with the histol-
ogy images (Fig. 5b). This task was performed by experi-
enced uro-radiologists, according to the method described in
[29]. The prostate was divided into eight regions of inter-
est by the octant technique. The top and bottomwere divided

into four quadrants, corresponding to the transition zone (TZ)
and peripheral zone (PZ) on the left and right. Within each
octant, the TZ, PZ and anterior fibromuscular stromal bound-
aries were traced. The tumour was located according to these
histological zone boundaries.

Out of 15 patients, a total of 43 tumours were consid-
ered, including 25 tumours with a volume greater than 0.5 cc
(Table 2).

Results

For quantitative evaluation, we measured the ability of the
method to distinguish tumour patterns from healthy tissue
patterns. For this purpose, at the end of the clustering process,
the resulting 3D map was merged with the anatomical T2W
MR images, allowing to the radiologist to label and associate
the different classes to the tissue classes (peripheral zone,
transition zone, etc.) and thus isolate the suspicious regions
(tumours). By comparing the results to the actual diagnosis
for each patient, the numbers of true positives, false positives,
true negatives and false negativeswere evaluated for different
regions of interest. Sensitivity and specificitywere computed,
respectively, as follows:

sensitivity = true positives

true positives + false negatives
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Fig. 5 a Histopathology image. b Cancer maps created from the histopathology images

Table 2 Histopathologic analysis of the 15 patients included in the
study

Patients Number of
cancers

Number of cancers with
volume >0.5 cc

1 3 2

2 3 1

3 2 1

4 4 2

5 3 1

6 2 2

7 4 3

8 3 1

9 4 3

10 2 2

11 2 1

12 5 3

13 1 0

14 1 1

15 4 2

specificity = true negatives

true negatives + false positives

The Dice (DSC) measure was also calculated as:

DSC = 2. |S ∩G|
|S| + |G|

where S and G are the segmentation and the ground-truth
results, respectively, while |.| operator denotes the pixels
number in the set.

Table 3 summarizes the obtained results. The mean sensi-
tivity and specificity were 65% (0–100%) and 81% (50–
100%), respectively. The worst scores corresponded to
tumourswith volumes less than 0.5 cc. This value is currently
accepted as a limit for tumour detection on MR imaging. By
considering only tumours with volumes greater than the 0.5

Table 3 Quantitative evaluation of the proposed method

Sensitivity Specificity Dice

All cancers 65% (0–100%) 81% (50–100%) 0.56 ± 0.12

Cancers >0.5 cc 70% (68–100%) 88% (82–100%) 0.65 ± 0.07

cc threshold, the mean sensitivity and specificity grew to 70
and 88%, respectively.

Figure 6 shows a case in which 3 classes were detected.
The result (Fig. 6f) depicts the class map, which highlights
a class for the peripheral zone, a class for the transition zone
tissue and a third class composed of data from 2 patterns
that could be interpreted as a tumour. Returning to the MR
images, one of these patterns was clearly depicted in the 4
images (T2W, ADC, Ktrans and Ve), while the second was
only visible as a hyper-vascular area on the Ktrans map. The
fusion allowed us to place these two patterns in the same
class. The ground truth image (G) revealed two tumours (cir-
cles).

Figure 7 depicts a case in which the analysis focused only
on the peripheral zone, using 3 sources: the T2W (Fig. 7a),
the Ktrans (Fig. 7b) and theADC (Fig. 7c)maps. Initialization
was performed starting with the ADC map. The result of the
fusion (Fig. 7e) is displayed in the superpositionmode for the
T2W image, whereas Fig. 7d shows the bba map. Both maps
(d and e) highlight a region corresponding to the optimal
fusion among the hypo-signal of the ADC map, the hyper-
signal of the Ktrans and theT2Whypo-signal. Figure 7f shows
the ground truth.

As a last experiments and in order to highlight to proposed
method efficiency, the obtained results were compared to one
of the literature approaches. As it was indicated in the “Intro-
duction” section and in Table 1, two methods classes exist:
supervised algorithms needing a learning step and unsuper-
vised algorithmswithout a learning step. Since our aimwas to
investigate a clustering technique to perform an unsupervised
analysis of the image, the closest method from Table 1 to the
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Fig. 6 Classification results—Example 1. a T2W image with the
region of interest to be analysed. Three tissues are defined: part of the
PZ, part of the TZ and a suspected area. b The ADC map. c The Ktrans
map. d The Ve map. e Basic belief assignment (bba) map showing the

membership degree of each voxel to the 3 classes. f Fusion map show-
ing the distribution of the 3 tissues. Each colour is associated with a
class. g The ground truth

proposed method is the one by Liu et al. [21]. This method is
unsupervised and acts on MP MRI. The fuzzy random field
modelling was implemented as described (Table 4).

Discussion: Conclusion

In this study, we described an unsupervised fusion scheme to
analyse multiparametric MR images. This proposed frame-
work was not designed for cancer detection or characteriza-
tion but rather as a tool to assist radiologists in analysingmul-
tisource data. Because it is fully automatic, it can be applied
in clinical routines for preliminary analysis and to fuse mul-
tiple MR sequences into a single 3Dmap in which the voxels
that exhibit similar behaviours in all of the sequences are
grouped into classes.

Themethod is based on a spatial registration and a normal-
ization step that standardizes the data, followed by a multi-
source clustering step that is driven by the evidential C-means

algorithm. A relaxation step is introduced in this algorithm
to integrate the voxel spatial neighbourhood information. As
a result of this relaxation, the basic belief for the assignment
of each voxel can be corrected using information from con-
nected neighbours, via a conjunctive combination of the bba
functions.

The combination of the ECM algorithm with this spatial
relaxation allowed us to perform clustering and segmenta-
tion on simulatedmultisource data with different noise levels
(Fig. 3), with accuracy of 95% (Fig. 4).

Two-level result reporting was proposed. The first level
used a single map that represented homogeneous tissue dis-
tribution, while the second level was a membership degrees
image. This image maps the source conflict regions.

We validated our method by analysing clinical data from
15 patients. The method had mean sensitivity and specificity
of 65 and 81%, respectively. These tests considered data
consisting of grouped tumours, with different volumes from
both the peripheral zone and the transition zone.
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Fig. 7 Classification results—Example 2. a T2W image with periph-
eral zone delineation. b The Ktrans map. c The ADC map. d The basic
belief map. f The fusion map of images (a), (b) and (c). Each colour is

associated with a class. The result is merged with the T2W (a) image.
f The ground truth

To our knowledge, there has been only one previously
published study, by Liu et al. [21], in which the authors used
an unsupervised classification method to diagnose prostate
cancer using multiparametric MR images. The method was
based on fuzzy Markov random fields, in which the parame-
ters were implicitly estimated and combined with the seg-
mentation process. However, the previous method was para-

metric because Gaussian distributions were assumed for the
classes. Our approachwas free from any assumptions regard-
ing class distributions.

Compared with the previously reported methods, which
have mainly been based on supervised classification algo-
rithms, our results might appear weak. Indeed, the super-
vised techniques described in Table 1 reported sensitivity and
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Table 4 Comparison of the proposedmethodwith the Lui et al. method

Sensitivity Specificity Dice

Proposed method 65% (0–100%) 81% (50–100%) 0.56 ± 0.12

Liu et al. method 63% (0–100%) 78% (52–100%) 0.50 ± 0.14

Experiments were realized by considering the complete cancer base

specificity scores of at least 85%. However, as discussed in
the “Introduction” section, supervised classification requires
an extensive learning process, and the most important issue
with this type of approach is that the learning step must be
updated each time the data change due to changes in the
acquisition protocol.

In a study by Ozer et al. [22], two supervised methods
were compared with an unsupervised algorithm (Liu et al.
[21]). It was concluded that the supervised algorithms per-
formed better than the unsupervised algorithm. In general,
when the data are similar to those used during the learn-
ing process, in which all of the classification parameters are
optimized, supervised approaches outperform unsupervised
approaches. This situation changes if new data are used. In
clinical practice, such a change often occurs due to changes
in the acquisition protocols, when new MR sequences para-
meters or new machine are used.

Without the inclusion of any learning or calibration steps,
the preliminary results for our unsupervised approach to
computer-aided analysis of multiparametric MR images
showed promising results. Moreover, the global framework
described here could be extended to other multimodality
sources. Indeed, photon emission tomography (PET) has the
ability to analyse quantitative biomarkers that assess a host of
physiological and biochemical tumour characteristics. Ultra-
sound elastography could also be valuable for tissue charac-
terization. The only limitation for the integration of all of
these sources into the proposed approach is spatial registra-
tion.

The fusion strategy employed in this study attributed
equally distributed confidence levels to the different image
sources. However, specific parameterization using differ-
ent weights is also possible. Tiwari et al. [30] investigated
the weighted combination of multiparametric MR imaging
for the evaluation of radiation therapy outcomes, and they
reported promising results. The weighted combination of
multiparametric or multimodality sources provided specific
confidence levels for each imaging modality, according to
its sensitivity and specificity. This combination could easily
be applied for basic belief assignment modelling. It could
also be used at different stages during initialization or before
final fusion and conversion of the bba functions into class
membership degrees.

Another important issue concerns validation. The evalu-
ation described here was a single-observer study. Currently,

we are preparing a more extensive evaluation with a more
relevant patient base and better selection criteria, such as lim-
itation to only one zone (peripheral or transition zones) and
consideration of only clinically significant tumours larger
than the threshold of 0.5 cc. This evaluation will be a multi-
observer study.

Lastly, it is understood that the proposed approach will
not replace supervised approaches. As clearly indicated, our
method is not a diagnostic technique. The development and
implementation of supervised techniques for distinguish-
ing aggressive tumours from benign lesions remain of great
importance to clinical practice.
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