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Abstract
Purpose Automatic detection, classification and recording
of operating room (OR) activities in real time during a sur-
gical procedure requires a wide range of sensors to gather
information on the activities of the surgeon and staff, the
patient, and the OR equipment. The surgical instrument cur-
rently being used is an important parameter used to assess the
instantaneous operating room status. An automated system
was developed that detects unmodified surgical instruments
in real time using a sensor-based table.
Methods A multi-sensor operating room table was designed
featuring a 2D camera, digital scale, and infrared camera.
Software was developed to detect and record the sequence
of changes on the table during a surgical procedure. The
detection rates were evaluated under laboratory conditions
by recording the observed instrument usage in 27 functional
endoscopic sinus surgeries (FESS).
Results The detection rate achieved using video-based detec-
tion alone was 84.9 %. The total detection rate achieved with
the combined approach using both video- and weight-based
information was 90.3 %.
Conclusion A multi-sensor table-based automated instru-
ment tracking system was developed that provides a foun-
dation for the intra-operative detection of surgical instru-
ments without modifying the instruments in the surgical tray.
This system was tested and found to satisfy clinical FESS
requirements with a reasonable accuracy. This system may
also be useful to improve patient safety, for example to pre-
vent instruments being left in the patient.
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Introduction

New strategies for intelligent automation in healthcare orga-
nizations are needed to save time and resources, accelerate
throughput, enhance patient safety, and improve outcomes
[1]. Considering that the operating room (OR) is the most
expensive unit of a hospital [2], an optimization process may
both save money and increase the quality of patient care [3].
Here, OR activities are addressed as a process to address their
specific needs and possibilities. The generation [4], analysis
[5], and application of models to the OR as a working envi-
ronment play a key role in the OR of the future [6].

Early descriptions of surgical workflows were generated
via human observation [7]. The goal is now to automate
these observations and generate on-the-fly information of the
current events. In addition to retrieving information on the
functional state of peripheral devices and systems, a contin-
uous, automated instrument surveillance system would pro-
vide essential information on the actual state of the surgical
procedure [8].

Various approaches to the automatic detection and iden-
tification of surgical instruments have been developed. Most
methods concentrate on laparoscopic surgery and exploit cir-
cumstances prevalent to this special case. The laparoscopic
video images used for instrument tracking typically have
the anatomic structures in better focus than the instrument
itself.

In 1995, Uecker et al. [9] developed an image analysis and
tracking algorithm to automate instrument localization and
scope maneuvering for robot-assisted laparoscopic surgery.
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Speidel et al. [10] presented an approach for classify-
ing minimally invasive instruments using endoscopic images
based on preliminary instrument tracking studies. The instru-
ments were not modified with markers. This system seg-
mented the instruments in the current laparoscopic image and
recognized the instrument type based on three-dimensional
models [11].

Voros et al. [12,13] tracked instruments in laparoscopic
camera images by measuring their insertion point into the
abdominal cavity. However, no instrument identification was
performed.

Sznitman et al. [14] developed a unified instrument detec-
tion and tracking framework for retinal microsurgery.

Tonet et al. [15] localized endoscopic instruments in
videos using a colored strip on the distal part of the instru-
ment. Allen et al. [16] tracked the motion of standard laparo-
scopic instruments and their tips via video using standard
FLS training boxes. Bouarfa et al. [17] presented a real-time
multi-instrument tracker using compatible colored mark-
ers for in vivo use during surgery. Kranzfelder et al. [18]
developed an automatic identification system that detects
and registers individual instruments during their insertion
into the trocar. The system was based on an optoelectronic
object detection system using barcodes detected by a micro-
endoscopic camera.

Outside the laparoscopic sector, instrument identification
is possible by scanning an applied bar or matrix code [19]
that manufacturers now generally equip on their instruments
by default.

Several systems have been presented with the goal of
retained clamp and surgical sponge prevention [20–22].

Neumuth and Meißner [23] presented an approach to auto-
matic surgical instrument detection for workflow detection
that is not restricted to laparoscopic surgery and focuses
directly on the instrument table by marking the instruments
with RFID tags and adding sensors to the situs and table.

The need to develop a system that detects intra-operative
instrument usage across a comprehensive range of operations
greatly limits previously proposed approaches.

Systems focused on a specific surgery (e.g., laparoscopic
surgery) are not applicable to general operating setups.

Approaches based on existing bar or matrix codes require
additional actions by the technical nurse during the operation,
which is not applicable to real-life surgical conditions.

Meißner and Neumuth [24] presented promising results
using RFID identification of the instruments during inter-
ventions; however, if additional marking of the instruments
using either color codes or RFID tags is required, more chal-
lenges arise.

Egan and Sandberg [25] analyzed barcodes, Wi-Fi, and
both active and passive RFID automatic identification tech-
nologies in the healthcare environment. They identified dis-
advantages for each type of tag, ranging from the detection

range to battery issues. They concluded that the technology
must truly fit the problem.

However, the instrument still requires modification, which
raises sterilizability and durability issues for the markers or
tags and the glue used to attach them. For very slim instru-
ments, the application of a tag or code is often impossible.

Lemke and Berliner [26] stated that it is difficult to justify
the cost of new technological and systemic advances in inter-
ventional procedures and redesigning healthcare infrastruc-
ture, such as ORs.

The addition of tags or markers requires the modification
of all instruments to be tracked. Considering the number of
instruments in a clinic and the instrument range of a man-
ufacturer, which both easily exceed several thousand units,
the cost effectiveness and feasibility of integrating strategies
into the clinical workflow are doubtful.

The specified limitations demonstrate the need for an
intra-operative surgical instrument identification system
without modifications or limitations to laparoscopic surgery.
Beeri and Einey [27] presented a rough concept, called VIS-
ITS, for visually identifying instruments on trays and dis-
posal surfaces before, during, and after surgery to prevent
the retention of instruments and consumables. However, to
the authors’ knowledge, VISITS has never been elaborated
or implemented.

Rattner and Park [28] suggested researching related fields
to the one targeted when developing advanced operating
room devices to reduce development efforts.

Following this guideline, a visual item verification sys-
tem for fraud prevention in retail self-checkouts [29] and a
smart tray solution [30] for robot rehabilitation systems [31]
provide helpful basic concepts and inspirations to develop
the multi-sensorial detection approach presented in this
article.

In this article, we present a novel system design of a sur-
gical instrument detection system without the need for mod-
ification of the instruments, which completely differs from
all existing approaches and for the first time includes weight
information for identification purposes.

Methods

System design

Structural system setup

The presented system combines multiple sensors arranged
around an instrument table.

Figure 1 provides an overview of the setup and sensor
equipment involved.

A 2D camera above the table views the entire scene.
A Logitech Pro 9000 HD camera with a resolution of
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1,600×1,200 pixels was used. An Optris PI 160 thermal
imager with a 23◦× 17◦ lens, 160×120-pixel resolution,
0.08 K temperature resolution (NETD) and system accuracy
of ±2 ◦C was used as the supporting IR camera on the table
side. The table itself consisted of a 79×59 cm tray mounted
on a scale. A PCE BSH 10000 digital scale with a 10 kg
weight range and a ±0.2 g accuracy was used. This scale
features an RS232 interface that allows for access to the cur-
rent weight using an intercalated RS232-to-USB converter.

All of the specified sensors were connected to the Ana-
lyzer Central Unit, a computer system with an Intel Core

Fig. 1 Schematic of the proposed system

i7-2760QM Quad Core CPU at 2.4 GHz and 8 GB of RAM
running on Windows 7.

The system running on the Analyzer Central Unit was
divided into two modules: the Builder and Analyzer.

The Builder module allows a user to gather information
on the different surgical instruments and to build an instru-
ment reference container. To gather the necessary informa-
tion, each instrument is weighed, and a number of reference
images are obtained of the instrument in different positions.
The number of images varies based on the shape and com-
position of each instrument from 2 for simple tools, such
as a suction tube, to 12 for complex instruments, such as
the scissor-like Blakesley tool, which can open to different
angles and looks different on each side. When a new ref-
erence image is added, the Builder automatically performs
several image data processing steps to accelerate the detec-
tion process. Therefore, a single image always generates a
reference image series, where each image knows its algorith-
mic history. The user can add additional instrument informa-
tion, such as the camera used, alternative instrument names, a
description of the instrument, the manufacturer, a cataloged
image, or other known instrument identifiers, such as bar-
codes. Figure 2 provides an overview of the underlying file
structure for the instrument reference container.

Fig. 2 Overview of the underlying data structure for the instrument reference container (excerpt)
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Fig. 3 Overview of the detection procedure (part 1)

Dynamic system behavior

The second module, the Analyzer, references a previously
generated instrument reference container upon start-up. This
container typically holds information on all instruments in the
surgical tray(s) for a single surgical intervention. Therefore,
it summarizes all of the a priori information known to the
system.

The Analyzer identifies objects on the instrument table
as follows (Figs. 3, 9 provide a complete overview of the
detection algorithm).

The 2D camera above the table takes a steady stream of
snapshots called frames. Any frame with a visible hand or
finger is discarded by analyzing the corresponding thermal
images from the IR camera.

The underlying algorithm classifies the frames as “not
usable” if the corresponding IR image exceeds a certain num-
ber of pixels above a temperature of 28 ◦C. Figure 4 presents
an IR camera snapshot and temperature legend.

Fig. 4 Snapshot from the IR camera used for hand detection

Frames are also discarded if the weight was unstable at the
moment of weighing, for which the last 4 weight values are
compared to the tolerance levels of the scale. A weight sam-
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pling rate of approximately 8 Hz for the scale also prevents
the repeated visual analysis of frames when no noticeable
weight change has occurred.

Figure 5 presents an extract of the digital scale values
during object movements. The scale values stabilized in a
reasonable time to deliver steady results within the accuracy
range (±0.2 g).

Visual classification begins when a frame is flagged “for
analysis”. For this analysis, the frame undergoes edge detec-
tion using a Canny filter [32], and the edges are dilated to
identify cohesive objects (Fig. 6). Very small blobs are con-
sidered noise and discarded. Rotation variance is removed
from the procedure by performing a central axis transforma-
tion on each detected object (Fig. 7). The resultant rotated
edge image is then compared to the a priori shape descriptions
in the instrument reference container, and a confidence value

is determined for each instrument in the reference container
within the interval [0, 1].

Instrument candidates with a confidence value below a
given threshold are discarded.

The following steps use the weight analysis to specify the
results. Two different weight analyses are compared in this
article:

The first analysis is called PowerWeight and uses the
results from a prior visual analysis of the frame to restrict the
(weight) search for instruments considered. This analysis is
performed because searching for possible instrument com-
binations based solely on their total weight values without
further information is a combinatorial optimization problem
known as the knapsack problem. Due to the NP-complete
nature of these problems, the computational complexity can
easily become incalculable [33].

Fig. 5 Progression of digital scale values during object movements

Fig. 6 Edge detection and dilatation to identify coherent objects
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Fig. 7 Edge detection and central axis transformation of a Blakesley instrument to remove rotational variance

Fig. 8 Overcoming the visual
misclassification of a Blakesley
instrument by ruling out a
preferred visual candidate as a
result of the follow-up
PowerWeight analysis

Figure 8 shows an example frame, in which instruments
b to f are visually detected with only one visual candidate,
but the shown instrument a (45◦ upturned Blaskeley–Wilde
Nasal Forceps) has multiple candidates and is misclassified
as the very similar straight Blakesley nasal forceps when only
relying on the best visual confidence value.

The PowerWeight analysis uses the multiple possible hits
for instrument a as a base for the weight detection, by describ-
ing the table constellation as follows:

MTableConstellation = (T (a1) � T (a2) � . . . � T (an))

∧ T (b) ∧ T (c) ∧ T (d) ∧ T (e) ∧ T ( f )

with T (xi ) : Instrument xi is on table

For each possibility M(ai ) := T (ai )∧T (b)∧T (c)∧T (d)∧
T (e) ∧ T ( f ); then, the total weight is calculated and com-
pared to the weight value measured by the scale:

w(M(ai )) := wre f (ai ) + wre f (b) + wre f (c)

+ wre f (d) + wref (e) + wre f ( f )

with wref (xi ) : reference weight of instrument xi

If |w(M(ai )) − ω| ≤ ε then M(ai )is a candidate else M(ai )

is ruled out with ω : measured total weight from scale

For the shown example in Fig. 8 with a measured ω = 250.8 g
and a tolerance value ε = 1.2 g, this leads to:

For a1 : |260.4−250.8 g| > ε ⇒ M(a1) is ruled out.

For a2 : |251.0−250.8 g| ≤ ε ⇒ M(a2) is a candidate.

M(a2) is now chosen as the detection result because a1 with
c(a1) > c(a2) has been ruled out by weight information. As
a consequence, the PowerWeight analysis delivers the correct
result compared to the detection relying only on the visual
analysis. However, in cases where no valid combination of
weight values can be found or when unknown objects are
detected on the table, the algorithm falls back to the video-
only detection.

The detection procedure overview in Fig. 9 additionally
illustrates the approach.

The second approach is called PreFrameKnowledge and
uses historical knowledge of the current operation session to
determine the instrument. This synthetic approach was added
to investigate the influence of additional information (here,
knowledge of the previous frame) not provided by reality.

Instead of using on the total table weight, the weight dif-
ference between the last and current table states is used in
this weight analysis to determine the added (or removed)
instrument.

Irrespective of the weight algorithm used, the final frame
analysis yields a result by determining a combined confi-
dence value for the individual analyses, which can be used
to update the current operation session.
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Fig. 9 Detection procedure overview (part 2)

Fig. 10 Comparison of real OR conditions (left) to the laboratory condition (right)

Evaluation study

Study design

A study to evaluate the recognition rates of the proposed
system was conducted under laboratory conditions. Figure 10
compares the real OR and laboratory conditions.

A surgical intervention called functional endoscopic sinus
surgery (FESS) was selected as the basis for the study based
on its manageable time and instrument range.

For the chosen FESS operations, 27 surgical interven-
tions were analyzed for movements involving the instrument
table. The 27 patients (12 women, 15 men) were 19–72 years
old with a mean age of 42±15.6 years. Four skilled sur-

geons assisted by five technical nurses performed the inter-
ventions at the Acqua Klinik in Leipzig. The observations
were restricted to the period from incision to suture with a
total observed time of 13 h 4 min 40 s, a mean intervention
period of 29 min 3 s, and a standard deviation of 11 min 5 s
(minimum: 8 min 31 s, maximum: 58 min 21 s).

Identical surgical trays were used for each of the analyzed
operations. The trays held a total of 74 items, including instru-
ments and additional material. Special items not placed on
the instrument table, such as cables and optics, and dupli-
cate instruments were removed after consulting experts in
the field (a senior technical nurse, two technical nurses, and
a surgeon). An additional two items not in the tray but in use
were added: a disposable scalpel and the pointing tool for
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Fig. 11 Screenshot of the StudyDirector GUI

navigating operations. All items were captured by the Builder
tool as described using a real surgical tray. In total, 49 dif-
ferent instruments were used to generate the corresponding
instrument reference container using a total of 367 images,
with an average of 7.49 images per instrument.

Two medical student observers recorded the instrument
table activities using the ICCAS Workflow Editor [34] and
generated an instrument table workflow description model
for each intervention, which detailed when each instrument
was moved to and from the instrument table. In total, 3,841
instrument movements were recorded in these models, with
an average of 142.25 instrument movements per intervention.

The instrument table workflow description models were
reduced to recreate the interventions.

The subject handled only the 10 most-used instruments
and the pointer. These items accounted for 3,329 (86.7 %) of
the total instrument movements, which reduces the average
number of instrument movements per intervention to 123.3.
The instrument reference container used for the detection
algorithm still included the complete surgical tray.

To reduce the time requirements for the reenactments and
the amount of accumulated data, the frequency of instrument
table movements was normalized to 5 s, which reduced the
total reenactment time for all interventions from 13 h 4 min
40 s to 4 h 27 min 25 s.

An application called StudyDirector was created to allow
those without a technical nursing background to reenact the
instrument table movements from the surgical procedures.

To this end, a display presents the next instrument to move
to or from the table along with a progress time bar, which
helps time the exact moment for the next movement. The next
two pieces are also shown to mentally prepare the subject.
Figure 11 presents a screenshot of the graphic user interface.

The data acquired from each reenacted surgical proce-
dures were analyzed and compared to the known real situa-
tion. The detection results of the recreated instrument table
movements were determined in three ways for each inter-
vention: once using only visual detection, once combining
visual detection and scale analysis, and once with this com-
bination and including knowledge from the previous situa-
tion. A detection was considered a hit for a single instrument
if it had the highest confidence value as determined by the
specific algorithm. The results for each algorithmic approach
were statistically analyzed. A Kruskal–Wallis rank sum test
was performed to compare the three unmatched groups and
test whether the samples originated from the same distribu-
tion [35].

Evaluation study results

The detection results from the reenacted instrument table
movements were determined and presented three ways for
all 27 workflows. Table 1 presents the detection results for
each alternative.

The Kruskal–Wallis rank sum test yielded a p value below
0.001. Therefore, the null hypothesis was rejected, and the
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Table 1 Detection results (%) for all reenacted instrument workflows

Instrument workflow W01 W02 W03 W04 W05 W06 W07 W08 W09 W10 W11 W12 W13 W14

Detection rate video only (%) 83.4 83.8 90.5 86.7 81.2 89.7 77.2 84.8 87.0 80.8 83.0 86.0 91.9 85.7

Detection rate in % video and weight (%) 85.4 86.0 100.0 90.5 85.1 91.2 83.7 87.3 90.4 84.8 86.8 92.1 100.0 88.5

Detection rate in % preframe knowledge (%) 99.5 99.7 100.0 99.9 99.8 99.3 99.6 99.2 98.5 99.9 99.8 99.8 100.0 99.5

Instrument workflow W15 W16 W17 W18 W19 W20 W21 W22 W23 W24 W25 W26 W27 AVG

Detection rate video only (%) 79.5 84.8 99.5 92.9 75.4 79.7 82.1 81.3 83.9 86.5 77.0 88.5 90.6 84.9

Detection rate video and weight (%) 98.8 89.0 96.7 100.0 82.7 86.9 86.5 82.9 87.7 91.0 84.4 100.0 100.0 90.3

Detection rate preframe knowledge (%) 100.0 98.9 99.6 100.0 98.5 99.9 98.6 99.2 99.8 99.6 99.5 100.0 100.0 99.6

Fig. 12 Box-and-whisker diagram for the detection results

alternative hypothesis stating that the groups are not all from
the same distribution is assumed.

Thus, the groups were subjected in pairs to a Mann–
Whitney–Wilcoxon test to determine whether each pair is
from the same population [36].

The comparison of “video only” to “video and weight”
yielded a p value of 0.002.

The comparison of “video and weight” to “preframe
knowledge” yielded a p value below 0.001.

The comparison of “video only” to “preframe knowledge”
yielded a p value below 0.001.

Because all of the p values were below 0.01, the alternative
hypothesis was assumed for each pairing, which leads to the
assumption that the populations all differed.

Figure 12 presents a box-and-whisker diagram for the
detection results.

The “video-only” detection rates had a mean of 84.9 %, a
standard deviation of 5.4 %, a lower quartile at 81.2 %, and
an upper quartile at 87.7 % (minimum: 75.4 %, maximum:
99.5 %). The “video & weight” detection rates had a mean
of 90.3 %, a standard deviation of 6.0 %, a lower quartile at

85.7 %, and an upper quartile at 94.4 % (minimum: 82.7 %,
maximum: 100.0 %). The “preframe knowledge” detection
rates had a mean of 99.6 %, a standard deviation of 0.5 %,
a lower quartile at 99.4 %, and an upper quartile at 99.9 %
(minimum: 98.5 %, maximum: 100.0 %).

The detection rates using the “video and weight” algo-
rithm are, with one exception, always higher than the “video-
only” detection rates, and the “preframe knowledge” detec-
tion rates are always higher than the detection rates of the
other two algorithms. Five of the workflows using the “video
and weight” algorithm and six of the workflows using the
“preframe knowledge” algorithm provided detection with-
out error.

Discussion

We developed a system capable of autonomously identify-
ing unmodified surgical instruments during an intervention.
Instead, the presented system detects the instruments using
a combination of sensors. A study was conducted to eval-
uate the recognition rates for this system under laboratory
conditions and to compare different detection algorithms.

The detection rates when using the “preframe knowledge”
algorithm had a mean value of 99.6 %; however, this detec-
tion rate cannot be transferred directly to an instrument table.
Knowledge from the previous frame is not available in reality.
However, these results indicate additional situational knowl-
edge (in this case, the state of the table before its last modifi-
cation) improves the detection rate. The detection rate using
the “video and weight” algorithm can be directly transferred
to the OR setting and yielded a mean value of 90.3 % with a
minimum of 82.7 %. Therefore, combining shape and weight
information with sensor data allows for the accurate identi-
fication of surgical instruments. With the exception of W17,
the individual detection rates of all workflows were higher
than the “video-only” detection rates, which had a mean of
84.9 %.

This 5.4 % increase in the detection rate indicates that
the weight information contributes to the detection preci-
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sion. The maximum detection rate improvement was for
W15, which increased from 79.5 % for the “video-only” algo-
rithm to 98.8 % with the addition of weight information. This
19.3 % increase demonstrates that the weight information can
be decisive for the detection rate.

The algorithm used to visually detect the instruments has
proven applicability to the given situation.

The instrument reference container of the system was cre-
ated using the complete content of the surgical tray from the
examined FESS interventions. The parallel use of a ther-
mal camera to detect hands robustly discards frames with a
visible hand and indicates table changes. When the subject
is wearing surgical gloves, the measured hand temperature
varies by up to 2 ◦C, which does not affect the hand detection
algorithm.

The digital scale also yielded reasonable results. The
RS232 interface delivered the scale values at a varying fre-
quency (ca. 8 Hz).

Under real OR conditions, quicker instrument changes
sometimes can keep the line of sight of the IR camera
obstructed while more than one instrument change is hap-
pening. As a consequence, some instrument changes might
happen unnoticed to the system. But since the video and
weight variant does not rely on previously detected frames,
the analysis detects that more than one change has occurred.
With an additional inclusion of the scale movements, an indi-
cator for instrument changes is also provided for phases when
the line of sight of the IR camera is blocked.

Because the system only monitors the table, naturally, all
circumventions of the instrument table considering instru-
ment usage cannot be detected. Especially, the additional tray
next to the instrument table must be monitored separately, as
well as all additional devices used by the surgeon such as
drills or surgical fraise.

As a central constraint, the visual algorithm cannot han-
dle superposed objects, which are common for OR instru-
ment tables. Any overlapping of an instrument will generate
a blob containing two or more objects. Superimposed objects
or overlaps can lead to a failing identification of these instru-

ments during the process, but the impact of missing sen-
sor information can be compensated by follow-up systems
[37]. Furthermore, the visual algorithm cannot handle flex-
ible objects, such as consumables, e.g., swabs. These limi-
tations require additional algorithms. However, both super-
posed and unknown objects have a high probability of being
classified as unknown objects.

Because the visual detection algorithm depends only on
the object edges, not the color information, it can be used
under the steadily changing lighting situation of an OR.
Strong shadows can negatively affect the detection results;
however, the algorithm tolerances can be adjusted. As one
might expect, a consistently lit instrument table is benefi-
cial. Reflections can also affect the detection rates but were
inconspicuous in this study.

The algorithm can consider instruments with movable
parts, such as scissors, because it allows for multiple shapes
for each instrument. Using precise instrument models, this
method could even utilize cataloged instrument information,
which would reduce the effort required to make instruments
known to the system.

If additional instruments, which have not been made
known to system previously, are added during surgery, which
can happen in real OR situations, the system would most
probably then classify these as unknown objects.

Some problematic cases for the shape- and weight-based
approach were identified during this project. Figure 13(1)
provides an example of two radically divergent instruments
from an established instrument manufacturer with identical
type numbers.

The pictured surgical retractors significantly differ in
length (0.7 cm), width, height, and weight (2.0 g difference),
whether this problem was a workmanship fault or is nor-
mal for the fabrication process has not been determined.
Figure 13(2) provides an example of instruments that dif-
fer because of abrasion and maintenance modifications. The
pictured tips of the tweezers vary by several millimeters in
length because they are often shortened during maintenance
to maintain their grip.

Fig. 13 Examples of differing instruments with identical part numbers. Left (1) length comparison of two surgical retractors, Right (2) length
comparison of two tweezer tips
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Such real-life circumstances will presumably negatively
impact the detection rates, and the algorithm tolerance for
shape and weight discrepancies must be adjusted if the instru-
ment reference container was not initialized for the exact
instruments being detected by the system.

Conclusions

To automatically detect the current OR situation, identifying
the instrument currently being used during a surgical inter-
vention is a critical parameter.

The proposed system uses combined sensors to detect
the instruments and differs significantly from existing app-
roaches. The evaluation study delivered detection rates of
90.3 % when combining video and weight information and
even higher rates when information from previous frames
was included. Compared to existing approaches for deter-
mining the instruments used during a surgical intervention,
the proposed approach is not dependent on a special type of
surgical intervention, such as laparoscopy. Furthermore, this
technique circumvents the need to modify the instruments.
Therefore, this method allows for the detection of instruments
that cannot be modified because of their proportions or finan-
cial practicality, e.g., single-use instruments. The presented
algorithm could also be enhanced to consider consumables.
The proposed approach can also be combined with existing
approaches using RFID or laparoscopic images in order to
merge their individual advantages.

Detecting the instruments used during a surgical inter-
vention contributes significantly to work that depends on the
knowledge of the current OR situation, such as workflow-
based assistance systems.

The presented system can also contribute to the statistical
analysis of instrument usage rates and lead to their optimiza-
tion because instruments that are randomly or never used on
the trays could be identified. This system could also be used
to resolve the problem of retained surgical instruments or
consumables by monitoring objects given to the surgeon and
adding a security count to those already performed by the
persons responsible for the OR.

A follow-up project will transfer the demonstrated fea-
sibility of this approach to a real OR instrument table
and enhance the current algorithms to address some of the
remaining restrictions.
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