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Abstract
Purpose In modern oncology, disease progression and
response to treatment are routinely evaluated with a series
of volumetric scans. The number of tumors and their vol-
ume (mass) over time provides a quantitative measure for
the evaluation. Thus, many of the scans are follow-up scans.
We present a new, fully automatic algorithm for lung tumors
segmentation in follow-up CT studies that takes advantage
of the baseline delineation.
Methods The inputs are a baseline CT scan and a delin-
eation of the tumors in it and a follow-up scan; the output is
the tumor delineations in the follow-up CT scan; the output
is the tumor delineations in the follow-up CT scan. The algo-
rithm consists of four steps: (1) deformable registration of
the baseline scan and tumor’s delineations to the follow-up
CT scan; (2) segmentation of these tumors in the follow-up
CT scan with the baseline CT and the tumor’s delineations as
priors; (3) detection and correction of follow-up tumors seg-
mentation leaks based on the geometry of both the foreground
and the background; and (4) tumor boundary regularization
to account for the partial volume effects.
Results Our experimental results on 80 pairs of CT scans
from 40 patients with ground-truth segmentations by a
radiologist yield an average DICE overlap error of 14.5%
(std = 5.6), a significant improvement from the 30% (std =
13.3) result of stand-alone level-set segmentation.
Conclusion The key advantage of our method is that it auto-
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matically builds a patient-specific prior to the tumor. Using
this prior in the segmentation process, we developed an algo-
rithm that increases segmentation accuracy and robustness
and reduces observer variability.
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Introduction

Radiological follow-up of tumors is the cornerstone of mod-
ern oncology. Disease progression and response to treatment
are routinely evaluated with a series of volumetric scans. The
number of tumors and their volume (mass) over time pro-
vides a quantitative measure for the evaluation. Today, most
radiologists rely on standards such as WHO and RECIST
to estimate the tumor mass based on the length and width
of tumor masses on a single scan slice. It is well known
that this estimate can be off by as much as 50%, especially
for tumors with multiple internal components and irregular
shapes. Previous research shows that true volumetric mea-
surements are the most accurate information for tumor mon-
itoring [1].

Tumor delineation is themain bottleneck of tumor volume
computation. Manual delineation is time-consuming, user
dependent, and requires expert knowledge. Semi-automatic
segmentation methods, e.g. live wire and region growing,
also require user interaction andmay lead to significant intra-
and inter-observer variability. Automatic tumor segmenta-
tion poses significant challenges and is used in the clinic for
only a handful of tumor types. Model-based methods rely
on tumor priors to guide the segmentation [2–4]. They are
also limited, as they require the construction of a generic
tumor prior, which may not be available and is by itself
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a research problem. Moreover, most methods process each
scan independently without considering that it is from the
samepatient. Recentworks incorporate the tumor delineation
of the first (baseline) scan as a patient-specific prior for the
automatic tumor segmentation of the next (follow-up) scan
[5]. These works show that the robustness and the tumor vol-
ume and tumor volume difference accuracy may be signifi-
cantly improved when the patient-specific tumor delineation
from the baseline is used.

Radiological lung tumors follow-up is of great practi-
cal importance, as lung cancer leads the mortality statistics.
Moreover, many other cancer types develop lungs metas-
tases. The quantification of the tumors volumes and their
changes in size and shape plays a key role in the treatment
decision-making process. Consequently, a reliable automatic
tool for accurate follow-up assessment may contribute to the
treatment success.

In this paper, we present a new, fully automatic algorithm
for lung tumor segmentation in follow-up CT studies. The
inputs are the baseline scan, the tumor’s delineations, and
the follow-up CT scan; the outputs are the tumor’s delin-
eations in the follow-upCTscan.Thedelineationof the tumor
in the baseline scan can be obtained by automatic or semi-
automatic segmentation methods. This additional one-time
effort is compensated by the time and accuracy gains on the
analysis of the follow-up series. The algorithm consists of
four steps: (1) deformable registration of the baseline scan
and tumor’s delineations to the follow-up CT scan; (2) seg-
mentation of these tumors in the follow-up CT scan using the
baseline tumor’s delineations and statistical intensity mod-
els of the background and the foreground of the follow-up
CT; (3) detection and removal of tumors segmentation leaks
using geometry-based methods that exploit the geometry of
both the tumor (foreground) and the adjacent anatomy (back-
ground); and (4) tumor boundary regularization to correct the
partial volume effects.

Our method has the following advantages over exist-
ing ones: (1) it is fully automatic; (2) it builds a strong
patient-specific prior from the baseline tumor delineation
and statistical model of the foreground/background in the
follow-up image that help improving segmentation robust-
ness and accuracy; (3) it performs local deformable reg-
istration to model more accurately the tumor transforma-
tion; (4) it corrects for tumor segmentation leaks caused
by weak/nonexistent tumor boundaries in the images with
a new method based on the pulmonary surface geome-
try; and (5) it accounts for segmentation errors resulting
from the partial volume effect. Our experimental results
on CT scans from 40 patients with ground-truth segmen-
tations generated by a radiologist yields an average overlap
error of 14.5% (std = 4.1), a significant improvement of
the 30% (std = 13.3) of stand-alone level-set segmenta-
tion.

Related work

The three most relevant research areas to our work are as
follows: (1) lung follow-up studies; (2) lung tumor segmen-
tation, and (3) lung scans registration.Webriefly discuss each
next.

Lung follow-up studies

Hollensen et al. [6] address the task of follow-up studies of
lung tumors. Their method starts with manual rough posi-
tioning followed by rigid registration between the baseline
and the follow- up scans. The baseline delineation is then
used as the initialization of the follow-up segmentation with
the electric flow lines and min graph-cut methods. This
method, which is the closest to ours, is demonstrated on a
small database of ten cases and does not handle segmenta-
tion leaks to the pleural surface or blood vessels. Opfer et al.
[2] describe a semi-automatic method for lung tumors delin-
eation in follow-up studies in which the user marks points
on the baseline image. With multi-resolution rigid registra-
tion, the method then transforms the points to the follow-up
scan, where the user can use them for model fitting. Themain
drawback is the rigid registration which is not accurate for
lungs. Also, this method requires user delineation on both
images.

Lung nodules segmentation and their radiological follow-
up have received significant attention. Unlike lung tumors,
lung nodules usually have a known diameter and a spheri-
cal shape, so their stand-alone segmentation is easier than
that of lung tumors. For example, Brown et al. [7] present a
method inwhich the baseline and follow-up lungnodules seg-
mentation are performed independently on the scans without
using a patient-specific prior. Kuhnigk et al. [8] generate lung
nodule segmentations by region growing with a fixed lower
threshold followed by morphological operations to remove
leaks to vessels. They then use the nodule convex hull to
remove leaks to the pleural surface. Reeves et al. [9] describe
a method that relies on baseline lung nodule segmentation to
determine the region of interest in the follow-up scan. Adap-
tive thresholding is then performed, followed by the removal
of leaks to pleural surface using an oriented plane.

The VOLCANO’09 lung nodules follow-up challenge
[10] comprises 13 groups and 50 datasets with no base-
line delineation. Among the participating groups, Kostis et
al. [11] present a method based on thresholding and con-
nected component analysis. Segmentation leaks to vessels
are corrected with morphological opening adjusted by the
user. Pleural surface attachments are removed with a sepa-
rating plane. This is adequate for specific areas of the pleural
surface and for small nodules, but not for larger tumors. Jira-
patnakul et al. [12] model the pleural surface with a parabola
and use it to complete the lung nodules fuzzy and/or missing

123



Int J CARS (2015) 10:1505–1514 1507

boundaries. The parabolic surface is estimated using nodule-
specific heuristics and is used to remove outliers. While this
leak removal method is similar to ours, their heuristics may
not hold for lung tumors due to their irregular shape and inter-
nal components, and location variability. Recently, Chen et
al. [13] present a method for the segmentation and identifi-
cation of solitary pulmonary nodules on follow-up CT scans.
This method performs affine and non-rigid co-registration of
follow-up scans and then matches the detected nodules in the
follow-up scan with a generic similarity measure.

Lung tumor segmentation

Methods for individual stand-alone pulmonary tumors seg-
mentation include thresholding, region growing, and level
sets, often combined with advanced image-processing meth-
ods. The first challenge of these methods is the detection
of the tumors. Some methods require the user to produce
an initial delineation or require the known tumor location
from the baseline scan. Other methods rely on the PET scan,
in which automatic tumor detection, e.g., by thresholding, is
much simpler. For PET/CT scans, Gribben et al. [14] propose
to use the PET scan for tumor detection, followed by unsu-
pervised Maximum A Posterior Markov Random Field on
the registered CT scan values. Kanakatte et al. [16] also use
the PET scan for tumor detection, but combine thresholding
and components analysis to produce the final segmentation.
Plajer et al. [3] classify lung tumors in stand-alone CT scans
into five categories according to the nearby structures and
apply mixed internal/external force segmentation and clus-
tering. Awad et al. [4] use multi-parameter level set with a
sphere shape prior. The method requires the manual adjust-
ment of up to 20 internal parameters. Their validation on 21
tumors yields a volume overlap error of 30%, which may be
excessive for disease progression evaluation. Gu et al. [16]
propose a method that uses region growing from multiple
seeds followed by voting. Their method does not correct seg-
mentation leaks. Moreover, their validation study on a small
database of 15 scans focuses only on robustness to seed loca-
tion.

Lung scans registration

Lung CT scans registration is challenging because the lung
deformations are non-rigid and because of the sliding condi-
tions on the lungs surface [17]. A variety of methods that rely
on intensity and/or geometrical information have been pro-
posed [18]. In theEMPIRE10 lungs registration challenge, 24
methods were tested on 30 datasets [19]. The highest scoring
method by Song et al. [20] uses topology-preserving diffeo-
morphic transformations. Modat et al. [21] describe a block-
matching approach with free-form deformation. Lung reg-
istration methods usually produce good registration results

between the lungs, butmay incur in large errorswhenused for
tumor registration. In many cases, an additional fine-tuning
step is required to achieve good registration in the tumor
area.

Methods

The basic premise of our method is that the radiologist-
validated tumor delineation in the baseline scan is a high-
quality prior for the follow-up scan. The algorithm consists
of four steps, which we describe in detail next.

Deformable registration of the baseline and follow-up

The initial step is to register the baseline CT scan and tumor’s
delineation with the follow-up scan. The resulting transfor-
mation defines the approximate location of the tumormass in
the follow-up and obviates the need for a separate stand-alone
tumor detection algorithm. It is also used to build a tumor
intensity prior and background intensity prior to delineate
the corresponding tumor in the follow-up scan.

We start by performing a deformable registration between
the baseline and follow-up scans in the lungs region of inter-
est (ROI), which is automatically detected in the baseline
scan. This lung ROI global deformable registration consists
of a rigid affine registration followed by a deformable regis-
tration with B-splines. This stage usually registers the lungs
properly, although the tumor itself may be poorly registered,
especially for large changes in the tumor volume. In this
case, the new tumor center of mass might be outside of the
registered tumor.

To overcome this challenge, we perform a separate local
deformable registration for each tumor. The baseline tumor
delineation is enclosed in a bounding box that defines the
local tumor ROI. The follow-up ROI is determined from
the baseline tumor by projecting it to the follow-up scan
using the global transformation, enclosed in a bounding box
and with an added margin to account for tumor changes and
residual registration errors. This allowsmodelingmore accu-
rately the different tumors change rates. This local registra-
tion is performed for each baseline tumor in three stages:
(1) translation-only registration to account for large changes
in the tumor volume; (2) rigid affine registration; and (3)
deformable registration by mutual information.

Note that although this registration step yields acceptable
priors for the tumor location and the tumor shape, it is not
always sufficiently accurate for specific cases and clinical
applications as shown by the detailed evaluation of these
intermediate results described in “Experimental results” sec-
tion. To obtain the desired coverage, robustness, and accu-
racy, we perform follow-up tumor segmentation as described
next.
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Fig. 1 Illustration of the segmentation process stages: a the baseline
tumor delineation (red) overlaid on the corresponding follow-scan CT
slice after registration; b maximum likelihood follow-up tumor seg-
mentation (red) with leaks; c segmentation boundary B (red) as seen

from the center point; d 3D view of the ray casting result; e follow-up
tumor boundary (red) after leaks removal; f distance map from follow-
up tumor boundary (red); g watershed regions, and; h final follow-up
tumor segmentation

Initial follow-up tumor segmentation

The initial follow-up tumor segmentation inside theROI con-
sists of two steps: initial segmentation followed by leaks cor-
rection. The segmentation is performed using a statistical
model of the foreground (tumor) and the background (other
structures). The foreground parameters are computed from
the prior voxels in the follow-up scan; the background para-
meters are computed from the prior neighborhood voxels.
Note that we do not use voxels from the baseline image, as
their intensity values may differ considerably from those of
the follow-up scan, e.g., due to differences in scanning pro-
tocols and contrast agent variability.

Since the registration step in “Deformable registration of
the baseline and follow-up” section is not always accurate
(Fig. 1a), the foreground voxels may contain background
voxels and vice versa. To remove them, we model the inten-
sity distribution of the tumors and the other structures as a
mixture of two Gaussian distributions, classify the voxels
according to these two Gaussians using the k-means algo-
rithm, estimate the parameters of each Gaussian, and remove
the Gaussian that corresponds to the registration error. For
the foreground, we select from the foreground Gaussians the
one with the highest mean. Note that the eventual presence in
the ROI of small regions that include parts of bones does not
significantly influence its parameters. For the background,
we select from the two background Gaussians the one with
the lowestmean. Next, we use these two representativeGaus-
sians of the foreground and the background to compute the
initial tumor segmentation by maximum likelihood estima-
tion. Finally, we choose the connected component that is the

closest to the prior center of mass and remove all other com-
ponents.

Segmentation leaks removal: bottleneck-shaped leaks

Since the tumors may be attached to neighboring structures
with similar intensities, any intensity-based segmentation
method, including ours, will include parts of these structures
in the segmentation (Fig. 1b). Our goal is to automatically
detect for each tumor these erroneous regions, called segmen-
tation leaks [22], and automatically correct them. For this
purpose, we use geometric boundary models for the tumor
and the background structures.

We correct segmentation leaks to neighboring vessels, to
the pleural wall, and/or to the diaphragm with the back-
ground geometric model. Note that we cannot use the base-
line shape as a prior, as it can change dramatically during the
tumor growth/shrinkage. We automatically detect and cor-
rect the segmentation leaks in two stages. The first stage
handles bottleneck-shaped leaks; the second stage handles
leaks caused bymissing boundaries.We describe bottleneck-
shaped leaks correction in this section and missing boundary
leaks in the next one.

We model the tumor as a star-shaped structure. In a star-
shaped structure, the kernel is the set of points that can be
connected by a straight line to each point on the tumor surface
without leaving the tumor volume.Weobserve that themajor-
ity of lung tumors are star-shaped. This empirical observation
is based on our datasets, on the experience of our senior radi-
ologist, and on the observation in Awad et al. [4].

123



Int J CARS (2015) 10:1505–1514 1509

We use our previous method for the detection and removal
of bottleneck-shaped leaks [22]. For tumors that are not star-
shaped, our method segments out the parts of the tumor that
cannot be seen from the kernel.

The input to this step is the initial tumor segmentation
with leaks and a point c = (cx , cy, cz) in the segmented
tumor kernel. We choose this point as the center of mass of
the segmentation prior which is the baseline tumor registered
and projected onto the follow-up scan. If this center point
turns to be outside the segmentation prior, we choose the
closest point to that is inside the segmentation prior. We find
the boundary of the tumor that can be seen from the center
c by dense ray casting by projecting a ray p from c in all
3D directions and recording the location of the last voxel
before the ray leaves the segmentation volume S as part of
the segmentation boundary B:

pi ∈ B i f f pi ∈ S, pi+1 /∈ S

s.t.

s = max
(|rx − cx | ,

∣∣ry − cy
∣∣ , |rz − cz |

)

d = r − c

s
pi = c + id

(1)

where pi is a voxel location on the ray p, r = (rx , ry, rz)
is a voxel on the image boundary, s is the step size, and d is
the smallest step size in each direction. Note that we choose
a small step size that depends only on the image boundaries
to ensure that the ray will not miss the tumor boundary. The
result is the segmentation boundary B as seen from c (Fig. 1c,
d).

Small segmentation leaks are detected as follows. When
casting rays from the tumor center outwards, the rays will
stop at sharp boundary segment. However, when the bound-
ary segments are fuzzy or missing altogether, they will con-
tinue to adjacent, further away and disconnected boundaries,
thus causing segmentation leaks. Consequently, the bound-
aries that result from the leaks will not be connected to the
tumor boundary, resulting in a discontinuity. In 3D, the actual
tumor boundary will form a single connected component
(possiblywithmissing boundary segments), regardless of the
number of leaks. To remove these leaks, we perform a con-
nected components analysis on the set B (Eq. 1) and select the
largest connected component that surrounds point c (Eq. 1)
to be the segmentation known boundary (Fig. 1e). The miss-
ing boundaries of this known boundary are the holes that
caused the segmentation leaks. We remove them by filling
the boundary holes as follows.

We first compute the voxels Euclidean distance map from
the known boundary using the MATLAB function bwdist
(Fig. 1f). Next, we identify the watershed regions in this dis-
tance map (Fig. 1g) using the MATLAB function watershed
[23]. Finally, we select the regions whose intersection with

the known segmentation is greater than a threshold of 10%,
chosen empirically after testing several thresholds on all the
datasets (Fig. 1h). A voxel belongs to the known segmenta-
tion if it is on a ray connecting the center point c and a point
in the known boundary. Figure 1 illustrates this process.

Segmentation leaks removal: missing boundaries

A second type of segmentation leaks is caused by missing
tumor boundaries. In this case, there is no prior indication
where the actual tumor boundary is, regardless of what its
prior shape is, as computed in the previous step. The only
indication about the missing tumor boundary segments loca-
tions comes from the adjacent tissue, usually the chest wall.
For example, when the connection of the tumor to the chest
wall is at an obtuse angle (Fig. 2), the first leaks removal
method (section “Segmentation leaks removal: bottleneck-
shaped leaks”) will fail to correctly complete the missing
boundary. Thus,weuse a local geometric prior of the adjacent
structures to determine the missing boundary and remove the
leak.

We model the local boundary of these adjacent structures
as a parabolic surface. This boundary shape approximation
holds for the pleural surface, the diaphragm, and parts of
the heart walls. In the absence of clear boundary between the
tumor and the leak, any tumor boundary might be inaccurate.
We choose a parabolic surface to remove the leak since it is
similar to the way a human delineator would complete the
missing boundary segment. We empirically found that this
is better than using the shape prior defined by the baseline
tumor delineation, e.g., as described in [15].

To create thismodel, we use the tumor segmentation of the
previous stage and find its boundary points (Fig. 2a, b). These
boundary points can be inliers from the adjacent structures
borders or outliers from the tumor or vessels.

Weapply theRANSACoutlier detection frameworkwith a
parabolic surface model to simultaneously find the parabolic
surface parameters and the inliers (Fig. 2c). A parabolic sur-
face is the set of points {vi = (xi , yi , zi )} such that:

z = f (x, y) = p1x
2 + p2 xy + p3y

2 + p4x + p5y + p6

(2)

We also require the cloud of points to be monotonic in the
z-axis direction. To achieve this, we first rotate the cloud of
points so that its axis of smallest variance, obtained from
principal component analysis (PCA), is aligned with the z-
axis. Next, we fit a parabolic model to the resulting points
cloud. The parabolic model P minimizes the squared error
of

AN×6P6×1 = ZN×1

123



1510 Int J CARS (2015) 10:1505–1514

Fig. 2 Illustration of the background geometric modeling stages: a
background and foreground boundary points (red) on a slice; b 3D
model of the boundary points; c RANSAC result: green parabolic sur-

face, blue inliers, red outliers; d one slice with parabolic surface; e
segmentation results: red tumor, yellow parabolic surface, green leak; f
3D visualization

where

P =
(
ATA

)−1
ATZ (3)

AN×6 =
⎡

⎢
⎣

x21 x1y1 y21 x1 y1 1
...

x2n xn yn y2n xn yn 1

⎤

⎥
⎦ (3)

and ZN×1 = (z1, . . ., zn)T . For each 3D point (x, y, z), we
substitute the resulting matrix P and (x, y) in Eq. (2) and
obtain z′, the projection of the point on the parabolic surface
in the (rotated) z-axis direction. Thus, |z′ − z| is the distance
of the reconstructed point from the parabolic surface in the
direction of the z-axis. Every point whose distance exceeds
a predefined threshold is considered an outlier.

We repeatedly randomly choose six points with the
RANSAC method. We estimate the parabolic surface para-
meters P from the points using Eq. (3) and use the resulting
P to find which points are inliers. Finally, we choose the par-
abolic surface with the largest set of inliers. The final refine-
ment step iteratively estimates the parabolic surface parame-
ters using the inliers points from the previous iteration. It then
computes a new superset of inlier points that agree with the
new parabolic surface. The iterations stop when the inliers
set size remains the same. Finally, we remove the part of the
tumor that is separated from the center c by the parabolic
surface (Fig. 2d–f).

Tumor boundary refinement

In the last step, we address the small segmentation errors
caused by the partial volume effect (PVE), which blurs
tumors boundaries. Since the dynamic range of a CT scan is

wider than in regular images, when a radiologist delineates a
tumor, he/she usually determines a lower and an upper thresh-
old to enhance the tumor boundaries. Choosing slightly dif-
ferent thresholds may change the tumor boundary and thus
its volume (Fig. 3a). Therefore, the PVE may cause vari-
ability in the tumor delineation by different radiologists and
segmentation algorithms.

To reduce the tumor boundaries variability resulting from
the PVE, we generate several possible segmentations and
choose the best one as follows. First, we compute the vari-
ance map of the image from the variance of a small window
around each voxel (Fig. 3b). Then, we compute several seg-
mentations by incrementally dilating or eroding by one voxel
the tumor segmentation (Fig. 3c). For each of the alternative
segmentations, we compute the mean variance of its bound-
ary voxels using the variancemap and choose the onewith the
highest mean variance (Fig. 3d). This reduces the variability
between different segmentations of the same tumor in dif-
ferent scans and/or by different observers. Specifically, since
the radiologist co-author approved our ground-truth delin-
eation after the PVE was treated using the above-mentioned
method, it also reduced the PVE-related variability in our
data, thereby increasing the overall accuracy of our results.

Experimental results

We evaluate our method on a database of clinical CT scans
from 40 patients from the Hadassah Medical Center. The
scans were acquired on a 64-row CT Phillips Brilliance 64
scanner and are of size 512×512×350–500 voxels, with
spatial resolution of 0.6–1.0×0.6–1.0×0.7–3 mm, with
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Fig. 3 Illustration of the partial volume correction process: a original scan with tumor segmentation so far; b variance map; c nine possible
segmentations; d the final segmentation

contrast agent administration. The cases were carefully cho-
sen from the hospital archive by the radiologist co-author to
represent the variety of patient ages, conditions, and patholo-
gies. The mean time between the baseline and the follow-up
scans is 4.9 (std = 2.4) months. The mean tumor volume
is 43.8 (std = 49.9) ml, and the mean volumetric change is
17.8 (std 29.7) ml. Of the 40 scans, 32 scans include tumors
adhered to the lung wall and eight show isolated tumors. An
expert radiologist produced ground-truth delineations of the
tumors in both the baseline and the follow-up CT scans.

For the evaluation, we use each pair of CT scans twice:
forward (from baseline to follow-up) and backwards (from
follow-up to baseline). Although the backwards direction is
not a real clinical case and is correlated to the pair in the
forward direction, it provides additional data and attests the
robustness and accuracy of our method. To prevent bias, we
present the results for the forward and backwards pairs sep-
arately.

We compare the results of our method with the ground
truth by computing the standard DICE volumetric overlap
error (VOE) and the average symmetric surface distance
(ASSD), which are defined as follows:

DICE (X,Y ) = 2 |X ∩ Y |
|X | + |Y |

ASSD (X,Y ) = 1

|X |
∑

p∈X
minp2∈Y (|p − p2|)

All segmentation steps were done with Elastix [24]. For
the B-spline, we chose a grid spacing of 12 mm. For the

watershed region, we used the MATLAB functions ‘bwdist’
and ‘watershed’ For the watershed region selection, we set
the threshold to 10%, chosen ampirically. We used our own
version of theRANSACalgorithm.We set theRANSAC iter-
ations bound to 10,000, with a threshold of three voxels. For
VOE regularization (section “Tumor boundary refinement”),
we compute the variancemap of the image on a local 5×5×5
window around each pixel. We then chose the best from nine
possible segmentations as the final result.

Processing times range between 5–10 min (depending on
the scan data size and the tumor size) on a PC with Intel
Xenon 3.07 GHz Processor running 64-bit Windows 7. Note
that the computation complexity of all of the method stages
is linear in the size of the input.

We compare the results of our method to the fast marching
segmentation method [25]. Note that despite the numerous
publications in this field, we could not find a publicly avail-
able state-of-the-art lung tumors segmentation method and
datasets for quantitative evaluation and comparison.

Fast marching requires a seed that serves as the origin of
the propagation. We chose the center of mass of the ground-
truth tumor segmentation as the seed. For the propagation
speed function, we chose the inverted (minus) gradients map
values. Since each iteration may yield a different segmenta-
tion, we stop the propagation when 90% of the ground truth
was segmented. Note that although we use the fast march-
ing method without a shape prior, we obtain similar or bet-
ter results than other state-of-the-art methods that use fast
marching or level sets with shape prior. For example, Awad
et al. [4] report similar error measures to those we obtained
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Table 1 Experimental results of 40 forward cases and 40 backwards cases, with a comparison to Fast Marching method

Forward VOE (%) Forward ASSD (mm) Backwards VOE (%) Reversed ASSD (mm)

Ours FM Ours FM Ours FM Ours FM

Mean 14.47 26.84 1.03 2.73 15.37 33.28 1.03 4.32

Std 4.14 7.63 0.55 1.56 6.79 16.54 0.62 3.57

Min 6.32 14.86 0.17 0.69 6.35 12.72 0.33 0.65

Max 23.25 44.2 2.46 8.54 38.37 82.1 3.07 16.09

VOE, volume overlap error in %; ASSD, average symmetric surface distance in mm; Ours, our method; FM, fast marching method

Table 2 Contribution of the registration step to the final segmentation results

Forward VOE (%) Forward ASSD (mm) Backwards VOE (%) Reversed ASSD (mm)

Final Registration only Final Registration only Final Registration only Final Registration only

Mean 14.47 24.53 1.03 1.34 15.37 31.87 1.03 1.47

Std 4.14 12.95 0.55 2.02 6.79 16.15 0.62 1.24

Min 6.32 9.64 0.17 0.29 6.35 8.96 0.33 0.26

Max 23.25 76.86 2.46 11.18 38.37 70.9 3.07 5.88

The table shows the results after the registration step only and the results after both the registration and the segmentation step for all 40 forward
cases and 40 backwards cases.VOE, volume overlap error in %; ASSD, average symmetric surface distance in mm; Final, results after registration
and segmentation; Registration only, results after the registration step only

with the generic fast marching method. Note that we “help”
the fast marching method by using the ground truth for both
seeding and for the termination criterion—without it, the fast
marching algorithm results most likely be worse.

Table 1 summarizes the results. Our method reduced the
VOE and standard deviation from 30% (std = 13.3) for
the level-set method to 14.9% (std = 5.6), an improvement
of 50.4% (std = 57.5%). It reduced the ASSD and stan-
dard deviation from 3.5 mm (std = 2.88) for the level-set
method to 1 mm (std = 0.59), an improvement of 71.4%
(std = 79.55). The minimum and maximum values were
also improved considerably. TheminimumVOEwas reduced
from 14.86 to 6.32%, an improvement of 57%. The mini-
mumASSDwas reduced from 0.69 to 0.17 mm, an improve-
ment of 75%. The maximum VOE was reduced from 44.2
to 23.25%, an improvement of 47%. The maximum ASSD
was reduced from 8.54 to 2.46 mm, an improvement of 71%.
When we manually selected the best stopping threshold for
each case, by comparing the result after each iteration to the
ground truth, the fast marching method results were VOE of
26.2% (std = 8.4) and ASSD of 1.4 mm (std = 1.6).

To quantify the contribution of the segmentation step, we
compute the accuracy of the patient-specific prior (Table 2).
The individual contribution of the segmentation step can be
interpreted as the registration error in terms of the volume
overlap error. The VOE and ASSD after step 1 are 35.8%
(std = 17.6%) and 4.3mm (std = 6.6) respectively. This is
a good registration result but cannot serve as the final seg-
mentation result since it is more than twice the error of the
final segmentation.

To quantify the contribution of the patient-specific prior,
we left out the baseline scan and tumor’s delineations and
performed segmentation alone with the prior as a sphere of
radius 30 voxels centered at the center of mass of the tumor
ground truth. The segmentation failed in eight out of 80 cases
and yielded VOE and ASSD errors of 18.6% (std = 7.3%)
and 1.27mm (std = 0.9) respectively for the other 72 cases.
This shows that our segmentation method can be used as a
stand-alone application for lung tumor delineation, without
the need for a baseline scan and/or baseline tumor delin-
eation, possibly with reduced robustness and accuracy. For
example, it can be used for the tumor delineation of the base-
line scan. Figure 4 presents examples for the results on three
tumors. For each tumor, the inputs are a baseline scan with
radiologist-approved delineation (Fig. 4a–c) and a follow-up
scan (Fig. 4d–f). The results are tumor segmentation on the
follow-up scan (Fig. 4h–m). Notice the effect of the parabolic
surface on the final tumor shape.

The main conclusion of our experimental results is
that both the patient-specific baseline prior and the local
deformable baseline tumor registration are key to achieving
accuracy and robustness.

Conclusion

Wehave presented a new automatic lung tumor segmentation
method for follow-up CT studies. The inputs to the method
are baseline CT scan of the lungs with delineation of the
tumor and a follow-up scan. A cascade of registration steps
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Fig. 4 Three examples of datasets with results. a–c Baseline scan showing the radiologist delineation; d–f follow-up scan; g, h follow-up scan
showing the results of our method; i–l 3D model of the tumor

is used to transform the delineation into the follow-up scan,
thereby creating a strong tumor prior. The initial follow-up
tumor segmentation is then produced based on this prior by a
statisticalmethod.A two-stage automatic segmentation leaks
detection and removal use geometrical models of the fore-
ground and background. The final step reduces the tumor
boundaries variability caused by the partial volume effect by
variation analysis.

The key contribution of our work is in the use of a
patient-specific model for the tumor segmentation prior. This
improves the segmentation robustness by creating patient-
specific statistical models of the tumors and the background.

This observation is supported by the experimental study in
which the segmentation step was used with a weak sphere
shape prior. The failure rate was 10% instead of 0%, and the
error rate was 25% higher. Our registration method includes
an additional tumor-specific local deformable registration
step that refines the model prior. The segmentation leaks
removal step relies on anatomic geometric constraints on
the tumor and the adjacent structures. Note that this type
of background geometric knowledge is difficult to integrate
into classic active contours methods. The modeling of the
adjacent structures as a parabolic surface simulates the way
a human would complete the missing boundary between the
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structures. The final step addresses the delineation variability
caused by the PVE.

Our results on 40 pairs of CT scans, each used forward
and backwards, show a significant improvement over the fast
marchingmethod andmay provide relevant clinicalmeasure-
ments for lung tumors.We plan to apply the proposedmethod
to other organ segmentations from various imaging modali-
ties.
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