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Abstract
Purpose In robotic-assisted surgical training, the expertise
of surgeons in maneuvering surgical instruments may be uti-
lized to provide the motion trajectories for teaching. How-
ever, the motion primitives for trajectory planning are not
known until the motion trajectory is generalized. We hypoth-
esize that a generic model that encodes surgical skills using
demonstrations and statistical models can be used by the sur-
gical training robot to determine the motion primitive base
on the motion trajectory.
Methods The generic model was developed from twenty-
two sets of motion trajectories of soft tissue division with
laparoscopic scissors collected from a robotic laparoscopic
surgical training system. Adaptive mean shift method with
initial bandwidth determined by the plug-in-rule method was
used to identify the primitives in the motion trajectories.
Gaussian Mixture Model was applied to model the under-
lying motion structure. Gaussian Mixture Regression was
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then applied to reconstruct a generic motion trajectory for the
task.
Results The generic model and proposed method were
investigated in experiments. Motion trajectory of tissue divi-
sion was model and reconstructed. The motion model which
was trained based on primitives determined by adaptive mean
shift method produced RMS error of 3.05◦ and 3.08◦ with
respect to the demonstrated trajectories of left and right
instruments, respectively. The RMS error was smaller than
that of k-means method and fixed bandwidth mean shift
method. The dexterous features in the demonstrations were
also preserved.
Conclusions Surgical tasks can be modeled using Gaussian
Mixture Model and motion primitives identified by adaptive
mean shift method with minimum user intervention. Generic
motion trajectory has been successfully reconstructed based
on the motion model. Investigation on the effectiveness
of this method and generic model for surgical training is
ongoing.

Keywords Adaptive mean shift · Gaussian mixture model ·
Motion modeling · Laparoscopic surgery ·
Surgical simulation

Introduction

With the advent of robotic technology, the many techni-
cal limitations inherent to laparoscopic surgery have now
the potential to be circumvented [1,2]. Robotic technologies
have thus been widely applied in surgery, playing a significant
role in robot-assisted surgery, teleoperation [1,3], and robotic
surgical training [4]. However, it is challenging for the robot
to learn the complex manipulation of surgical instruments
during surgery.
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In past decades, researchers have devoted their efforts in
enabling robots to perform motions or manipulations similar
to that of a human. The learning of human gestures by imi-
tation for a humanoid robot has attracted intensive research
efforts [5,6]. Various methods have been explored, such as
the Hidden Markov Models (HMM) [7], the Gaussian Mix-
ture Modules (GMM) [8], and the node transition graphs
method [9]. The technologies of learning by demonstration
have also been explored in motion planning for surgical tasks
[10]. Robust representation of surgical instrument motion
will benefit the development of autonomous surgical robots
[11], as well as evaluation of surgical skills [12,13].

Demonstration-based learning techniques [6] are meth-
ods that equip a robot with motion learning capability. This
is achieved through characterizing the demonstrations and
then reconstructing an optimal motion trajectory for a robot.
Demonstration-based learning has been studied using neural
network [14–17] and statistical representation [8,18]. In
recent research, learning by demonstration technology has
also been applied in robot-assisted surgery to recognize,
learn, and evaluate the motion trajectory of surgical instru-
ments in surgery. Mayer et al. [14] applied a recurrent neural
network to learn the tying of surgical knots based on the tra-
jectory of human manipulation of the surgical instruments.
Reiley et al. [19] applied a statistical modeling method of
learning and categorizing motion in surgery. Lin et al. [13]
applied Linear discrimination analysis and Bayes classifier
methods in motion modeling for the purpose of skill evalua-
tion in robot-assisted surgery.

In order to model the motion acquired from demonstra-
tions, it is essential to identify the motion primitives. In
a HMM- or GMM-based approach, a left to right model
or single-chain cyclic model with a predefined number of
motion primitives was assumed, and arbitrary numbers of
interconnected motion primitives were not considered [9].
Different methods have been proposed to identify the num-
ber of mixture components such as the cross validation, the
Akaike information criteria and the Bayesian information
criteria. The cross validation method requires independent
trials of demonstration to form a complete test set. Calinon
et al. [8] proposed a BIC score method to determine the opti-
mal number of motion primitives. The BIC score method is a
tradeoff between a log-likelihood and the number of parame-
ters to model the motion. The number of mixture components
is decided by the BIC function [8] which produces the lowest
score. However, the BIC score method requires multiple tri-
als of the modeling process to determine the log-likelihood
of the mode and the number of free parameters for the mix-
ture model. The adaptive mean shift method is applicable to
cluster the motion trajectory and to preserve the dextrous fea-
tures in a motion trajectory. Nevertheless, the efficiency of the
adaptive mean shift method relies on the choice of the band-
width. To determine the optimal bandwidth is challenging.

Various methods have been explored to identify the appropri-
ate bandwidth for the given data set, such as the plug-in-rule
method [20], the least square cross validation and contrast
methods [21], and the Asymptotic Mean Integrated Squared
Error method (AMISE) [22].

The objective of this paper is to model surgical skills based
on motion trajectories of laparoscopic instrument with min-
imal user intervention. A key technical contribution is the
proposed motion learning method that uses adaptive mean
shift method to identify the motion primitives. The rest of the
paper is organized as follows: The “Methods” section intro-
duces the proposed method for surgical motion trajectory
learning and illustrates the various techniques in each module
of the proposed method. Section “Experiments and results”
describes the application of this method with the experimen-
tal results of a tissue division task and a clip deployment task
in a robotic surgical training system. In “Discussion” sec-
tion, the generic motion model which is trained using primi-
tives determined by adaptive mean shift method is compared
with that of k-means method and fixed bandwidth mean shift
method. Finally, this work is concluded in the section “Con-
clusion”.

Methods

Figure 1 describes the proposed method for the clustering,
modeling, and reconstruction of the motion trajectory in the
robotic learning of laparoscopic surgery. Suppose that the
motion trajectory is

X = {Xt,i , Xs,i }, for i = 1 · · · N (1)

where Xt and Xs are the time and spatial components of the
trajectory, respectively, N is the number of the observations.
In order to eliminate the effect of the non-homogeneity of
motion speed among the trials of the same task, Dynamic
Time Warping (DTW) is performed to align the trajectories
according to its features. The Principal Component Analy-
sis (PCA) is used to reduce the dimensionality of the high-
dimensional data and to preserve their features. The aligned
motion data sets are therefore transformed into latent space
by the PCA. The motion data sets in latent space are then
clustered by the adaptive mean shift method with optimal
bandwidth to identify the motion primitives. The number of
motion primitives is defined as the number of mixture com-
ponents for statistical modeling. Gaussian Mixture Model
(GMM) is trained with the clustered motion data to estimate
its parameters. When the GMM model is trained, the esti-
mated parameters in latent space are then projected back to
their original space. With the motion data represented by
GMM, Gaussian Mixture Regression (GMR) can be applied
to retrieve smooth trajectory in original space with given
temporal information.
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Fig. 1 Data processing procedure to model and reconstruct the motion
trajectories

Data processing

Motion speed in the execution of a given task varies from
one trial to another. Therefore, the features in the motion tra-
jectories do not appear in the same region across the trials.
Hence, DTW is required to align the features from different
trails in the same time span. The DTW measures the simi-
larity between two trajectories which may vary in temporal
information. It eliminates the constraint of distortions in time,
between separate trajectories, which reduce the capability of
the statistical models. To avoid misalignment during DTW,
the trajectory data of each trial are divided into several sub-
tasks with landmarks, such as approaching tissue, holding
tissue, division of tissue. Each subtask is temporally aligned
by the DTW. The trajectory candidate with the longest time
span is chosen as the reference trajectory during the DTW.
The results of the DTW of each subtask are joined together
accordingly and expressed as T = {Tt,i , Ts,i }.

PCA is required to reduce the dimensionality for high-
dimensional data, reduce noise, and identify the principal axis
of the temporal aligned trajectory data. With PCA, {Ts,i } is

expressed in latent space. The spatial component in the latent
space is written as

{xs,i } = A · {Ts,i }, i = 1 · · · N , (2)

where A = {υ1,D, υ2,D, · · · υi,D} is a transformation matrix,
and υi is the eigenvectors of the covariance matrix of the
centered motion data set {Ts,i } [8], and subscript D is the
minimum number of the dimensionality required in the latent
space. Hence, the motion trajectory data after PCA can be
expressed as

x = {xt,i , xs,i }, i = 1 · · · N , (3)

where xs,i is the spatial component expressed in the latent
space.

Adaptive mean shift clustering of motion trajectory

Mixture model is a mixture distribution that represents the
probability distribution of the observations in the overall pop-
ulation. The number of mixture components K p and the num-
ber of observations are two basic parameters for any mixture
model. In this study, the number of motion primitives in a
task is the number of mixture components used in modeling
the task. Identification of motion primitives is required for
application of mixture model in modeling motion trajecto-
ries. However, the number of motion primitives is not known
for a demonstration of real tasks. The adaptive mean shift
method can be applied to cluster the motion trajectories and
to identify the number of components based on the bandwidth
of the data set.

The mean shift method first defines a window around each
data point and computes the mean of the data points, after
which the center of the window is shifted to the mean accord-
ing to the mean shift vector (7) and the algorithm is repeated
until the mean shift vector is less than a specified threshold
value. The data points in the feature space are considered
as a probability density function. Kernel function is applied
to estimate the density. The kernel density estimation is a
nonparametric way to estimate the density function of a ran-
dom variable. The kernel k(x) is a positive definite bounded
function satisfying

∫
K (x)dx = 1 and

∫
xK (x)dx = 0 [23].

Given a kernel K (x) = k(||x||2) with bandwidth parame-
ter h, the kernel density estimator for a given set of D-
dimensional data expressed as

f̂ (x) = 1

NhD

N∑

i=1

K

(∥
∥
∥
∥

x − xi

h

∥
∥
∥
∥

2
)

. (4)

There are several variants of exact kernel function [23].
Research [21] had shown that the profile of the kernel is not
crucial to the kernel density estimation. The quality of the
kernel estimation depends on the value of the bandwidth h
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instead of the profile of the kernel. Although the kernel den-
sity estimation has been commonly applied in data analysis,
the determination of the optimal choice of the bandwidth for
the kernel is still an active research topic [20–22].

We applied the adaptive bandwidth introduced by Comani-
ciu et al. [24]. The adaptive bandwidth, a non-random
sequence of positive numbers, is expressed as

h(xi ) = ho

[
λ

f̂ (xi )

] 1
2

, i = 1 · · · N , (5)

where λ is the proportionality constant and defined as log λ =
N−1 ∑N

i=1 log f̂ (xi ), and ho is the initial bandwidth. The
plug-in-rule methods [25] were applied to determine an
appropriate initial bandwidth in this study.

With Eqs. (4) and (5), the density estimation function for
the adaptive bandwidth is written as

f̂ (x) = 1

Nh(xi )D

N∑

i=1

K

(∥
∥
∥
∥

x − xi

h(xi )

∥
∥
∥
∥

2
)

. (6)

Hence, the mean shift vector is expressed as

Mv(x) =
∑N

i=1
xi

h D+2 g(|| x−xi
h(xi )

||2)
∑N

i=1
1

h D+2 g(|| x−xi
h(xi )

||2) − x. (7)

where g(x) = −K ′(x). The details of the derivation of the
Eq. (7) is available in [24].

Statistical modeling and parameter estimation

Gaussian mixture model

Gaussian mixture model is a linear superposition of K p

Gaussian components, defined by probability density func-
tion

p(xi ) =
K p∑

kp=1

p(kp)p(xi |kp), i = 1 · · · N , (8)

where p(kp) = πkp is the prior, and p(xi |kp ) = N(xi ; ukp ,

�kp ) = 1√
(2π)D |�k p |

e
− 1

2 [(xi −μk p
)T �−1

k p=1(xi −uk p )]
is the con-

ditional probability density functions for component kp, and
p(xi ) is a probability that the data point xi constructed by
the model.

The parameters of the Gaussian Mixture Model are

expressed as: {πkp , μkp , �kp }K p
kp=1, where πkp is the prior

probability μkp is the mean vector, and �kp is the covariance
matrix. The cumulated posterior probability of the Gaussian
mixture model is expressed as Ekp = ∑N

i=1 p(kp|xi ). The
number of the components K p is obtained by the adaptive
mean shift clustering method described above. The trajec-
tory data xi in our study contains the temporal and the spatial

information, as shown in Eq. (1), and hence, the mean vec-
tor is expressed as μkp = {μt,kp , μs,kp }, and the covariance

matrix can be expressed as �kp =
(

�t t,kp �ts,kp

�st,kp �ss,kp

)

.

The GMM parameters {πkp , μkp , �kp } are estimated by
Expectation Maximization algorithm (EM) [26] with the
demonstration trajectory data in Eq. (3). As the estimated
parameters are for the data in the latent space, they are pro-
jected back into the original space by

μkp = A · μ′′
kp

�kp = B · �′′
kp

· B′, kp = 1 · · · K p

πkp = π ′′
kp

(9)

where π ′′
kp

, μ′′
kp

and �′′
kp

are the prior probability, mean vec-
tor, covariance matrix of motion data set in the latent space,

and B =
[

1 0
0 A

]

, A is a transformation matrix described in

Eq. (2).

Gaussian mixture regression

Gaussian mixture regression is applied to reconstruct a trajec-
tory represented by the Gaussian Mixture Model. The regres-
sion method estimates the conditional expectation of X̂s with
given Xt , and hence, the entire trajectory can be reconstructed
with its characteristics encoded by the Gaussian mixture
models. For the kth

p component at given time Xt , the expected
distribution of Xs,kp is

p(Xs,kp |Xt,kp
) = N(Xs,kp ; X̂s,kp , �̂ss,kp ), (10)

where X̂s,kp and �̂ss,kp is the conditional expected value and
expected covariance of the mixture component kp, respec-
tively. They are expressed as

X̂s,kp = μs,kp + �st,kp (�t t,kp )
−1(Xt − μt,kp )),

�̂s,kp = �s,kp + �st,kp (�t t,kp )
−1�ts,kp ), (11)

X̂s,kp and �̂ss,kp are combined based on the probability that
the component kp for the given time Xt , which is expressed
as

p(Xs |Xt ) =
K p∑

kp=1

βkp N(Xs,kp ; X̂s,kp , �̂ss,kp ), (12)

where βkp = p(kp)p(Xt |kp)
∑K p

kp=1 p(i)p(Xt |i)
= πk p N(Xt ;μt,kp,�t t,k p )

∑K p
k p=1 πi N(Xt ;μt,i ,�t t,i )

.

An estimation of the conditional expectation of Xs at the
given time Xt for component kth

p in the mixture model is

X̂s =
K p∑

kp=1

βkp X̂s,kp , �̂ss =
K p∑

kp=1

β2
kp

�̂ss,kp , (13)
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The generalized form of the motion trajectory in its original
space can be expressed as X̂ = {Xt , X̂s}.

Experiments and results

We conducted experiments to evaluate our proposed method.
Three subjects (30 ± 3 years old) participated in the exper-
iments. Subject 1 performed a tissue division task, while
Subjects 2 and 3 performed a clip deployment task. Tissue
division and clip deployment are common tasks in surgical
procedure, and they are commonly found in laparoscopic
cholecystectomy, sectionectomy of liver, and colectomy.
Based on our experience, more than 20 repeats of a demon-
stration will be sufficient for the purposes of modeling and
analyses. Hence, we collected 22 trajectories from Sub-
ject 1 and 2 each, and 24 trajectories from Subject 3. The
motion trajectories collected from Subject 1’s demonstration
were used to show the feasibility of the method described
in “Methods” section in details. In this section, we intro-
duce the surgical simulation system [27] for the experiment
and then explain the experimental method and modeling
results.

Surgical simulation system for the experiments

The surgical simulation system was designed for image-
guided robotic-assisted surgical (IRAS) training. It consists
of two modules, the robotic laparoscopic surgical trainer and
the surgical simulation platform, as shown in Fig. 2. The
system allows a user to conduct a virtual laparoscopic pro-
cedure by operating on a virtual patient through the robotic
laparoscopic trainer. The virtual laparoscopic procedure can
be acquired and reproduced for training and analysis pur-
poses.

The robotic laparoscopic surgical trainer serves as a
human–machine interface in both processes of acquiring sur-
gical procedure and providing guidance to the users in a

Fig. 2 Overview of IRAS surgical training system: a robotic laparo-
scopic surgical trainer and b virtual surgical simulation platform

training process. The robot was designed with 10 degrees-of-
freedom. It is capable of mimicking the motion kinematics
of the laparoscopic instruments in the real surgery. Users can
operate with the robotic handles (Fig. 2a) and using them
to perform a virtual surgery. The motion information of the
robotic handles is sent to the surgical simulation platform
to drive the virtual instruments and operate on the virtual
patient.

The surgical simulation platform comprises of virtual
patients, a tool library of laparoscopic instruments and
physics simulation engine. Tool–tissue interactions, organ
deformation, tissue division, deployment of clips and other
activities executed during surgery are simulated in the sur-
gical simulation platform. The surgical simulation platform
incorporates smoking, bleeding, perfusion, and audio effects
for the operations involving hook electrodes and scissors.
The simulated surgical procedure, including the motion of
the robotic handle and the tool-tissue interaction, can be
recorded and reproduced on the robotic trainer and surgi-
cal simulation platform simultaneously for training purposes.
Further details of the surgical simulation system can be found
in [27].

Experiment and analysis

The surgical simulation system is built with a laparoscopic
cholecystectomy procedure. A tissue division procedure
and a clip deployment procedure within the cholecystec-
tomy surgery were modeled in the experiment. In the tis-
sue division procedure, as shown in Fig. 3, a left-hand
laparoscopic grasper was used to stretch and hold a cys-
tic duct, while the right-hand laparoscopic scissors was
used to divide the cystic duct. The motion trajectory data
for this tissue division task were subsequently used in the
modeling process. The motion trajectory of each trial was

Fig. 3 A tissue division simulation on a virtual patient in the surgical
simulation system
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Fig. 4 Comparison of the raw motion data of the tissue division
task collected from the simulator and the motion data after multi-
dimensional Dynamic Time Warping. a and c are raw motion data for
left and right instrument, respectively, b and d are the motion data after

DTW for left and right instrument, respectively. The circled sections
indicated the overlapped features in the raw motion data and the results
after DTW

recorded in X = {Xt,i , Xs,i } format, where the spacial data
Xs,i consisted of {Xp, Xy, Xt , Xh, Xr } from 5 axes, i.e.,
pitch, yaw, translation, handle, and roll, respectively. The
trajectories of motion surgical instruments were sampled
at 8.3 Hz.

Figure 4a, c depicts the trajectories of the tissue division
task for the left hand and the right hand instruments, respec-
tively. Time taken to complete each trial of the same task was
different. Features from different trials appeared to overlap
each other, such as shown in the plot of handle’s angle in
Fig. 4c. This reduced the capability of GMM/GMR to extract
the key feature of the motion. Figure 4b, d is the motion
data of the tissue division task after the multi-dimensional
Dynamic Time Warping, with the motion features aligned.

To obtain the principal axis of the motion data, the PCA
described in “Data Processing” section was applied, main-
taining 95 percent of the variance for the motion trajectories.
The initial bandwidth ho, which was obtained using plug-
in-rule method based on the distance in the latent space data
{xs,i }, is 10.97 and 9.95 for left and right instruments, respec-
tively. The adaptive bandwidth was determined using Eqs. (5)
and (6). Figure 5 shows the adaptive bandwidth for one of
the trials. The spatial data in the latent space {xs,i } were then
grouped in clusters using the adaptive mean shift method
described in “Adaptive mean shift clustering of motion tra-
jectory” section.
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Fig. 5 The adaptive bandwidth value for the left and right trajectories
of the instrument in one demonstration

The GMM method described in “Gaussian mixture model”
section was applied to model the spatial data {xs,i }, and the
parameters of the GMM model were estimated by the Expec-
tation Maximization algorithm [26]. Figure 6a, c shows the
Gaussian Mixture Models trained with the motion primitives
identified by the adaptive mean shift method. Eight and thir-
teen primitives were identified in the left and right instru-
ments trajectories. The estimated parameters were for the
data set in the latent space. For GMR regression process,
they were projected back into the original space by Eq. (9).
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Fig. 6 The GMM modeling and the GMR regression results based
on the proposed method. a and c are the GMM encoding for the tis-
sue division task of the left and right instruments, respectively, based
on the adaptive mean shift clustering results. The spot is the mean of
each Gaussian component, and the patch is the square root of covariance

matrix of the corresponding Gaussian component. b and d are the GMR
regression results, the solid line is the expected mean of each Gaussian
model at the given time t , and the patch is the expected square root of
the covariance matrix at the given time t

The GMR method described in “Gaussian mixture regres-
sion” section was then applied to reconstruct the trajectories
in the original space. Figure 6b, d shows the GMR regression
results of the GMM models which were trained to encode
the surgical skills demonstrated. Figure 7 shows the 3D plot
of the tissue division task with the demonstration trajectories
and the reconstructed trajectories. The implementation of the
GMM and the GMR is based on a Gaussian mixture tool kit
[8] available in the public domain.

In order to further evaluate the robustness of the proposed
method, the method was applied to model a surgical task
of deploying a clip with laparoscopic instruments in laparo-
scopic cholecystectomy using the system described in “Sur-
gical simulation system for the experiments” section. In the
experiment, the left instrument was used to grab and hold the
gallbladder, while the right instrument approached the cys-
tic duct and deployed a clip. The surgical task was carried
out by Subjects 2 and 3 with the same virtual patient setup.
Each subject repeated the task a number of times. Twenty-
two and 24 trajectories were recorded from Subjects 2 and 3,
respectively. Figures 8 and 9 show the raw motion trajectory
data and the mean reconstructed model of Subjects 2 and
3, respectively. Comparing the mean reconstructed model of
each subject’s left instrument, we can notice that each sub-
ject manipulated the instruments differently; Subject 2 tends
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Fig. 7 Raw motion trajectories and mean reconstructed model of Sub-
ject 1: a 22 motion trajectories (positional only) of the surgical tool
tip in the tissue division task, b reconstructed mean trajectory by GMM
and GMR. The orientation of instruments and open angle of the handles
are not reflected in this plot. The plot in red represents the positional
information of the left instrument, and the plot in blue represents that
of the right instrument. The arrows indicate the direction of motion

to focus on controlling the span of instrument swing more
closely than that of Subject 3.

123



820 Int J CARS (2014) 9:813–823

(a) (b) 

-100
0

100
0

100

200

0

100

200

300

400

500

600

y (mm)

x (mm)

z 
(m

m
)

-100
0

100
0

100

200

0

100

200

300

400

500

600

y (mm)

x (mm)

z 
(m

m
)

Fig. 8 Raw motion trajectories and mean reconstructed model of Sub-
ject 2. a 22 motion trajectories (positional only) of the surgical tool tip
in the clip deployment task. b Reconstructed mean trajectory by GMM
and GMR. The orientation of instruments and open angle of the handles
are not reflected in this plot. The plot in red represents the positional
information of the left instrument, and the plot in blue represents that
of the right instrument. The arrows indicate the direction of motion

(a) (b)

-1000100
-100

0

100

200

300

0

100

200

300

400

500

y (mm)

x (mm)

z 
(m

m
)

-100
0

100
0

100

200

0

100

200

300

400

500

600

y (mm)x (mm)

z 
(m

m
)

Fig. 9 Raw motion trajectories and mean reconstructed model of Sub-
ject 3: a 24 motion trajectories (positional only) of the surgical tool tip
in the clip deployment task, b reconstructed mean trajectory by GMM
and GMR. The orientation of instruments and open angle of the handles
are not reflected in this plot. The plot in red represents the positional
information of the left instrument, and the plot in blue represents that
of the right instrument. The arrows indicate the direction of motion

Discussion

We have applied the adaptive mean shift method to identify
the motion primitives. The adaptive mean shift method pro-
vides an intuitive way in determining the number of motion
primitives based on the initial bandwidth, which was obtained
by the plug-in-rule method [20]. However, the performance
of the adaptive mean shift method relies on its initial band-
width and the adaptive bandwidth function [24].

Root Mean Square (RMS) error was applied to evaluate
the quality of the motion model through the reconstructed
motion model [28]. RMS error of the reconstructed trajectory
with respect to the demonstrated trajectory after DTW was
calculated as follows:

RMS =

√√
√
√
√

1

M N

M∑

j=1

N∑

i=1

(X̂s,i − Xs,i )

2

, (14)

where M is the number of trials, N is the number of observa-
tions in each trial. X̂s and Xs are the expected spacial compo-
nents and the spacial components from the demonstrations,
respectively.

We compared the quality of the motion model obtained
based on different methods in identifying the motion primi-
tives, i.e., adaptive bandwidth mean shift method, fixed band-
width mean shift method and k-means method. The num-
ber of primitives required for k-means method was deter-
mined from the tests using adaptive mean shift method.
Figure 10a–d shows the GMM modeling results based on
k-means method and fixed bandwidth mean shift clustering
method. The comparison with Fig. 6 reveals that our method
has captured motion primitives with more focused Gaussian
components than that of k-means and fixed bandwidth-based
methods. The fixed bandwidth mean shift identified 6 and 14
primitives from the motion trajectory of left and right instru-
ments, respectively. Although the three methods employed
similar number of motion primitives, we observed from
Table 1 that the Gaussian Mixture Models with adaptive mean
shift method produced smaller RMS error comparing with
that of the K-means method and fixed bandwidth methods.

The adaptive mean shift method also showed advantages
in preserving the dexterous features in motion. For exam-
ple, the handle motion (Fig. 4d) showed several open and
close actions. These features have been encoded and recon-
structed by the GMM/GMR with adaptive mean shift method,
as shown in Fig. 6c, d. However, these features were not cap-
tured in GMM with k-means and fixed bandwidth methods
(Fig. 10b, d), even the number of primitives used for k-means
method was same as the number of primitives obtained by the
adaptive mean shift method, and the fixed bandwidth method
obtained similar number of primitives with the adaptive mean
shift method.

Another advantage of the Gaussian mixture modeling
method based on the adaptive mean shift method is that it
does not need to specify the number of the Gaussian compo-
nents. While it is possible to have a better fit of the trajectory
with a high number of Gaussian components, this will be at
the expense of poor generalization capability and potential
risks of over fitting.

PCA is necessary in the analysis of the motion trajectory
data. The PCA can be applied for reducing the dimension-
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Fig. 10 GMM modeling based on k-means method and fixed band-
width mean shift method. a, b are the GMM modeling results with
k-means clustering method for the left and right instruments trajecto-

ries, respectively. c, d are the GMM modeling results with fixed band-
width clustering method for the left and right instruments trajectories,
respectively

Table 1 The RMS error (rotational joints) of the reconstructed trajec-
tory to the demonstrations after DTW

Left tool
trajectory (◦)

Right tool
trajectory (◦)

Fixed bandwidth mean shift 3.13 3.19

K -means 3.08 3.66

Adaptive mean shift 3.05 3.08

ality and the noise and also to rotate the data to the axis
that allows the clustering algorithm to identify the motion
primitives effectively. When dimensionality reduction is not
required for the data set, PCA is necessary to rotate the data
set according to the eigenvector of covariance matrix of the
data set and to align the data in its principal axis. The tissue
division trajectories were applied with the adaptive mean
shift method directly without PCA and the identified motion
primitives were used to train the GMM models. Figure 11
shows trained GMM modeling and GMR regression results.
The data across large time spans were grouped in the same
motion primitive which significantly reduced the capability
of the Gaussian Mixture Regression. Table 2 shows that the
RMS error of the reconstructed trajectory from the demon-
strations after DTW is larger than that of with the PCA analy-
sis. Therefore, the PCA is an important component of the
solution.

Our approach is suitable for modeling of surgical skills
with a specific sequence of motion primitives, such as the

division and clipping tasks modeled in this study. Both tasks
require grabbing and holding onto the object first, before per-
forming the task at certain locations. While performing the
task, the pattern of opening and closing of instrument han-
dle is consistent among the user’s executions. Clear motion
sequences can be identified from the user’s demonstration.
Surgical suturing could be modeled by the proposed method,
as it required both hands to conduct the motion in sequences.
Surgical operations in which the sequence of motion is not
critical may not be represented by Gaussian Mixture model
effectively. The method focuses on extraction and reconstruc-
tion of a generic model from demonstrations conducted by
the user. It does not include the collaboration between two
instruments and tool–tissue interaction. In order to consider
these factors, the velocity of each instrument and the defor-
mation of organ or tissue have to be modeled. Although the
robustness of our method was evaluated with different sur-
gical tasks, the study was limited by the size of sample, the
complexity, and range of surgical procedures and devices.
More surgical procedures should be studied in the future to
demonstrate the generalizability of the proposed method. The
future studies could be conducted in collaboration with other
teaching hospitals in Singapore.

Conclusion

Learning from experienced surgeons is an efficient way of
transferring surgical skills from the senior surgeons to the
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Fig. 11 The GMM modeling results of the tissue division trajectory without the PCA analysis. The data across large time span were grouped in
same motion primitive. a, b are the GMM modeling of trajectories for left and right instruments respectively

Table 2 Effect of PCA on RMS error (rotational joints) of the recon-
structed trajectory to the demonstrations after DTW

Left tool
trajectory (◦)

Right tool
trajectory (◦)

With PCA analysis 3.05 3.08

Without PCA analysis 3.14 3.77

surgical trainees. The method of learning by demonstration
is an approach to model the surgical skills and facilitate it
for surgical training from the perspective of motion trajec-
tory. The trained motion model in learning by demonstration
approach can serve as a generic model representing surgi-
cal skills. The motion model can then be used by the robots
to provide guidance to the trainee. Experimentation of our
robotic surgical training system and the underlying technol-
ogy with trainee doctors is currently ongoing.

The method proposed in this study demonstrates the feasi-
bility of modeling skills without specifying number of motion
primitives. This has contributed to the robustness of our
robotic surgical training system. Adaptive mean shift method
has been applied to identify the motion primitives, and the
Gaussian Mixture Models is trained by demonstrations to
represent a surgical skill. However, collaboration from mul-
tiple instruments is essential in the execution of many surgical

tasks. We are developing collaborative models to represent
the cooperation of multiple surgical instruments which is
beyond the scope of this paper. The various spatial and tem-
poral constraints in surgery also have to be taken into consid-
eration for a complete simulation of a surgical operation. For
example, in situations where a certain location/obstruction
has to be avoided, or a specific location that must be passing
through in order to reach the targeted site, constraints depen-
dent on individual patient anatomy have to be considered.

Acknowledgments This work is partially supported by research
Grant BEP 102 148 0009, Image-guided Robotic Assisted Surgical
Training from the Agency for Science, Technology and Research, Sin-
gapore.

Conflict of interest All authors declare that they have no conflicts of
interest.

References

1. Winer J, Can MF, Bartlett DL, Zeh HJ, Zureikat AH (2012) The
current state of robotic-assisted pancreatic surgery. Nat Rev Gas-
troenterol Hepatol. doi:10.1038/nrgastro.2012.120

2. Kwartowitz D, Herrell SD, Galloway R (2006) Toward image-
guided robotic surgery: determining intrinsic accuracy of the da
Vinci robot. Int J Comput Assist Radiol Surg 1(3):157–165. doi:10.
1007/s11548-006-0047-3

123

http://dx.doi.org/10.1038/nrgastro.2012.120
http://dx.doi.org/10.1007/s11548-006-0047-3
http://dx.doi.org/10.1007/s11548-006-0047-3


Int J CARS (2014) 9:813–823 823

3. Murphy DG, Hall R, Tong R, Goel R, Costello AJ (2008)
Robotic technology in surgery: current status in 2008. ANZ J Surg
78(12):1076–1081. doi:10.1111/j.1445-2197.2008.04754.x

4. Liu J, Cramer SC, Reinkensmeyer DJ (2006) Learning to perform a
new movement with robotic assistance: comparison of haptic guid-
ance and visual demonstration. J Neuroeng Rehabil 3:20. doi:10.
1186/1743-0003-3-20

5. Schaal S (1999) Is imitation learning the route to humanoid robots?
Trends Cogn Sci 3(6):233–242

6. Argall BD, Chernova S, Veloso M, Browning B (2009) A survey
of robot learning from demonstration. Rob Auton Syst 57(5):469–
483. doi:10.1016/j.robot.2008.10.024

7. Inamura T, Kojo N, Sonoda T, Sakamoto K, Okada K, Inaba M
(2005) Intent imitation using wearable motion capturing system
with on-line teaching of task attention. In: 5th IEEE-RAS inter-
national conference on humanoid robots, December 5–5 2005, pp
469–474. doi:10.1109/ichr.2005.1573611

8. Calinon S, Guenter F, Billard A (2007) On learning, representing,
and generalizing a task in a humanoid robot. IEEE Trans Syst Man
Cybern Part B Cybern 37(2):286–298

9. Yamane K, Yamaguchi Y, Nakamura Y (2011) Human motion data-
base with a binary tree and node transition graphs. Auton Robots
30(1):87–98

10. Reiley CE, Plaku E, Hager GD (2010) Motion generation of robotic
surgical tasks: learning from expert demonstrations. In: 2010
annual international conference of the IEEE engineering in medi-
cine and biology society (EMBC), August 31 2010–September 4
2010, pp 967–970

11. Niessen W, Viergever M, Thakral A, Wallace J, Tomlin D, Seth
N, Thakor N (2001) Surgical motion adaptive robotic technol-
ogy (S.M.A.R.T): taking the motion out of physiological motion.
In: Medical Image Computing and Computer-Assisted Interven-
tion âe“ MICCAI 2001, vol 2208. Lecture Notes in Computer
Science. Springer, Berlin Heidelberg, pp 317–325. doi:10.1007/
3-540-45468-3_38

12. Pagador JB, Sanchez-Margallo FM, Sanchez-Peralta LF, Sanchez-
Margallo JA, Moyano-Cuevas JL, Enciso-Sanz S, Uson-Gargallo
J, Moreno J (2011) Decomposition and analysis of laparoscopic
suturing task using tool-motion analysis (TMA): improving the
objective assessment. Int J Comput Assist Radiol Surg 7(2):305–
313. doi:10.1007/s11548-011-0650-9

13. Lin HC, Shafran I, Yuh D, Hager GD (2006) Towards automatic
skill evaluation: detection and segmentation of robot-assisted sur-
gical motions. Comput Aided Surg 11(5):220–230. doi:10.3109/
10929080600989189

14. Hermann M, Faustino G, Daan W, Istvan N, Alois K, Jurgen S
(2006) A system for robotic heart surgery that learns to tie knots
using recurrent neural networks. In: IEEE/RSJ international confer-
ence on intelligent robots and systems, October 2006, pp 543–548.
doi:10.1109/iros.2006.282190

15. Peters J, Schaal S (2008) Reinforcement learning of motor skills
with policy gradients. Neural Netw 21(4):682–697. doi:10.1016/j.
neunet.2008.02.003

16. Kober J, Peters J (2010) Imitation and reinforcement learning. IEEE
Robot Autom Mag 17(2):55–62. doi:10.1109/mra.2010.936952

17. Kormushev P, Calinon S, Caldwell DG (2010) Robot motor
skill coordination with EM-based reinforcement learning. In:
IEEE/RSJ international conference on intelligent robots and sys-
tems (IROS), 18–22 October 2010. pp 3232–3237. doi:10.1109/
iros.2010.5649089

18. Thobbi A, Weihua S (2010) Imitation learning of hand gestures
and its evaluation for humanoid robots. In: IEEE international con-
ference on information and automation (ICIA), 20–23 June 2010.
pp 60–65. doi:10.1109/icinfa.2010.5512333

19. Reiley CE, Lin HC, Varadarajan B, Vagvolgyi B, Khudanpur S, Yuh
DD, Hager GD (2008) Automatic recognition of surgical motions
using statistical modeling for capturing variability. Stud Health
Technol Inform 132:396–401

20. Sheather SJ, Jones MC (1991) A reliable data-based bandwidth
selection method for kernel density estimation. J R Stat Soc
53(3):683–690. doi:10.2307/2345597

21. Mugdadi AR, Ahmad IA (2004) A bandwidth selection for kernel
density estimation of functions of random variables. Comput Stat
Data Anal 47(1):49–62

22. Horová I, Kolácek J, Zelinka J, Vopatová K (2008) Bandwidth
choice for kernel density estimates. In: 6th conference of the asian
regional section of the IASC, Yokohama Japan

23. Wand MP, Jones MC (1995) Kernel smoothing. Monographs on
statistics and applied probability 60. Chapman & Hall, Londong

24. Comaniciu D, Ramesh V, Meer P (2001) The variable bandwidth
mean shift and data-driven scale selection. In: 8th IEEE interna-
tional conference on computer vision, vol 431, pp 438–445

25. Horová I, Kolácek J, Vopatová K, Full bandwidth matrix selectors
for gradient kernel density estimate. Comput Stat Data Anal 57
(1):364–376

26. Rabiner L, Juang B (1986) An introduction to hidden Markov mod-
els. IEEE ASSP Mag 3(1):4–16. doi:10.1109/massp.1986.1165342

27. Yang T, Liu J, Huang W, Su Y, Yang L, Chui C, Ang M, Jr., Chang
SY (2012) Mechanism of a learning robot manipulator for laparo-
scopic surgical training. In: Intelligent autonomous systems 12, vol
194. Advances in Intelligent Systems and Computing. Springer,
Berlin Heidelberg, pp 17–26. doi:10.1007/978-3-642-33932-5_3

28. Calinon S, D’Halluin F, Sauser EL, Caldwell DG, Billard AG
Learning and reproduction of gestures by imitation. Rob Autom
Mag IEEE 17(2):44–54. doi:10.1109/mra.2010.936947

123

http://dx.doi.org/10.1111/j.1445-2197.2008.04754.x
http://dx.doi.org/10.1186/1743-0003-3-20
http://dx.doi.org/10.1186/1743-0003-3-20
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://dx.doi.org/10.1109/ichr.2005.1573611
http://dx.doi.org/10.1007/3-540-45468-3_38
http://dx.doi.org/10.1007/3-540-45468-3_38
http://dx.doi.org/10.1007/s11548-011-0650-9
http://dx.doi.org/10.3109/10929080600989189
http://dx.doi.org/10.3109/10929080600989189
http://dx.doi.org/10.1109/iros.2006.282190
http://dx.doi.org/10.1016/j.neunet.2008.02.003
http://dx.doi.org/10.1016/j.neunet.2008.02.003
http://dx.doi.org/10.1109/mra.2010.936952
http://dx.doi.org/10.1109/iros.2010.5649089
http://dx.doi.org/10.1109/iros.2010.5649089
http://dx.doi.org/10.1109/icinfa.2010.5512333
http://dx.doi.org/10.2307/2345597
http://dx.doi.org/10.1109/massp.1986.1165342
http://dx.doi.org/10.1007/978-3-642-33932-5_3
http://dx.doi.org/10.1109/mra.2010.936947

	Robotic learning of motion using demonstrations and statistical models for surgical simulation
	Abstract 
	Introduction
	Methods
	Data processing
	Adaptive mean shift clustering of motion trajectory
	Statistical modeling and parameter estimation
	Gaussian mixture model
	Gaussian mixture regression


	Experiments and results
	Surgical simulation system for the experiments
	Experiment and analysis

	Discussion
	Conclusion
	Acknowledgments
	References


