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Abstract
Purpose Realistic modelling of soft tissue biomechanics
and mechanical interactions between tissues is an important
part of biomechanically-informed surgical image-guidance
and surgical simulation. This submission details a contact-
modelling pipeline suitable for implementation in explicit
matrix-free FEM solvers. While these FEM algorithms have
been shown to be very suitable for simulation of soft tissue
biomechanics and successfully used in a number of image-
-guidance systems, contact modelling specifically for these
solvers is rarely addressed, partly because the typically large
number of time steps required with this class of FEM solvers
has led to a perception of them being a poor choice for sim-
ulations requiring complex contact modelling.
Methods The presented algorithm is capable of handling
most scenarios typically encountered in image-guidance.
The contact forces are computed with an evolution of the
Lagrange-multiplier method first used by Taylor and Flana-
gan in PRONTO 3D extended with spatio-temporal smooth-
ing heuristics for improved stability and edge–edge collision
handling, and a new friction model. For contact search, a
bounding-volume hierarchy (BVH) is employed, which is
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capable of identifying self-collisions bymeans of the surface-
normal bounding cone of Volino and Magnenat-Thalmann,
in turn computed with a novel formula. The BVH is further
optimised for the small time steps by reducing the number of
bounding-volume refittings between iterations through iden-
tification of regions with mostly rigid motion and negligible
deformation. Further optimisation is achieved by integrating
the self-collision criterion in the BVH creation and updating
algorithms.
Results The effectiveness of the algorithm is demonstrated
on a number of artificial test cases and meshes derived from
medical image data. It is shown that the proposed algo-
rithm reduces the cost of BVH refitting to the point where
it becomes a negligible part of the overall computation time
of the simulation. It is also shown that the proposed surface-
normal cone computation formula leads to about 40% fewer
BVH subtrees that must be checked for self-collisions com-
pared with the widely used method of Provot. The proposed
contact-force formulation and friction model are evaluated
on artificial test cases that allow for a comparison with a
ground truth. The quality of the proposed contact forces is
assessed in terms of trajectories and energy conservation;
a <0.4% drop off in total energy and highly plausible tra-
jectories are found in the experiments. The friction model
is evaluated through a benchmark problem with an analyt-
ical solution and a maximum displacement error of 8.2%,
and excellent agreement in terms of the stick/slip bound-
ary is found. Finally, we show with realistic image-guidance
examples that the entire contact-modelling pipeline can be
executed within a timeframe that is of the same order of mag-
nitude as that required for standard FEM computations.

Keywords Contact modelling · Collision detection ·
FEM · Total Lagrangian explicit dynamics · Soft tissue
biomechanics
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Introduction

FEM modelling has for some time now played an impor-
tant role in surgical simulation [1,32] and is finding its way
into surgical guidance [3,5]. Explicit FEM solvers, particu-
larly such based on the total Lagrangian explicit dynamics
(TLED), have been shown to provide a versatile and real-
istic means of simulating soft tissue solid dynamics, which
is at the core of such guidance systems [19,26,32]. Their
decoupling of the degrees of freedom also makes them ideal
candidates for parallelisation, which in recent years with the
advent of general-purpose GPUs and multi-core mainstream
CPUs has proved to be a great source of cost-efficient exe-
cution speed [34,35].

They do, however, suffer from the inherent shortcoming
of only allowing for small time steps, which can make sim-
ulations involving large-deformation contact modelling pro-
hibitively expensive mainly due to the costs associated with
contact search. Another drawback is that, compared with
implicit methods, little literature is available on contact mod-
elling for these solvers. The commonly encountered ones are
the penalty force and the Lagrange-multipliermethod of Tay-
lor and Flanagan, and Heinstein et al. [14], among the force-
based methods [37], and kinematic contacts that rely on a
direct correction of displacements and are very efficient, but
are only capable of modelling contacts between deformable
and rigid bodies [11]. All of these are typically implemented
as node-segment contact algorithms only capable of detect-
ing penetration of mesh nodes into surfaces, which requires
two detection passes to achieve some degree of separation of
the two surfaces in contact, and even with those two passes,
mesh edges are still free to intersect. Node-segment methods
must rely on denser meshes to avoid the latter type of mesh
intersection which in turn entails more and computationally
costlier time steps.

The algorithm presented in this paper was implemented
as the general- purpose contact-modelling component of
the open-source1 TLED-based FEM solver package Nifty-
Sim [19]. It attempts to carry over some of the developments
made in the context of implicit contact-modelling algorithms
to explicit methods, such as being able to process contacts
in a single pass as with segment–segment methods [31],
provided the meshes in contact have a similar resolution.
Spatial smoothing, which attempts to alleviate the stability
issues caused by sudden changes in the direction of contact
forces arising from the use of coarse, piece-wise linear con-
tact surfaces has foundwidespread adoption in implicitmeth-
ods [30,38], is also employed. Further stability improvement
is achieved by gradually slowing down approaching contact
surfaces in close proximity, thus adding temporal smoothing
to the method.

1 http://niftysim.sourceforge.net.

Another major area of focus in this work is the reduc-
tion of contact search costs through bounding-volume hier-
archies (BVH) with novel, time-saving update and self-
collision detection heuristics. For self-collision detection, we
employ the surface-normal bounding-cone heuristics devel-
oped byVolino andMagnenat-Thalmann [36]. New formulas
for the computationof the bounding cones, viaProvot’s recur-
sive algorithm [29], are introduced. Another novel aspect
is how the self-collision criterion is deeply integrated in
determining the topology of the BVH and the decision on
when to update BVH subtrees. The BVH updating algo-
rithm is specialised for the typically small time steps of
explicit methods, in which it comprises a method for the
characterisation of the deformation the simulation geom-
etry has undergone and identification of areas of negli-
gible deformation and rigid motion, and updating of the
BVH of the latter parts by means of rigid geometrical
transforms.

The proposed method is further notable due to its versatil-
ity; it allows for modelling of contacts between the surfaces
of two solid meshes, self-collisions, contacts between solid
and membrane meshes, and deformable bodies interacting
with moving or fixed rigid ones, and a new, simple friction
model is available, too.

This paper is organised as follows: After a brief overview
of related previous work (section “Related work”), sec-
tion “Total Lagrangian explicit dynamics” contains an
introduction of the underlying FEM algorithm, the total
Lagrangian explicit dynamics. This is followed by a detailed
discussion of the contact-modelling pipeline that is subdi-
vided into a relatively short part describing the contact sur-
face data structures (section “Contact surfaces”) and two
larger sub-sections, the first of which deals with the con-
tact search (section “Contact search”). Novel modifications
to the self-collision detection method and the new BVH cre-
ation and update strategies are discussed in this order, in this
part of the paper. The contact model is developed in sec-
tion “Contact-force calculations”; it starts with a discussion
of penetration response forces for node–facet and edge–edge
collisions, followed by a discussion of the temporal smooth-
ing and the friction model. In section “Experiments”, the
BVH algorithms are validated in the order in which they are
presented by comparison with some alternatives that swap
out some of the novel aspects for simpler or more estab-
lished methods, on mostly synthetic test cases. The contact
model is validated in terms of energy and momentum con-
servation, and plausibility of the trajectories resulting from
impacts (section “Contact forces”). In section “Friction”, the
friction model is validated on a benchmark problem with an
analytical ground truth taken from the literature. Finally, a
demonstration of the entire pipeline’s performance on two
image-guidance problems is provided (section “Examples
from image-guidance”).
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Related work

Classically, the algorithms for FEM contact modelling are
node-segment approaches [37],where one of the two surfaces
in contact is assigned the role of the slave surface, the other
is called the master surface. The only type of mesh inter-
penetration node-segment approaches can resolve are those
of the master surface by slave nodes, which in turn necessi-
tates two contact search and resolution steps with alternat-
ing master-slave roles for every time step. The underlying
principle of mesh intersection handling with node-segment
methods is to project slave nodes onto the nearest facet of the
master surface and check the sign of the difference between
the slave node position and its projection with respect to the
master surface normal. A contact response in direction of the
master surface normal is then applied. Since most FEM ele-
ments are only C0 continuous, this approach can also lead
to sudden jumps in the direction of the response experienced
by a node sliding over the master surface, in turn leading to
instability of the algorithm. Smoothing node-segment meth-
ods, such as the one by Wriggers and Krstulović-Opara [38]
based on cubic Bézier polynomials, were introduced to rem-
edy this issue.

Segment–segment contact algorithms were devised to
overcome the need for two passes with the node-segment
approach [31]. Mortar elements, originally developed for
coupling non-conforming meshes, were introduced to the
field of contact modelling to also overcome the various
mathematical limitations of the early node-segment meth-
ods, mainly stability problems with implicit methods arising
from non-satisfaction of the Babuska-Brezzi condition. In
these methods, the contacting meshes are pushed apart by a
contact pressure that is interpolated over the mortar mesh.
The work of Puso and Laurensen [30] introduced a mortar
method for 3D and large deformations.

An interesting method suitable for any FEM or similar
algorithm that assembles stiffnessmatriceswas developed by
Duriez et al. [7]. Their contactmodel basedonSignorini’s law
was primarily designed with haptics in mind and computes
contact forces from the constitutive model of the bodies in
contact.

An alternative to both node–segment and segment–
segmentmethods, based on intersection volumeswas devised
by Heidelberger et al. [13] and significantly extended by
Allard et al. [2]. By employing layered depth images (LDI)
for intersection volume computation, they effectively solved
collision detection and response calculation using the same
method. However, the method is limited in its application to
volumetric meshes.

A notable development in the area of matrix-free explicit
FEM algorithms came with the Lagrange-multiplier-based
method employed in PRONTO 3D by Taylor and Flana-
gan [33], and later extended by Heinstein et al. [14]. These

methods, like the—probablymostwidely adopted for explicit
FEM— penalty method, resolve mesh intersection by apply-
ing forces to the offending nodes. Unlike with penalty meth-
ods that contain an arbitrary non-physical parameter, the
forces with the Lagrange- multiplier method arise directly
from the discretised equilibrium equation and lead to an
immediate resolution of any mesh intersection and do not
affect the admissible time-step size [4]. Cirak and West [6]
devised amethod for simulating impact contactswith explicit
solvers, based on an elaborate decomposition of contact
responses intomesh inter-penetration responses andmomen-
tum exchanges. In terms of scope, their work resembles ours
strongly, with their ability to simulate membrane and solid
mesh contacts, frictional as well as frictionless contacts, and
handling of both edge–edge and node–facet collisions. Their
resolution ofmesh inter-penetrationwas based on a unilateral
projection of slave nodes onto the master surface, the con-
sequences of which on the energy balance of the simulated
system they tried tominimise by establishing an equation sys-
tem incorporating both penetration responses and momenta.

The range of contact search algorithms proposed for FEM
contact modelling is as wide as that of methods for their
solution. We propose a bounding-volume hierarchy (BVH)-
based method. These methods are very versatile and used in
a wide range of applications such as cloth modelling [25],
robot motion planning [10], ray tracing [20], and FEM con-
tact modelling [28,39]. What makes them interesting for the
application with the relatively small time steps required with
explicit FEM solvers is the ability to take a more localised,
selective approach to collision detection and exploitation of
temporal coherence. A further advantage of employing a
BVH is that it can also be used for other problems arising
in surgical image guidance, such as fast point location for
point-set registration purposes.

Early developments in the field of BVHs were limited
to rigid or even static problems, but since the 1990s, there
has been a growing interest in collision detection for simu-
lation of deformable bodies [24]. A key development came
in 1994 with Volino and Magnenat-Thalmann’s method [36]
for efficient self-collision detection. They established two
conditions under which a piece of simulated cloth could
self-intersect: either the surface is folded onto itself, i.e.
it has surface normals pointing in opposite directions, or
there are intersecting boundary edges. Larsson and Akenine-
Möller [21] devised a hybrid bottom-up/top-downBVHstrat-
egy for detecting collisions between deformable bodies. Its
purpose is to reduce the number of bounding volume (BV)
updates by only updating down to leaf level those parts of the
bodies’ BVHs that overlap. The method, however, was not
adapted for self-collision detection. They later [22] described
a method for dynamically creating BVHs for triangle soups
particularly suitable for such resulting from fracturing of
objects. They also developed a variant of their algorithm
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incorporating a sweep and prune sort of all simulation prim-
itives suitable for detecting self-collisions.

Methods

Total Lagrangian explicit dynamics

The TLED class of FEM solvers are matrix-free solvers rely-
ing on explicit central-difference time integration. They have
enjoyed some success in the simulation of soft tissue biome-
chanics thanks to their ability to simulate large deformations,
the relative ease with which complex material models can be
implemented, and not least the possibility for very elegant
parallel implementations [26,34,35].

The discretised equilibrium equations of TLED, neglect-
ing damping terms, read:

1

Δt2
M

(
U (t+Δt) − 2U (t) + U (t−Δt)

)
+ F(U (t)) = R(t)

(1)

where U (t+Δt), U (t), U (t−Δt) denote the next, current, and
previous time-step displacements, respectively, Δt is the
time-step size, R is the external load vector, and M is the
lumped (diagonal) mass matrix. The term F(U ) represents
the internal forces of the current configuration. The eval-
uation of the latter term does not involve the assembly of a
stiffnessmatrix, instead internal forces are computed directly
per element and subsequently accumulated for all nodes. In
this work, internal forces aremodelledwith the neo-Hookean
materialmodel,whose strain-energydensity function is given
by

W = G

2

(
I 1 − 3

) + K

2
(J − 1)2 (2)

where G and K denote the shear and bulk modulus of the
material, respectively, and I 1 = J−2/3(C11 + C22 + C33)

with C denoting the left Cauchy-Green deformation tensor
and J is the determinant of the deformation gradient. Shell-
element internal forces are computed with the EBST shell
triangle of Flores and Oñate [8].

Contact algorithm overview

The algorithm is of a predictor-corrector type that first
evolves the displacements with the standard TLED algorithm
without any regard to contacts, then identifies intersecting or
very close geometry, and applies forces to correct the situa-
tion. The contact modelling pipeline comprises three major
groups of routines and data structures: the contact surfaces
which contain the geometry that is searched for collisions
and some additional data required for contact-force applica-

tion, the BVHs employed in contact search, and finally the
contact-force computation algorithms.

A pseudo-code overview of the algorithm including the
TLED-related computations is given in “Appendix A”.

Contact surfaces

Contact surfaces are data structures central to the contact
modelling algorithm that consist of the geometric primitives
—triangles are employed in the subsequent experiments and
some of the explanations—which are tested for collisions and
provide extended geometric information required in contact
search such as surface normals and projection operators.

The contact surfaces associated with fixed rigid geometry
are static data structures for which all normals, projection
operators required for contact search and force calculation
are precomputed. Moving rigid contact surface data struc-
tures are identical to their spatially fixed counterparts apart
from possessing an update routine that applies the appropri-
ate translation and/or rotation to the precomputed normals
and operators.

Themost important type is the deformable contact surface
obtained by extracting the surface facets from the simulation
solid mesh. Lazy evaluation with caches is employed for
normals and other contact search-related data such as pro-
jection operators, which allows the algorithm to limit their
re-computation to regions that are in contact with or close
proximity to other geometry. Contact forces which are calcu-
lated for a contact surface node are applied to the correspond-
ing FEM node via an index lookup table that is constructed
together with the surface mesh.

If the simulation contains membranes, these elements are
included in the same contact surface object as the solid mesh
surface facets. To account for the thickness of the mem-
brane, two contact primitives are introduced for every mem-
brane element, one for the top and one for the bottom. The
nodes associated with these membrane contact primitives
are obtained by offsetting the membrane nodes by half the
thickness of the membrane in direction of the normal and its
opposite, for top and bottom, respectively, yielding the sand-
wich structure visible in Fig. 13. By having the entries in
the contact-force index lookup table point to the same FEM
membrane node for the top and bottom node, it is ensured
that contact forces are correctly incorporated in the global
force vector.

Contact search

In the following, the algorithm is explained for BVHs that
have a binary-tree structure and axis-aligned bounding boxes
(AABB) are used for illustrations. However, the presented
methods are not limited to this BVH-type.

123



Int J CARS (2015) 10:1873–1891 1877

Fig. 1 Surface-normal bounding cones for self-collision detection.
Left: a patch of connected geometry primitives defining a cone with
the corresponding surface normals (red) and its AABB. Right: the cor-
responding cone, the normals it bounds (red) and the cone axis (black)

At leaf level, the BVs bound one primitive each such that
the primitive’s vertices at the start of the time step aswell as at
the end of the predictor step are fully contained within it. The
leafBVsare alsofittedwith a safetymargin εBV ,which is uni-
form throughout the BVH and defaults to 1

100 (hmax + hmin)

in our implementation, with hmax, hmin being the maximum
and minimum initial-configuration surface facet diameters.
The purpose of this margin is to allow for some geometry
deformation without the need to refit the bounding volume
and to allow for the detection of primitives in close proximity.

All deformable geometry is contained in one BVH, rigid
contact surfaces, moving or fixed, each have each their own
BVH.

Self-collisions and surface-normal bounding cones

The surface-normal bounding cones (NBC) are a means for
identifying BVH subtrees containing connected geometry
that is folded onto itself, i.e. has normals pointing in opposite
directions, and thus potentially self-colliding [36], and are
illustrated inFig. 1. Sincewemostly dealwith solid elements,
self-collisions resulting from intersecting mesh boundaries
as described byMezger [25] are not considered, and we treat
the NBC self-collision criterion

αVMT ≥ τVMT, τVMT ≤ π (3)

whereαVMT is the coneopening angle and τVMT the threshold
abovewhich self-collision tests are performed, as a necessary
criterion for self-collision. The computation of this quantity
αVMT is done recursively as part of the BVH update with a
method similar to that proposed by Provot [29], starting with
the facet normal of the bounded primitive and an opening
angle αVMT = 0, at leaf level, and creating NBCs for interior
nodes bymerging the cones of their children. Unlike Provot’s
algorithm that adopts for the parent cone’s axis, the average
of the child cones’ axes and then computes the opening angles
such that the child cones are fully contained, our approach
computes the narrowest possible NBC from both the child
cones’ axes (a1 and a2) and opening angles (α1 and α2), as
illustrated in Fig. 2.

The computation of the parent axis is accomplished via
two weights w1 > 0, w2 > 0:

e := a1Ta2
β1 = (2 arccos(e) − (α1 − α2))/4, β2 = β − β1

w1 = cos(β1) − e cos(β2)−e cos(β1)
1−e2

, w2 = cos(β2)−e cos(β1)
1−e2

ap = 1
||w1a1+w2a2|| (w1a1 + w2a2)

(4)

A step-by-step derivation of this formula can be found in
“Appendix B”.

The algorithm only performs these calculations after first
checking whether one of the child cones is fully contained in
the other. If so, the containing cone is adopted as the parent
cone. It is therefore guaranteed that all quantities appearing
in (4) lie within the valid range.

BVH generation

Since the number of BVH subtrees that need to be tested for
self-collisions is determined by the NBCs, the same are used
to influence how the BVH is generated and updated, so as to
reduce the number of BV intersection tests and updates. The
generation process comprises two main stages, in the first of
which, disconnected geometry is identified and the top part of
the BVH is created from the boxes bounding these clusters,
bottom-up (Fig. 3). The second stage is the top-down division

Fig. 2 Provot’s NBC (left) and
narrowest NBC (right). Child
cones drawn with solid lines,
parent NBC with dashed lines

ap = 1
||a1+a2|| (a1 + a2)

α1/2
β1

β2

α2/2

a1
a2

a2

a1

ap

123



1878 Int J CARS (2015) 10:1873–1891

Fig. 3 Illustration of the bottom-up BVmerging process. The leftmost
picture shows the initial state when the AABBs contain only connected
geometry. The next picture shows the state after the two boxes yielding
the smallest parent box have been merged. The last picture (rightmost)
shows theBVH root bounding all geometry.Meshes courtesy of IRCAD
(http://www.ircad.fr/softwares/3Dircadb/3Dircadb.php?lng=en)

of the boxes bounding the connected primitives. In order to
be able to apply the NBC self-collision criterion, the division
process makes sure that the primitives contained in the newly
created BVs remain connected. The cost function governing
the assignment of primitives to child BVs, Eq. (5), consists of
two quantities to be minimised: the volume of the resulting
BV and the opening angle of the NBC.

Bn+1
childi

= Bn
childi

∪
{
arg min

T ∈Bparent
V (Bn

childi
∪ {T })(1+c · αVMT(Bn

childi
∪ {T }))

}

(5)

Bchildi , Bparent denote the primitive sets bounded by the new
children and the parent BV being split, respectively. T ∈
Bparent is any unassigned primitive from the parent-BV set,
V (B) is the volume of the BV bounding the primitive set B,
αVMT(B) the opening angle of its NBC. To be able to mix
volumes and angles, we introduce the constant c for which
we determined 2/π to be a good value. The child-primitive
setsBchildi are initialisedwith the two primitives in the parent
whose centroids are the farthest apart.

BVH updating

The BVH updating algorithm only refits bounding volumes
to accommodate the deformation undergone by the geom-
etry during a time step; it does not make any changes to
the BVH topology. This selective updating is achieved by
means of update nodes (UN) carried over from our previous
work [18]. The UNs are defined as subtree roots in which the
deformation undergone by the bounded geometry is quanti-
fied to assess the need for an update of the respective BVH
subtree before the next collision detection pass. An update of
the subtree is required, if 1) there are potential self-collisions
in the subtree, or 2) the geometry has moved so much that
the bounds of the subtree’s BVs are no longer valid. The top
part of the BVH, i.e. the part above the UN, is updated in
every time step.

In order to evaluate criterion 1), a bound on the non-
rigid deformation the geometry can undergo without causing
an expansion of the NBC opening angle αVMT beyond the
threshold τVMT is required. The bound is given in (6) and
derived in the “Appendix C”.

τNR = hmin

2
tan

τVMT − α
(tU )
VMT

2
(6)

Where hmin is the minimum primitive diameter in the
subtree. Finding it can be done recursively as part of the
subtree update and at virtually no cost. The computation of
the actual non-rigid displacementmagnitude ||uNR|| requires
Procrustes analysis and is significantly more costly. How-
ever, the information obtained in the Procrustes analysis can
be used to very cheaply update the subtree if update criterion
2) is satisfied but not 1), and the BV type supports such rigid
body transforms, as do, e.g. oriented bounding boxes [9].
This gives rise to the update algorithm, Algorithm 1. The
term εr , appearing in the pseudo-code, will be explained in
section “Contact-force calculations”.

Algorithm 1 BVH update algorithm
for all bvsub ∈ {Update nodes} do
if αVMT(bvsub) ≥ τVMT) then
{Subtree has potential self-collisions}
RefitTopDown(bvsub)
RefitBottomUp(bvsub)
xi (tU ) ← xi (t) {Update reference nodes}

else
c(t) ← 1

|N (bvsub)|
∑

i∈N (bvsub)
xi (t) {Compute new centroid of

bounded mesh nodes}
t ← c(t) − c(tU ) {Compute subtree translation}
max ||uNT|| ← maxi∈N (bvsub) ||xi (t) − xi (tU ) − t|| {Compute
maximum non-translational motion}
if max ||uNT|| < τNR andmax ||uNT||+ ||t|| < εBV −2εr then
{Subtree inactive; motion insignificant, no update}
RefitBottomUp(bvsub)
continue

end if
if max ||uNT|| < τNR and max ||uNT|| < εBV − 2εr then
{Translational motion dominant}
ApplyTranslationTopDown(bvsub, t)
xi (tU ) ← xi (tU ) + t {Translate reference nodes}
RefitBottomUp(bvsub)
continue

end if
R ← Procrustes(xi (tU ) − c(tU ), xi (t) − c(t)) {Compute sub-
tree rotation with Procrustes analysis}
max ||uNR|| ← maxi∈N (bvsub) ||xi (t) − c(t) − R(xi (tU ) − c(tU ))||
{Compute max. non-rigid deformation}
if DoesSupportRotation(bvsub) and max ||uNR|| < τNR
and max ||uNR|| < εBV − 2εr then
{Rigid motion}
ApplyTransformTopDown(bvsub, R, t)
xi (tU ) ← R(xi (tU )−c(tU ))+c(t) {Transform reference nodes}

else
RefitTopDown(bvsub)
xi (tU ) ← xi (t) {Update reference nodes}

end if
RefitBottomUp(bvsub)

end if
end for

The UN role is assigned to BVs at the time of BVH cre-
ation. Since subtrees potentially containing self-collisions
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always have to be updated, it makes sense to place the update
nodes well below a point in the tree where αVMT > τVMT.
The algorithm for the placing is a greedy one, initialising
the set of UNs with the leafs of the BVH. In every itera-
tion, it picks the two nodes whose parent has the narrowest
NBC opening angle and replaces them with their parent in
the intermediate set of update nodes. This procedure contin-
ues until the minimum value of αVMT of the set of parent
BVs of the current UN exceeds a threshold, set to 1

2τVMT in
the implementation.

Collision detection

The broad-phase collision detection is performed by recur-
sively checking BVH (sub-) trees against each other until
the bottom of the two BV trees is reached, i.e. the BVs
bounding individual geometrical primitives [25]. For self-
collision detection, the children of any BVH node where
Eq. (3) holds true needs to be checked against each other. The
subsequent primitive–primitive test consists of one test for
vertices against facets and one for edges against edges. The
node-facet test starts with the computation of an initial pro-

jection onto the master surface and gap value,
(
ξ̃ , η̃, g̃

)
, for

the predicted position of the slave vertex xs. The initial pro-
jection is obtained with Möller and Trumbore’s method [27]
with the minor modification of employing normalised facet
normals instead of unnormalised one. This particular method
is only applicable with triangular surface discretisations.

If the initial-guess projection (ξ̃ , η̃) lies within the bounds
of the master facet and the initial guess for the gap value, |g̃|,
is sufficiently close to the previously nearest projection, it is
improved upon with an iterative procedure that employs C0-
continuous master facet normals nm(ξ, η), computed from
the vertex normals obtained by averaging the normals of the
incident facets. This yields the final penetration depth (gap
function value), g, and projection xm(ξ, η):

xm(ξ, η) :=
∑

i∈{master facet vertices}
bi (ξ, η)xi

⇒ g := nmT(ξ, η)(xs − xm(ξ, η)) (7)

where xi denotes the coordinates of the i-th master facet
vertex, and bi (ξ, η) is the corresponding standard 2D linear
shape function.

This projection xm(ξ, η) is the virtual master surface
node based on which the contact forces are computed (sec-
tion “Contact-force calculations”). For each slave node, only
the nearest projection onto a master facet is stored.

The edge–edge collision detection is performed by deter-
mining for the potentially colliding edge–edge pairs turned
up by the broad-phase search the points on the two edgeswith
the smallest distance at the end of the time step. This yields
the parameters q and r ∈ [0, 1] that represent the position

of the closest point on the slave and the master edge, respec-
tively. The difference between those closest points is subse-
quently projected onto the master surface normal, resulting
in the gap function for the edge–edge case:

g = nmT(r)(xs(t)(q) − xm(t)(r)). (8)

Contact-force calculations

We distinguish two types of contact forces, penetration
responses and gap rate proportional forces. The former come
into effect if a predictor displacement configuration leads to
intersections of master and slave surfaces. The latter slow
down approaching master and slave surfaces before they can
intersect. The derivation of the force formulations started
from the work of Heinstein et al. [14], modifications on
the side of penetration responses include the distribution of
forces over themaster surface, the extension to the edge–edge
collision case, the momentum-preserving gap-partitioning
factor formulation, and the force consolidation algorithm.
The gap rate proportional forces that in practice constitute
the bulk of the contact forces are a new formulation. Another
major objective of the presented formulation is to, as far as
possible, enforce contact constraints one-by-one and avoid
the introduction of any matrix formulations in the force com-
putation step, so as to keep the required communication
between workers processing individual contacts at a mini-
mum.

Penetration response calculation

Penetrations are mathematically characterised by g < 0, i.e.
situations where the slave node lies behind themaster surface
facetwith respect to themaster surface-normal direction. The
penetration response force formulas arise directly from Eq.
(1)with the requirement of immediate resolution of anymesh
intersection and, for node-facet penetrations, are given by

fs = −n(ξ, η)βs
ms g

Δt2

( fm)i = n(ξ, η)βm
mi gγi (ξ, η)

Δt2
, i ∈ master facet (9)

fs is the force applied to the penetrating slave node, ( f m)i

denotes the force applied to one of the three vertices of the
penetrated master surface primitive. ms, mi are the masses
of the slave node and master facet nodes, respectively.

The factor γi

γi (ξ, η) := bi (ξ, η)∑
j∈{master facet vertices} b j (ξ, η)2

, i ∈ master facet

(10)

distributes the gap function value over the master facet such
that at the position xm, the fraction of the gap assigned to the
master surface is recovered [23]:
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βm g = ∑
i∈{master facet vertices} bi (ξ, η)γi (ξ, η)βm g (11)

The gap-partitioning factor β, appearing in (9), controls how
the response is split between master and slave surfaces. For
contacts between rigids and deformables, it is set to 0 and 1,
respectively. For inter-penetration of deformables, it holds a
value in ]0, 1[ that is computed from the masses of the nodes
involved in the contact:

βs = mm

ms + mm
, βm = 1 − βs = ms

ms + mm
(12)

For the purpose of gap partitioning, the mass of the virtual
master node mm is computed with linear interpolation from
the corresponding facet-vertex masses.

With these definitions, it holds at the point of contact on
the master surface:

fm =
∑

i∈{master facet vertices} bi (ξ, η)( fm)i

= − fs = −λ n (13)

where λ is the Lagrange-multiplier for the constraint.
Edge–edge penetration responses employ the same ratio-

nale that underlies Eq. (9), except that there are now two
slave nodes and only two master nodes, and the 2D shape
functions of (9) are now 1D ones.

( fs)i = −nm(r)βs
miγi (q)g

Δt2
, i ∈ slave edge

( fm)i = nm(r)βm
miγi (r)g

Δt2
, i ∈ master edge (14)

Gap rate proportional forces

The gap rate proportional forces are employed to achieve a
degree of temporal smoothing in the contact forces and thus
to improve stability. They come into effect when 0 ≤ g < εr

and the relative velocity between slave and master, in master
normal direction, the gap rate, is negative:

nmT(vs − vm(ξ, η)) < 0

vs := (xs(t) − xs(t−Δt))/Δt,

vm(ξ, η) := (xm(t)(ξ, η) − xm(t−Δt)(ξ, η))/Δt (15)

The constant εr = 5
100·2εBV is chosen such that any node

at distance εr from a master facet still lies within the safety
margin of the BV and so close that any effects of the force
applications are not visible in the final configuration.

The force required for velocity-matching of the slave node
and the virtual master node is derived from the forward-Euler
increment of the velocity and momentum conservation as
follows:

nmT [(vs − vm) + (Δvs − Δvm)]
!= 0

Δvs = Δt

ms
nmλ̇,

Δvm = −
∑

i∈master facet
bi

Δt

mi
γinmλ̇ (16)

This gives rise to the following formula for the force’s mag-
nitude λ̇

λ̇ = − nmT(vs − vm)

Δt (1/ms + ∑
i biγi/mi )

(17)

The applied force gradually increases as the distance
between the surfaces decreases, and full velocity-matching
is performed when there is zero distance between the slave
node and its projection onto the master surface

fs = (1 − g/εr )n(ξ, η)λ̇,

( f m)i = −(1 − g/εr )n(ξ, η)λ̇γi (18)

The edge–edge contact formula for λ̇ reads:

λ̇ = − nmT(vs − vm)

Δt
(∑

i∈master edge biγi/mi + ∑
i∈slave edge biγi/mi

)

(19)

Friction

Equation (17) can be used in Coulomb’s model to simulate
friction by substituting the relative tangential velocity for the
gap rate. Modelling friction only requires keeping track of
the active constraints in a given time step and the associated
normal forces, and application of the forces computed from

f =
{

−λT ΔvT /||ΔvT ||, if λT < μ|| fN ||
μ|| fN ||ΔvT/||ΔvT ||, otherwise

(20)

with μ being the friction coefficient, fN the normal forces
applied to the corresponding slave node, and

ΔvT := (vs − vm) − nmT(vs − vm) · nm
λT := ||ΔvT ||

Δt (1/ms+bi γi /mi )

(21)

Contact-force consolidation

Since nodes can be involved in multiple contacts, e.g. mul-
tiple edge–edge contacts or master facet vertices being part
of multiple node-facet contacts, the contact forces must be
consolidated. This can be relatively easily accomplished if
the indices subject contact constraints are being kept track
of as the responses are computed. The option chosen in our
algorithm is that of computing for every node with an active
contact constraint themeandirection of the contact forces and
applying the maximum projection over all response forces in
that direction. Algorithm 2 contains a pseudo-code descrip-
tion of the consolidation algorithm.
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Fig. 4 Simulation geometry
and settings used in validation
of the proposed cone formula

Zipper: “Zipper” geometry twisted and
compressed through force boundary conditions
(Fx = ±30, Fy = ±5, Fz = −10). Initial

configuration shown in left, final configuration
shown in right picture.

Dimensions: 35 × 7 × 12.5.
Mesh: 712 surf. facets, 358 surf. nodes, 1587

solid el’s, 485 solid nodes.
Material: G = 10, K = 40, ρ = 100.

Total time: T = 100.
Time step size: �t = 0.075.

C: C shape being closed by application of
displacement boundary conditions to upper part

of geometry (uz = −3.5).
Dimensions: 22.5 × 10 × 21.5.

Mesh: 960 surf. facets, 482 surf. nodes, 2320
solid el’s, 667 solid nodes.

Material: G = 10, K = 40, ρ = 1.
Total time: T = 2.

Time step size: �t = 0.001.

Algorithm 2 Algorithm for handling of redundant con-
straints.
for all n ∈ {nodes with contacts} do

f =∑
f∈{contact forces applied to n} f /|| ∑ f∈{contact forces applied to n} f ||

{Compute (weighted) mean direction of contact forces}
fn ← max f∈{contact forces applied to n} f T f {Compute maximum
projection along mean direction}
fn ← fn f

end for

With the right data structures, this algorithm can be imple-
mented with an O(Nnode-facet+Nedge-edge) runtime complex-
ity, where Nnode-facet and Nedge-edge are the number of node–
facet and edge–edge contacts, respectively.

Experiments

Our objective in this section was to show the inherent advan-
tages of the individual heuristics introduced in this paper
over a number of alternatives. The subsequent evaluations
are based on a single-threaded C++ implementation of the
algorithm described in the previous section. The FEM cal-
culations were done with NiftySim’s CPU solver [19]. The
timings were obtained on a workstation equipped with an
Intel Core i7 2,600K processor and 8GB of RAM, by sur-
rounding individual parts of the code representing the major
stages of the contact-modelling pipeline with calls to the C
clock function and accumulation.

Self-collision detection cones

The first two experiments are aimed at quantifying the effects
of the formula for computation of the NBCs described in sec-
tion “Self-collisions and surface-normal bounding cones”.To
this end, it is compared with the method of Provot [29]. The
geometry and simulation settings of the simulations are given

in Fig. 4. Due to the artificial nature of the geometry, units
have been omitted, but all parameter values can be assumed
to be specified in compatible units, e.g. m, s, Pa. The geom-
etry was generated with AutoCAD2, and solid meshing was
done with GMSH.3 Most of the experiments are once run
with a binary AABB hierarchy (AABB2) and once with a
4-nary BVH (AABB4).

The results in terms of the average number of BVH sub-
trees that need checking for self-collisions per time step,
BV refittings, and the total time spent updating BVHs and
searching for contacts, for these two simulations are given in
Table 1.

A reduction in the 40% ballpark in the number of BVH
subtrees that needs to be visited for self-collision detection
(first column in Table 1) is achieved with our proposed for-
mula in these two test cases. Further, since our BVH refitting
and construction algorithms take into account theNBCopen-
ing angle, the number of BVs that are refitted is about 10%
lower with our NBC computation method (second column in
Table 1). The latter effect can mostly make up for the slight
increase in computational costs that comes with our formula-
tion. These findings are consistent across the two considered
BVH orders.

BVH refitting strategy

The second set of experiments deals with the evaluation of
the proposed BVH updating strategy. Most of the geome-
try used in these experiments is again artificial and created
with Meshlab,4 except the test case containing a liver and
diaphragm whose geometry was extracted from volunteer
MRI data with Slicer 3D.5 The “C” test case from the previ-

2 http://usa.autodesk.com/autocad/.
3 http://www.geuz.org/gmsh/.
4 http://meshlab.sourceforge.net/.
5 http://www.slicer.org/.
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Table 1 Results from the
comparison of our cone
computation method with
that of Provot

Experiment Avg. No. of
BVH subtrees
with potential
self-collisions

Avg. No. of refit-
ted BVs/time step
(tot. No. of BVs)

Contact search
total time (s)

BVH update
total time (s)

(a) Our cone method

C AABB2 32.9 216.2 (1,919) 4.35 0.129

C AABB4 17.4 101.4 (1,410) 5.01 0.117

Zipper AABB2 50.3 229.4 (1,423) 1.43 0.0936

Zipper AABB4 22.9 167.3 (1,065) 1.49 0.1

(b) Provot’s method

C AABB2 57.5 234.5 (1,919) 5.04 0.113

C AABB4 28.5 121.3 (1,410) 5.49 0.103

Zipper AABB2 87.7 254 (1,423) 1.62 0.0823

Zipper AABB4 45.2 220.7 (1,065) 1.72 0.0898

ous section is also used in these experiments. The new test
simulations are summarised in Fig. 5.

The results for these experiments can be found in Table 2.
No results are available for Larsson and Akenine-Möller’s
method on the “rigid bar” test case, since the method is
not defined for rigid-deformable contacts. Similarly, while
technically it can be easily extended to applications in self-
collision detection, its inventors never intended for it to be
used in that way, and its performance is very poor and pro-
vides little insight in this context. Therefore, there are no
results for the “C” test case in Table 2b, either.

The first observation that can bemade from these results is
that our proposed BVH updating strategy leads to a general
reduction in BV refitting and, ultimately, in overall com-
putation time, over both exhaustive refitting and Larsson
and Akenine-Möller’s update strategy. This effect is more
pronounced on higher resolution meshes and problems not
involving self-collisions. The latter is most likely due to the
dominant effect of contact search on the overall computa-
tion costs of self-collision problems. On the larger problems,
the reduction in BVH refitting costs over exhaustive refitting
approaches one order of magnitude with our method, despite
the not insignificant computational overhead introduced by
the deformation analysis.

Scaling

The aim here was to show how the performance of our pro-
posed NBC computation formula and BVH update method
change with increasing mesh resolution. To this end, the zip-
per self-collision test case is taken and the mesh refined in
5 steps. The Zipper test case was chosen for this experiment
due to the relatively large deformation, and because all defor-
mation stems from force application, there is hence no bias
towards translational movement of geometry, which might
give our proposed method an unfair advantage.

The first experiment looks at the NBCs. The same simu-
lation is run once with Provot’s method and once with ours
and the average number of BVH subtrees that need checking
for self-collisions and the average time required for contact-
modelling operations per time step are recorded. The results
for binary and 4-nary AABB hierarchies can be found in
Fig. 6. The timing values include the time required for all
BVH and contact surface update, as well as collision detec-
tion and response computations.

There is a clear divergence in the number of sub-trees
that need checking for self-collisions between the two meth-
ods, with noticeably lower computation times for ourmethod
at higher mesh resolutions. That the divergence in the time
required for contact modelling operations, in turn domi-
nated by the contact search, does not diverge stronger can
likely be explained with the subtree pairs that need check-
ing with both types of NBCs having their roots higher up
in the hierarchy and thus being more time-consuming to
traverse.

The second experiment, looking at the proposed BVH
update strategy, is mostly identical except what is recorded
is the number of refitted BVs and the average per time-step
BVH refitting costs in milliseconds. The results for exhaus-
tive refitting are included for reference. The results for binary
and 4-nary AABB hierarchies can be found in Fig. 7.

The most striking result is, as the number of surface
primitives increases almost ten-fold, the number of updated
BVs remains almost constant with our strategy. This can be
explained with the UN being placed based purely on geomet-
ric criteria. Meanwhile, the costs of exhaustively refitting the
BVH approaches 50% of the total contact-modelling costs
observed for our algorithm in Fig. 6. From these plots, it
can also be seen that the savings in terms of overall compu-
tation time with AABB4 over AABB2 and exhaustive refit-
ting, observable in Table 2, can be attributed only to the fewer
refitted BVs with the higher order BVH.
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Fig. 5 Experiments used in
BVH update-strategy validation

Ball-slab: Ball being pushed against a
deformable slab through displacement boundary

conditions (vertically by uz = −0.4).
Dimensions: Ball radius = 1.2, slab:

3.15 × 3.15 × 1.2.
Mesh: 1500 surf. facets, 754 surf. nodes, 3284

solid el’s, 981 solid nodes.
Material: G = 100, K = 400, ρ = 20.

Time: T = 2, �t = 0.001.

Diaphragm/liver: Diaphragm pushed against
liver by displacement boundary conditions

(uz = −0.2).
Mesh: 2400 surf. facets, 1202 surf. nodes, 4921

solid el’s, 1448 solid nodes.
Material: G = 15, K = 50, ρ = 200.

Time: T = 1, �t = 0.0025

Two spheres: Two spheres pushed against a
membrane via force constraints (Fz = ±1),
leading to two-sided contact. Only membrane

mid-surface shown.
Dimensions: sphere radius = 0.7, membrane

dimensions = 2 × 1 × 0.15.
Mesh: 2 × 700 sphere surf. facets, 2 × 252

sphere surf. nodes, 2 × 789 solid el’s, 2 × 278
solid nodes, 400 membr. el’s, 231 membr. nodes.

Material: Gsphere = 200, Ksphere = 600,
Gmembrane = 1200, ρsphere = 25,

ρmembrane = 200; membrane is incompressible.
Time: T = 0.5, �t = 10−4

Rigid bar: An irregularly shaped body (grey) is
pushed via displacement boundary conditions
(ux = 0.5) on its back against a rigid bar

(semi-transparent, blue).
Dimensions: 0.91 × 1 × 1.34 (deformable body

AABB), 0.5 × 0.25 × 0.25 (rigid body)
Mesh: 600 surf. facets, 302 surf. nodes, 1184
solid el’s, 359 solid nodes, 120 rigid facets, 83

rigid nodes.
Material: G = 0.05, K = 0.1, ρ = 0.5

Time: T = 2, �t = 0.0005

Contact forces

The next two experiments look at the quality of the contact
forces by considering two geometrically well defined bench-
mark problems. The first experiment simulates a Newton’s
cradle consisting of 4 elastic spheres (Fig. 8). All spheres
are the same size (r = 1), identically discretised (1,004
nodes, 5,101 tetrahedra), and have the same material para-
meters (G = 1,000, K = 4,000, ρ = 10). The leftmost
ball is given an initial velocity of v = (0.1, 0, 0)T, no other
boundary conditions are applied. The simulation comprises
100,000 time steps of Δt = 10−4 each for a total time of
T = 10. The second one simulates the breaking of a billiard
rack. Again the system consists of 4 balls, one of which is
given an initial velocity of vx = 0.15 (Fig. 8), and identical
material parameters are used for all 4 balls in the experiment:
G = K = 1, ρ = 5. The total simulated time is T = 20
with 20,000 time steps. To assess the energy conservation
the time integration had to be performed with NiftySim’s
explicit Newmark time-ODE solver and without damping,
since central-difference integration, even without damping,
proved to be too dissipative.

The ball-centre (average node positions) trajectories and
the corresponding energy balance of the system are given

in Figs. 9 and 10 for the Newton’s cradle and the billiard
rack experiment, respectively. The strain energies in the plots
are the sum of the internal energies of all elements in the
simulation and the kinetic energies are computed through
the inner product defined by the lumped mass matrix:

Ekin = 1

2Δt2
(U (t) − U (t−1))TM(U (t) − U (t−1)) (22)

In the Newton’s cradle experiment, the ball-centre trajec-
tories are all straight lines parallel to the x axis. The standard
deviations of the ball trajectories in the y and z directions
satisfy σ < 1.7 · 10−4. The mean velocity of ball 4 at the
end of the simulation is v = (0.0996, 2.3 · 10−4, 1.2 · 10−4).
The total energy at the end of the simulation is 99.7% of the
initial energy. In the billiard experiment, the trajectories of
ball 1 and 2 form straight lines with standard deviations in
the y and z directions satisfying σ < 4.35 · 10−4. For balls 3
and 4, symmetric trajectories with slopes ±0.82 are found.
The respective deviation of the trajectories from that line are
σball3 = 3.3 · 10−3 and σball4 = 3.3 · 10−3. The sum of all
energy in the system at the end of the simulation is equal to
the initial kinetic energy of ball 1. Calculated using a point
mass approximation, the kinetic energy of balls 3 and 4 at the
end of the simulation amounts to 96% of the initial kinetic
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Table 2 Results of comparison
of BVH update strategies

Experiment Avg. number of refit-
ted BVs/time step
(tot. No. of BVs)

BVH update: avg.
time (ms)/time step

Total computation
time (s)

(a) Our update strategy

Ball-slab AABB2 111.9 (2,999) 0.0433 2.91

Ball-slab AABB4 50.1 (2,265) 0.0407 4.02

C AABB2 216.2 (1,919) 0.0675 5.73

C AABB4 101.4 (1,410) 0.0606 6.34

Liver-diaphragm AABB2 659.7 (4,799) 0.202 1.65

Liver-diaphragm AABB4 412.4 (3,659) 0.196 1.67

Two spheres AABB2 160.5 (3,599) 0.0488 5.81

Rigid bar AABB2 75.3 (1,199) 0.0229 1.15

Rigid bar AABB4 44.7 (904) 0.0228 1.14

(b) Larsson and Akenine-Möller’s update strategy

Ball-slab AABB2 898.9 (2,999) 0.129 3.11

Ball-slab AABB4 581.9 (2,265) 0.0973 4.14

Liver-diaphragm AABB2 2,729.6 (4,799) 0.430 1.77

Liver-diaphragm AABB4 2,035.7 (3,659) 0.348 1.67

Two spheres AABB2 1,039.1 (3,599) 0.143 6.31

(c) Exhaustive refitting

Ball-slab AABB2 2,999 (2,999) 0.301 3.49

Ball-slab AABB4 2,265 (2,265) 0.257 4.84

C AABB2 1,919 (1,919) 0.214 6.17

C AABB4 1,410 (1,410) 0.184 6.66

Liver-diaphragm AABB2 4,799 (4,799) 0.657 1.87

Liver-diaphragm AABB4 3,659 (3,659) 0.542 1.76

Two spheres AABB2 3,599 (3,599) 0.408 7.61

Rigid bar AABB2 1,199 (1,199) 0.146 1.65

Rigid bar AABB4 904 (904) 0.125 1.56

energy of ball 1, and 1.7% are stored as strain energy in the
balls.

In both experiments, the momentum and kinetic energy
are almost fully transferred to the last balls in the chain.
The method’s ability to conserve momentum can be easily
discerned in the Newton’s cradle experiment, where the ini-
tial velocity of ball 1 is recovered in ball 4, at the end of the
experiment. In the second experiment, the expected symmet-
ric, linear trajectories for ball 3 and 4 are obtained. There is a
small kink at the start of both trajectories most likely caused
by a short phase in the experiment duringwhich strain energy
stored in ball 2 is converted back into kinetic energy and
transferred to the last two balls and during which the three
balls remain in continuous contact. There is a minor increase
in the total energy during phases of conversion of kinetic
energy into deformation. We experimentally excluded the
temporal smoothing heuristic and the time discretisation as
the cause, but did notice a correlation with the mesh density;
a reduction in the number of elements per ball from 5,101
to 1,289 led to an increase of the highest peak from 105%
the initial energy to 109%, in the billiard experiment. In any

case, since this excess energy is absorbed just as smoothly as
it arises and its magnitude in all experiments is in the single
digits of per cents, it can be assumed to be harmless. Espe-
cially considering that the experiments had to be run with
explicit Newmark time integration which the contact model
was not explicitly designed for, these results are very satis-
factory.

Friction

The following experiment is taken from Ref. [15]. It is a
quasi-static friction problem with an analytical solution con-
sisting of a bar being pushed down against a rigid surface,
then dragged along the same via an outward pressure applied
to its front face. The geometry of the experiment and loca-
tion of boundary conditions is depicted in Fig. 11. The bar
geometry is discretised with an unstructured mesh consist-
ing of 1,678 nodes and 8,419 tetrahedra and the floor con-
sists of 400 triangles and 231 nodes in a regular grid. The
material of the bar is characterised by a Young’s modulus of
E = 68.947MPa and a Poisson ratio of ν = 0. The displace-
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Fig. 6 Comparison of our method of NBC computation to that of
Provot. Top: number of self-collision candidate subtrees plotted against
mesh resolution.Bottom: corresponding contactmodelling computation
time per time step

ment boundary condition is ramped up during the first 1%
of the simulation time, the pressure is applied subsequently
and linearly ramped up over the 99% remaining time. The
friction coefficient between the bar and the rigid surface is
μ = 0.1.

The final configuration is shown in Fig. 11. Figure 11 also
shows a plot of the accumulated axial slip as a function of the
corresponding point’s x coordinate, at multiple time points
in turn corresponding to different applied pressures. At most
time points, the solutions for the tip displacement agrees with
the analytic solution up to 5%, a larger error of 8.2% occurs
at t = 0.7 after all but the constrained nodes have started
slipping. At the end of the simulation, the measured peak
displacement is ux = 1.287mm which is within 2% of the
analytical solution. If we set the displacement threshold to
0.005mm, the same value of 317.5mm is recovered for the
slip/stick boundary at t = 0.3, as found by Heinstein and
Laursen [15].

Given the relative simplicity of the friction model, the
numerical result shows good agreement with the analytical
solution. This result also provides evidence that the con-

Fig. 7 Update-strategy scaling behaviour: our method, and exhaustive
refitting. Top: average number of refitted BVs/time step. Bottom: aver-
age BVH update time/time step

tact model is able to accurately deal with sustained con-
tacts.

Examples from image-guidance

In this section, two quasi-static image-guidance examples of
FEM contact modelling based on actual patient data are pre-
sented with the primary aim of demonstrating the proposed
algorithm’s performance on high-resolution meshes encoun-
tered in TLED’s main application area. The code is sequen-
tial and uses binary AABB hierarchies for contact search.
The first one is a reconstruction of the deformation caused
to the prostate by the transrectal ultrasound (TRUS) probe
used in guidance of needle biopsy and ablation procedures
of prostate cancer. Being able to determine this deformation
is crucial for the registration of the interventionally acquired
TRUS images to MR images acquired prior to the procedure
[17].

The anatomical meshes were generated from a 320×
320 ×15-voxel MR image with a 0.8×0.8×4mm resolu-
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Fig. 8 Left: Newton’s cradle
with 4 balls; experiment initial
configuration. Right:
experimental setup: breaking of
a 3-ball billiard rack

vx = 0.1

cball1 = (−2.5, 1) cball2 = (0, 1) cball3 = (2.02, 1) cball4 = (4.04, 1)

r = 1 vx = 0.15

cball1 = (−2.3, 1)

cball3 = (2.05, 2.025)

cball4 = (2.05,−0.025)

cball2 = (0, 1)
r = 1

Fig. 9 Left: ball-centre
x-y-plane trajectories for the
Newton’s cradle experiment.
Right: plot of kinetic, strain, and
total energy v. time for the
Newton’s cradle experiment

Fig. 10 Left: ball-centre
x-y-plane trajectories for the
billiard experiment. Right: plot
of kinetic, strain, and total
energy against time for the
billiard experiment

constrained: ux = 0 pressure: p = 241kParigid floor

uz = −0.1016mm

L = 508mm h = 50.8mm

d = 25.4mm

Fig. 11 Top left: experimental setup of the friction experiment. Top
right: result configuration of friction experimentwith ux colour mapped
and exact ux value at centre of front face. Bottom left: plot of accumu-

lated axial slip against nodal x coordinate. Bottom right: corresponding
plot of axial slip foundwith JAS3D alongwith analytical solution, cour-
tesy of Ref. [15]

tion with experimental, semi-automatic segmentation soft-
ware and ANSYS.6 The deformable geometry of the simu-
lation consists of two unconnected parts: the prostate con-

6 http://www.ansys.com/.

sisting of 22,705 tetrahedra and 4,425 nodes (purple in
Fig. 12), and a block representing the surrounding tissue
and the rectum consisting of 64,316 elements and 13,159
nodes (semi-transparent, blue in Fig. 12). The TRUS probe
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Fig. 12 Top: initial-
configuration geometry of the
prostate example. Prostate
shown in purple, surrounding
tissue in blue, TRUS probe
mesh in grey. Bottom left:
cutaway view of simulation final
configuration. Bottom right:
prostate final-configuration
posterior 3/4 view with initial
configuration overlaid
(wireframe)

mesh was created in Meshlab and comprises 4,886 trian-
gular elements and 2,445 nodes. Hu et al. [16] randomly
sampled their material parameters from ranges given by
E ∈ [5, 150]kPa, ν ∈ [0.3, 0.4999] for the prostate com-
ponents and E ∈ [5, 100]kPa and ν ∈ [0.25, 0.499] for the
surrounding tissue, and used an inhomogeneous model for
the prostate and the surrounding tissue. The parameter values
chosen for this purely demonstrational simulation are identi-
cal for the prostate and the other tissue and set toG = 1.8kPa,
K = 6.9kPa. The front and back face of the block are fixed
in all spatial directions via displacement boundary condi-
tions. The probe is translated by (−0,−11.5, 5) mm from
its initial to final position, in a linear motion. The simula-
tion runs for a total of 1,000 time steps of Δt = 10−3s,
each.

The second example is motivated by the registration of
preoperatively acquired prone MR images used for plan-
ning of breast conserving cancer surgery to intra-operatively
acquired supine MR images [12]. Sliding between the skin
and underlying tissues has been observed but not prop-
erly quantified, having a method that allows for the mod-
elling of this behaviour could therefore be used in future
biomechanics-based registration algorithms for this type of
application. In this example, the skin ismodelledwith a sepa-
ratemembranemesh. The solidmesh comprises 37,613 tetra-
hedral elements and 10,614 nodes, and was generated from a
256×512×32-voxel MR image with a 0.7×0.7×3.7mm

resolution with experimental segmentation software and Tet-
Gen.7 The membrane mesh was generated by extraction of
the surface of the solid mesh, offsetting by 3mm, and per-
forming a manual segmentation; it has 4,425 elements, 2,283
nodes. The thickness of the shell elements is set to 5mm leav-
ing a 0.5mm gap between the two meshes, that is quickly
closed by the applied gravity forces. The chest-wall side of
the solid mesh is fully fixed. The skin mesh is only held in
the superior, lateral corner. The solid mesh is modelled as
homogeneous transversely isotropic neo-Hookean [12] with
G = 3.57kPa, K = 16.67kPa, η = 37.71kPa8 and the
preferential direction coinciding with the ventro-dorsal axis.
The skin’s material parameters are E = 25kPa, ν = 0.4
for the membrane component, E = 5kPa, ν = 0.25 for
the bending stiffness. The simulation comprises 2,500 time
steps, representing 2.5 seconds. For reference, an otherwise
identical second simulation is run without the skin mesh to
better quantify the effects of the skinning. A colour map of
the distance between the two results can be seen in Fig. 13.

The deformation in the first experiment (Fig. 12) is, as
can be expected, quite localised with the TRUS probe pen-
etrating into the block by about 1.1cm. In the process, the
prostate is primarily rotated but also slightly bentwith respect

7 http://tetgen.berlios.de/.
8 η controls the stiffness in the preferred material direction, details can
be found in the NiftySim user manual.
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Fig. 13 Left: initial configuration of the breast simulationwith the skin
contact assembly partially peeled away for better visibility, showing the
outer contact surface (red), midplane (grey, not used in contact mod-
elling), and the bottom part of the membrane contact assembly (blue),
and the breast solid mesh (beige). The red arrow indicates the direc-

tion of gravity. Centre: inferior-medial view of solid mesh and skin
mid-surface final configurations with the skin mid-surface shown as
wireframe mesh. Right: frontal view of skinned breast simulation final
result with colour and opacity mapped distances to the result of the
simulation without skin

to its apex-base axis with the base being displaced by about
4mm. Two small dents made by the surrounding tissue dis-
placed by the probe can also be seen on the prostate’s poste-
rior surface, where the peak displacement magnitude reaches
5.1mm. That the non-rigid deformation of the prostate is not
larger can probably be attributed to the mesh consisting of
two parts that can slide relative to each other.

The deformation of the solid mesh in the breast example
(Fig. 13) is primarily a compression in ventro-dorsal direc-
tion combined with a shift of a sizeable portion of the mass
in inferior and medial direction. The skin mesh is well held
in place by the former despite there only being displacement
boundary conditions on one corner of the mesh. The mean
solid mesh node distance between the results of the simula-
tions with and without skin is 0.28mm with a maximum of
8.61mm. Most of the large magnitude interaction between
the two meshes appears to happen in the area surrounding
the breast, although there is some evidence of a constraining
of the solid mesh’s expansion in the plane of the chest wall.
Further, due to the proximity of the skin and the solid mesh,
roughly half of both the solid mesh and skin contact surface
can be assumed to be subject to contact constraints, or at least
be turned up as collision candidates by the broad-phase con-
tact search, for most of the duration of the simulation which
is a larger fraction than in most simulations. Thus, it can be
assumed that particularly the contact search costs are higher
in this simulation than inmost simulationswith a comparable
mesh resolution.

In any case, the sum of the timings (Table 3) obtained
for all contact modelling-related operations is in both cases
of the same magnitude as the time required for the basic
FEM modelling, which due to the low computational costs
associated with the matrix-free approach of TLED is quite
challenging in its own right.

Conclusions

We have presented methods suitable for detecting and han-
dling of contacts arising in explicit FEM simulation of a

Table 3 Computation times for the breast and prostate image-guidance
examples broken down into the major stages of the contact-modelling
pipeline

Prostate (s) Breast (s)

BVH and contact surface update 0.3 2.87

Contact search 45.55 119.71

Response computation 0.35 0.09

Other FEM operations 40.63 57.58

Total sim. computation time 86.83 181.06

range of scenarios: deformable geometry self-collisions, con-
tacts between deformable solid and membrane meshes, and
deformable geometry and a range of rigid geometry. The con-
tact search portion of the presented pipeline is optimised for
the typically small time steps one has with explicit time inte-
gration in which it keeps the number of BV refittings low by
identifying the parts of the BVH where containment of the
geometry is ensured and self-collisions can be excluded. The
success of this strategy can be seen in the consistently low
numbers of BV refittings.

Further, in this paper, an improved formula for the com-
putation, via Provot’s recursive algorithm, of surface-normal
bounding cones used for self-collision detection has been
presented. We have demonstrated that the proposed formula
leads to a marked reduction in the number of BVH subtrees
that must be checked for self-collisions, compared with the
formula originally proposed by Provot.

On the contact-modelling side, we have presented a robust
general-purpose method that can deal with both geometric
as well as temporal singularities via smoothing. Mathemati-
cally, the contact-force smoothing is, with respect to space,
done by means of linearly interpolated surface normals, and
with respect to time, by means of linearly increasing gap
rate proportional forces. Despite these stability improving
modifications, the results obtained with the proposed contact
model remain consistent with physics and accurate as has
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been shown with transient impact and quasi-static, resting-
contact friction experiments.

We have also shown that the entire proposed contact-
modelling pipeline can be executed within a time frame that
is of the same order of magnitude as the time required for
standard TLED computations, in real-world image-guidance
applications.
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Appendix A: The time-step algorithm

t ← t + Δt {Beginning of time-step}
R ← UpdateExternalForces (t)
F ← UpdateInternalForces

(
U (t)

)
U (p) ← UpdateDisplacements(U (t), F, R) {Compute dis-
placement prediction with Eq. (1)}

C (t)
def ← Update

(
C (t−Δt)
def , U (p)

)
{Update deformable geometry

contact surface Cdef}

BVH(t)
def ← UpdateBVH

(
BVH(t−Δt)

def , C (t)
def

)
{Update def. geometry

BVH with Algorithm 1}

Cdd ← FindCollisions
(

C (t)
def,BVH

(t)
def

)
{Find deformable

geometry contacts}
Fc ← ∑Cdd

c ComputeForces(c, C (t)
def)

Fc ← ConsolidateForces(Fc, Cdd ) {Correct for redundant
constraints}
R ← R + Fc

C (t)
movRig ← UpdateContactSurface

(
Ct−Δt
movRig, t

)
{Update

moving rigid geometry C (t)
movRig}

BVH(t)
movRig ← UpdateBVH

(
BVHt−Δt

movRig, C (t)
movRig

)
{Updatemoving

rigid-body BVHs}

Cdr ← FindCollisions
(

C (t)
def, Crig, C (t)

movRig,BVH
(t)
def,BVHrig,

BVH(t)
movRig

)
{Find deformable-rigid contacts}

Fc ← ∑Cdr
c ComputeForces(c, C (t)

def)

Fc ← ConsolidateForces(Fc, Cdr )

R ← R + Fc

U t+Δt ← UpdateDisplacements(U (t), F, R) {Compute next
time-step displacement}

Appendix B: Derivation of the NBC computation
formula

The quantities appearing in this derivation are illustrated in
Fig. 2. The starting point for the derivation of our NBC for-
mula (4) is the realisation that an optimal parent axis ap does
not only depend on the child-NBC axes, a1, a2, but also their
opening angles, α1, α2. If β denotes the angle between the
two child axes and β1, β2 their respective angles between
them and the parent axis, the ideal opening angle of the par-
ent NBC αp satisfies:

αp = 2(β1 + α1/2) = 2(β2 + α2/2) (23)

Using this and the definition of β1, β2, it is obtained

β = β1 + β2 = arccos(a2Ta1)
β1 = (2β − (α1 − α2))/4, β2 = β − β1

(24)

That in turn is used to obtain the desired weights w1, w2 for
computation of the parent axis from the child axes:

w1 = cos(β1) − e cos(β2)−e cos(β1)
1−e2

, where e := a1Ta2
w2 = cos(β2)−e cos(β1)

1−e2

ap = 1
||w1a1+w2a2|| (w1a1 + w2a2)

(25)

Appendix C: Derivation of the non-rigid deformation
threshold for BVH updating

Abound on the non-rigid deformation is required in the BVH
updating algorithm to ensure the detection of all self-collision
candidates, i.e. if no self-collisionwas possible in aBVHsub-
tree at the time of its last update tU , meaning the root node’s
NBC opening angle αVMT is smaller than the self-collision
candidate threshold τVMT, how much non-rigid deformation
can the bounded geometry undergo without pushing αVMT

above the threshold τVMT and thus necessitating a full update
the BVH subtree and check for self-collisions?

The bound introduced here, can be derived with a 2D
sketch (Fig. 14): Assuming the maximum non-rigid dis-
placement u′

NR,max of the bounded nodes is known, taking
the smallest primitive diameter hmin in the set of primitives
bounded by the UN, it is found that the biggest change to the
primitive’s normal (and thus potentially all NBCs in which
it is contained) occurs if the primitives vertices both move
by ||u′

NR,max|| in opposite directions and perpendicularly to
the plane of the primitive. The angular change to the normal
Δα arising from such non-rigid deformation is

Δα = arctan
||u′

NR,max||
hmin/2

(26)

The next step is to solve for ||u′
NR,max|| by setting Δα to

(τVMT−α
(tU )
VMT)/2, i.e. determine a safe upper bound for nodal
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u′

x0 x1

n(tU )

n(t)

hmin

Δα

Fig. 14 In 2D: Situation leading to the largest possible change to the
primitive normal for a non-rigid deformation of knownmagnitude ||u′||.
The nodes of the example primitive have moved in opposite directions
perpendicular to the primitive’s previous plane

displacement below which self-collisions can be excluded.
This immediately yields the formula:

||u′
NR,max|| = hmin

2
tan

τVMT − α
(tU )
VMT

2
(27)
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