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Abstract
Purpose The paper presents new methods for automatic
coronary calcium detection, segmentation and scoring in
coronary CT angiography (cCTA) studies.
Methods Calcium detection and segmentation are per-
formed by modeling image intensity profiles of coronary
arteries. The scoring algorithm is based on a simulated unen-
hanced calcium score (CS) CT image, constructed by virtu-
ally removing the contrast media from cCTA. The methods
are implemented as part of a fully automatic system for CS
assessment from cCTA.
Results The system was tested in two independent clini-
cal trials on 263 studies and demonstrated 0.95/0.91 correla-
tion between the CS computed from cCTA and the standard
Agatston score derived from unenhanced CS CT. The mean
absolute percent difference (MAPD) of 36/39 % between the
two scores lies within the error range of the standard CS CT
(15–65 %).
Conclusions High diagnostic performance, combined with
the benefits of the fully automatic solution, suggests that the
proposed technique can be used to eliminate the need in a
separate CS CT scan as part of the cCTA examination, thus
reducing the radiation exposure and simplifying the proce-
dure.
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Introduction

Coronary heart disease (CHD) is the narrowing or blockage
of coronary arteries caused by accumulation of plaque on
artery walls (coronary atherosclerosis). There are two nonin-
vasive imaging tests clinically used today for the diagnosis of
coronary atherosclerosis: calcium scoring (CS) and coronary
CT angiography (cCTA).

Calcium scoring (CS) is used to estimate the amount of
calcium in coronary arteries. Today, the CS is computed from
unenhanced CT scan of the heart. The most commonly used
technique for calcium quantification in CS CT scan is the
Agatston score [1]. The score was initially designed for the
electron beam computed tomography (EBCT) and defined
for a study reconstructed according to the EBCT image
specifications—non-overlapping 3-mm-thick slices.

The Agatston scoring is done in two steps: calcium seg-
mentation and scoring. Calcium segmentation is performed
by binarization of the original CS CT image using a fixed
threshold of 130 HU and (manually/semi-automatically)
choosing voxels that belong to coronary arteries. The score
is then computed as the weighted sum of the areas (in mm2)
of 2D connected calcium components in axial slices. The
weight assigned to each connected component is computed
by the four-level step function (see Fig. 1) of the maximal
image pixel intensity in that component.

Coronary CT angiography (cCTA) is a contrast-enhanced
CT scan of the heart used to visualize the internal struc-
ture of coronary arteries. It is a common practice today to
perform a CS study for patients referred to cCTA, prior to
the cCTA exam. Until recently, high calcium score was a
contraindication for cCTA, as CT scanners were unable to
perform a diagnostic quality scan for heavily calcified coro-
naries. For the new generation of CT scanners that cope
well with heavy calcification, such CS-based prediction of
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Fig. 1 Agatston weight function

expected diagnostic benefit of cCTA for a given patient is
no longer required. Moreover, with the new dose-reduction
techniques, the cCTA radiation dose was reduced from 10–
15 to <1 mSv. Therefore, performing a CS scan, which adds
another 0.8–2.5 mSv, prior to cCTA, effectively doubles the
overall radiation dose [2].

Yet, since CS is commonly used by cardiologists for risk
stratification, it is important to provide CS assessment for
patients undergoing cCTA. This is especially true for patients
in whom obstructive disease is ruled out by cCTA and cal-
cium score is used to guide the aggressiveness of treatment
for CHD prevention.

It was shown that calcium scoring can be accomplished
directly from cCTA, without a separate CS scan. The feasibil-
ity of this approach has been demonstrated using manual [3]
and semi-automatic methods.

Calcium segmentation in cCTA: the problem

Most reported semi-automatic techniques for calcium detec-
tion and segmentation in cCTA use thresholding—either

fixed [2,4–6], or adaptive [7]. A learning-based approach for
coronary calcium detection in cCTA (without segmentation
and scoring) was also reported [8,9].

Using a fixed intensity threshold, as reported in [2,4,5], is
problematic for the following reason: while biological tissues
(blood, muscle, fat, etc.) have fixed and known CT attenu-
ation levels, contrast material intensity depends on the used
injection protocol and varies significantly from one study
to another, from below 250 HU to above 600 HU. As cal-
cium and contrast material intensities overlap [10], setting
the threshold very high results in under-segmentation of cal-
cium as reported in [4]. Setting the threshold too low results in
calcium over-estimation (contrast is interpreted as calcium).

Bischoff et al. [7] suggested to use an adaptive, per-study
threshold set to 150 % of the mean intravascular image inten-
sity. This method is clearly superior to the fixed threshold
approach, but still does not address another phenomenon
often observed in cCTA studies: due to the partial volume
effect, the maximal intensity of a small, eccentric, calcified
lesion in cCTA could be lower than the maximal intensity of
the contrast material in the artery cross section (see Fig. 2).
Calcium pixels, that are closer to the vessel boundary, are
influenced more by the lower intensity tissues outside the
vessel and adjacent non-calcified plaque, than by contrast
material. The lesion is still clearly visible, but cannot be seg-
mented by thresholding [see the intensity profile in Fig. 2
(right)].

Calcium scoring in cCTA: the problem

As for the quantification of the calcium detected in cCTA,
most reported methods performed the standard Agatston
scoring on segmented calcium [3–5]. Bischoff et al. [7]
amended the Agatston score by a calibration procedure to
compensate for score underestimation in cCTA. Otton et
al. [2] computed calcium score by multiplying the calcium
volume by a factor empirically derived from a training set of
studies.

Since the slice thickness in cCTA (0.60–0.75 mm) is much
smaller than in CS CT (3 mm), the partial volume effect is
less expressed, and calcium intensity in cCTA is significantly
higher than in CS. The effect is amplified even more because

Fig. 2 Small, eccentric CA lesion: (left) longitudinal view; (center) axial view; (right) intensity profile along the cyan line in axial view. CA peak
intensity is lower than the contrast peak intensity
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Fig. 3 Three CA lesions assigned the same Agatston score. All three occupy 5 pixels. Numbers at the top are image intensity values reflecting the
amount of calcium in each pixel

calcium voxels in cCTA are averaged with high-intensity
contrast material. As a result, the Agatston intensity-based
weight factor produces different scores for cCTA studies.
Moreover, since calcium intensity in cCTA is rarely below
400 HU, the Agatston weighing function (Fig. 1) is constantly
in saturation, thus canceling the weighing effect.

Adapting the Agatston weight function to calcium inten-
sity levels of cCTA (e.g., by moving the step positions) would
not fully solve the problem. The Agatston score only weakly
correlates with the real physical or geometric properties of
calcium lesions. For example, the three lesions depicted in
Fig. 3 receive the same score, despite obvious differences in
size. Higher resolution cCTA that is more sensitive to differ-
ences in lesions geometry is likely to yield different scores
for the three lesions. This observation suggests that the abil-
ity of score estimation methods based on regression analy-
sis from quantities measured directly in cCTA, as reported
in [2,7], to match the original Agatston score is inherently
limited.

In what follows, we present new methods for calcium
detection, segmentation and scoring in cCTA studies. The
proposed calcium detection and segmentation method aims
to overcome the intrinsic limitations of the threshold-based
techniques and addresses the problems of varying contrast
intensity in coronary arteries and low visibility of small calci-
fied lesions in cCTA studies. The suggested scoring method is
designed to deal with the nonlinear and non-geometric nature
of the Agatston score to better match the standard score. The
proposed methods are implemented as part of a fully auto-
matic system for calcium score assessment in cCTA.

Methods

Similar to the standard CS procedure, we perform the auto-
matic calcium scoring from cCTA in three steps:

– Coronary artery tree reconstruction,
– Detection and segmentation of calcified lesions in coro-

nary arteries,
– Scoring.

Training data sets

Throughout the development, we used the following data sets
for system training:

– T1—45 corresponding cCTA and CS studies collected
from Carmel Medical Center, Haifa, Israel (25 patients)
and Medical University of South Carolina, Charleston,
SC (20 patients)—see Table 1 for details of used equip-
ment and acquisition protocols. 100 corresponding cal-
cium lesions were marked manually in cCTA and CS stud-
ies.

– T2—2,300 cCTA studies collected from 40 hospitals
around the world. The set includes studies acquired on
almost every existing type of CT scanners and using a wide
variety of patient preparation, contrast injection, image
acquisition and reconstruction protocols. These studies
were used as a training set for our coronary stenosis detec-
tion system reported elsewhere [11]. 30 healthy (no visible
coronary artery disease) coronary arteries of various sizes
(diameters) were manually selected from the set.

None of the training studies were used for system testing and
evaluation described in “Results” section.

Coronary artery tree reconstruction

For automatic coronary artery tree reconstruction and vessel
segmentation, we use algorithms developed for the system
for automatic stenosis detection in cCTA, previously reported
in [11].

The automatic coronary tree reconstruction process inclu-
des segmentation of major anatomical structures (lungs,
mediastinum, ascending aorta), localization of left and right
coronary tree ostia, tracking tubular structures using DFS-
based propagation in vessel enhanced image, vessel labeling,
tree filtering by branch pruning, and centerline extraction.
The resulting coronary artery tree graph is split into disjoint
segments, and for each segment, vessel boundary is detected
using tubular active surface model.
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Table 1 Patient statistics and scanning parameters for CMC and MUSC studies

CMC MUSC

# patients 136 127

Age 59±11 58±11

Male/female 82/54 77/50

Scanner 256-slice, Brilliance iCT, Philips 128-slice, dual-source, Somatom definition flash,
Siemens

CS CT: slice thickness/increment 2.5/2.5 mm 3/3 mm

CS CT: software HeartBeat CS, Philips Calcium scoring module of Aquarius iNtuition,
TeraRecon

cCTA: contrast material 60–90 ml of Ultravist 370 mgI/ml
(Bayer) at 6 ml/s

60–90 ml of Ultravist 370 mgI/ml (Bayer) at 6 ml/s

cCTA: acquisition Step and shoot Retrospective ECG-gating; prospective ECG triggering;
prospectively ECG-triggered high-pitch spiral

cCTA: kV, mAs 120 kV, 300 mAs 100–120 kV, 320 mAs

cCTA: slice thickness/increment 0.67/0.33 mm 0.75/0.4 m

Fig. 4 Coronary artery straightened curved planar reformation (CPR) and external vessel boundary (green)

The calcium segmentation method presented below relies
on an accurate artery centerline as input. To improve the
centerline tracking accuracy, we use an iterative approach:
after the vessel boundary is reconstructed, the centerline is
adjusted to go through the center of vessel cross sections as
defined by the boundary, and then the vessel is re-sampled
along the new center line. Several iterations of boundary
segmentation and center-line adjustment are performed till
convergence.

Detailed descriptions of the used coronary tree reconstruc-
tion and vessel segmentation methods are available in [12]
and [13], respectively. For an extensive review of other blood
vessel extraction techniques, we refer the reader to [14]. A
comprehensive review of various vessel segmentation meth-
ods can be found in [15].

The output of the tree reconstruction step is the coronary
artery tree, represented by its centerlines and a list of disjoint
coronary segments with detected external boundaries. Every
coronary segment is re-sampled along its centerline using
the straightened curved planar reformation (CPR) [16] (see
Fig. 4). The external boundary is provided as a surface (or as
a contour in every 2D vessel cross section) in the straightened
CPR coordinate system (see Fig. 4).

In addition, the mean (μc) and the standard deviation (σc)
of contrast material intensity levels inside the aorta are com-
puted by the coronary tree reconstruction part of the system.

Calcium detection and segmentation

To deal with the problem of varying contrast intensity and low
visibility of small calcified lesions (see “Calcium segmenta-
tion in cCTA: the problem” section), we propose a model-
based segmentation approach.1 The algorithm is based on
fitting an adaptive intensity distribution model to vessel inten-
sity profile for every cross section along the vessel. The
model describes the intensity profile of the given vessel as it
would look if it was healthy (with no calcium). High-intensity
image deviations from the model prediction are interpreted as
calcium lesions.

2D vessel modeling

Let V = {pi |i = 1, . . . , nV } be the set of pixels inside the
vessel boundary in a given cross section of coronary artery,
where nV is the number of such pixels. Let us denote by
I (pi ) the intensity value of pixel pi . We are looking for a
model function Î : V → R as:

Î = arg min
I ∗

∑

pi ∈V

w (I (pi ))
(
I (pi ) − I ∗(pi )

)2
, (1)

1 The described method for calcium segmentation is patent pending.
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Fig. 5 Intensity-based weight function w

where I ∗ runs over all allowed model configurations and w

is a weighing function preferring vessel pixels that are more
likely to represent contrast material. The weighing is used to
fit the model to the “healthy” part of the vessel (i.e., to the
contrast filled lumen), while ignoring plaque areas.

Figure 5 shows the intensity-based weight function w used
in Eq. 1, which reflects the following observations:

– Pixels above 150 HU and below μc + 3σc are likely to be
contrast material,

– Pixels below 50 HU are likely to be non-calcified plaque,
thrombus or other tissue outside vessel boundaries,

– Pixels above μc + 7σc are very unlikely to be contrast
material.

The 150 and 50HU thresholds were chosen by analyzing
2,300 cCTA studies from the T2 training set. The coronary
tree reconstruction algorithm automatically segmented the
ascending aorta and computed the contrast media mean inten-
sity and standard deviation inside the aorta. 150 HU is the
minimal mean intensity over the set. The average contrast
intensity deviation in aorta was σ̄aorta = 30 HU, and the sec-
ond threshold was chosen as 150 − 3σ̄aorta ≈ 50 HU. The
weight function w is built by assigning a high weight to the
first interval, low weight to the other two, and linearly con-
necting domains between the intervals (see Fig. 5).

To describe the vessel cross-section intensity profile, we
use a parabolic model centered at the vessel centerline:
I ∗(pi ) = ad2(pi )+b, where d(pi ) is the distance from pixel
pi to the vessel centerline (see [17,18] for related effort).
Obviously, a < 0, since contrast intensity is higher than that
of surrounding tissues. Also, since the central part of a large
vessel is barely influenced by the partial volume effect, it
is expected that the paraboloid curvature, defined by |a|, is
larger for narrow vessels and smaller for wide ones.
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Fig. 6 Paraboloid curvature constraint function g(s) : 0 > a > g(s)

The presence of calcium, especially close to the center-
line, despite our attempts to decrease its influence by assign-
ing lower weights, can result in a wrong estimation of model
parameters. Specifically, the optimizer tends to overestimate
the factor |a| (high curvature). To deal with this problem we
impose a constraint on a in the form of 0 > a > g(s), where g
is a negative, non-decreasing function of vessel cross-section
area s = |V |. The function g (see Fig. 6) is found empiri-
cally, by analyzing parabolic models fitted to 30 healthy (no
plaque) vessels of various sizes selected from the T2 train-
ing set and fitting a quadratic lower bound to the parabola
parameter a. The optimal model parameters (â, b̂) are recov-
ered by solving the constrained linear weighted least squares
problem

(â, b̂) = arg min
(a,b)

∑

pi ∈V

w (I (pi ))
(
I (pi ) − ad2(pi ) − b

)2

s.t. 0 > a > g(|V |), b > 0

(2)

using a subspace trust-region technique based on the interior-
reflective Newton method [19] implemented in lsqlin MAT-
LAB function.

3D vessel modeling

The parabolic model is fitted to each vessel cross section
independently to yield vectors â = {â j } and b̂ = {b̂ j }, j =
1, . . . , L , of paraboloid parameters, where L is the number
of cross sections in the analyzed artery. In order to reduce the
local model fitting error we smooth vectors â and b̂ using a
bilateral-like filter defined as:

ã j = 1

W j

∑

k∈N

D( j − k)A

(
s j

sk

)
C(k)âk, (3)

where
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– D is the spacial distance component,
– A is the vessel size difference component,
– s j , sk are vessel cross-section areas at cross sections j and

k,
– C is the model fitting confidence level,
– N is the filter window around the cross section j ,
– W j = ∑

k∈N D( j − k)A(s j/sk)C(k) is the normalization
parameter.

The spacial distance component is implemented by a stan-
dard Gaussian filter

D( j − k) = e
− ( j−k)2

σ2
d ,

with σd = |N |/4.
The A component, inspired by the bilateral filter approach

[20], is used to reduce the influence of vessel cross sections
of significantly different size than that of the cross section j :

A

(
s j

sk

)
=

[
min

(
s j

sk
,

sk

s j

)]3

.

The A filter component is especially important to discrimi-
nate between vessel part with normal tapering and segments
with local positive or negative remodeling, and between dif-
ferent vessel branches when a bifurcation occurs inside the
filter window N .

The confidence level C is used to prefer models based on
more reliable data, i.e., pixels that are more likely to represent
lumen filled with contrast material. The confidence level is

computed as the ratio between the total pixels weight (see
Fig. 5) and the cross-section area:

C(k) =
∑

pi ∈Vk
w(pi )

|Vk | ,

where Vk = {pi } is the set of pixels inside the vessel bound-
ary in the cross section k.

The neighborhood N includes cross sections in a 6 mm
long window around the cross section j . The resulting
smoothed paraboloid parameters ã and b̃ are used to model
cross-section intensity profile as Ĩ (pi ) = ãd2(pi ) + b̃ (see
Fig. 7).

Special treatment is required for vessel bifurcations as the
paraboloid model does not describe them correctly. Loca-
tions and directions of bifurcations are detected from branch-
ing points of the reconstructed coronary artery tree [11].
By analyzing the boundaries of bifurcating branches, we
determine vessel segments and lumen sectors affected by
bifurcations. In those segments, the parabolic intensity
model is modified by assigning the parabolic peak value
to all pixels in the lumen sector affected by the bifurcation
(see Fig. 8).

Binarization

Given the vessel intensity model Ĩ computed at the previous
step, the calcium binary map M is generated by thresholding
the difference between the actual image intensities and the
values predicted by the model. The threshold is proportional

Fig. 7 Vessel cross-section intensity profile I (pi ) (left). Paraboloid intensity model Ĩ (pi ) (center). I and Ĩ overlapped (right)

Fig. 8 Left parabolic intensity model. Right parabolic intensity profile modified to model a bifurcation
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Fig. 9 Virtual CS image construction: an axial slice (top) and zoom-in into a calcified lesion in the left anterior descending (LAD) artery (bottom).
a Original cCTA image; b after virtual contrast removal; c re-sampled to 3 mm slice thickness

to the image noise and set to 3σc. In addition, to reduce the
amount of false alarms, we require the pixel intensity to be
higher than μc − σc to call it calcium. Formally, for every
pixel p inside the artery:

M(p)=
⎧
⎨

⎩
1 if I (p)− Ĩ (p) > 3σc ∧ I (p) > μc−σc,

0 otherwise.
(4)

The binary map M , created for every coronary artery in
its straightened CPR representation, is back-projected to the
axial image volume to form the calcium binary mask B for
the whole study.

Calcium scoring

The purpose of the method discussed in this section is, given
the calcium binary mask B, to come up with a number as
close as possible to the original Agatston score.

As suggested in “Calcium scoring in cCTA: the prob-
lem” section, due to the non-physical and non-geometric
nature of the Agatston score, it is very unlikely that a scoring
method based on measuring a geometric property of a lesion
directly from cCTA can guarantee a good match to the orig-
inal score. Instead, we propose to simulate the standard CS
CT image formation process on the geometric model derived
from cCTA and then estimate the Agatston score in a standard

way from the simulated image. The process hence includes
two stages:2

1. Building a virtual CS CT image based on the cCTA,
2. Computing the calcium score using the standard Agatston

scoring technique on the virtual CS CT study.

Building a virtual CS CT image is a two step process.
First, a virtual contrast removal from coronary arteries is
performed on a cCTA image. Second, the resulting image is
re-sampled according to the standard CS image reconstruc-
tion specifications—non-overlapping 3 mm thick slices.

Virtual contrast removal is performed in the following
way: voxels brighter than blood (>40 HU), that do not belong
to coronary CA lesions (segmented in the previous step) are
set to 40 HU (blood intensity)—see Fig. 9b. Note that, as a
result of this transformation, the non-contrast, high-intensity
voxels outside coronary arteries (e.g., bones, metal wires,
non-coronary calcium lesions, etc.) are also set to 40 HU.
This is not a problem, since scoring is performed only for
coronary CA lesions and non-coronary voxels do not affect
the score.

The resulting image is then re-sampled in Z direction
to produce a standard CS image with 3 mm slice thickness
and 3 mm inter-slice distance (Fig. 9c). Note that there is a
degree of freedom in choosing the origin of the new 3 mm

2 The described method for calcium scoring is patent pending.
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Fig. 10 a Score calibration factor ρ(S). b Uncalibrated and calibrated scores versus Agatston score from CS

sampling grid along the Z axis. Every chosen origin loca-
tion defines a different, but valid virtual CS image, and
hence a different score. A similar phenomenon was reported
in [21] for conventional CS CT studies, where different
scores were obtained by varying the reconstruction origin
offset.

To improve the scoring robustness, we reconstruct several
virtual CS images by choosing different origin offsets. Score
is then computed for each image, and the average score is
used as the final score. Here, we reconstruct �zCS/zcCTA�
different virtual CS images by offsetting the origin point in
increments of zcCTA. The re-sampling is performed by convo-
lution with 3 mm long 1D rectangular filter along Z axis. The
score S is then calculated by applying the standard Agatston
scoring function.

Score calibration

The virtual CS image and hence the score strongly depend
on the accuracy of calcium lesion segmentation in cCTA
study. As mentioned earlier, image intensities of calcium and
contrast material in cCTA studies overlap to some extent.
Therefore, low-intensity calcium voxels can be erroneously
recognized as contrast, thus resulting in under-segmentation
of calcified lesions. Such low-intensity calcium voxels are
often observed in small lesions and on the boundary of larger
lesions. Obviously, the effect is more prominent for smaller
lesions, where the ratio between the boundary and total lesion
volume is larger.

In order to compensate for this calcium under-segmenta-
tion, we propose to multiply the initial score estimation by a
lesion specific calibration factor. The overall study score is
then computed as

S =
∑

i

Siρ(Si ),

where Si is the initial score of lesion i, ρ(Si ) is the lesion i
calibration factor and i runs over all calcium lesions detected
in the study.

To get a rough idea about the form of the calibration func-
tion ρ, let us consider a simple example of a lesion that
appears in cCTA as a sphere of radius R. Let us assume
that, due to the partial volume effect, the outer layer of width
Δ in every lesion is not recognized as calcium. Then the true
radius of the lesion is R + Δ and the ratio between the true
and observed lesion volumes is (R + Δ)3/R3. Assuming
the calcium score S is locally linear in lesion volume, i.e.,

S ∼ R3, ρ(S) = 1 + 3ΔS− 1
3 + 3Δ2S− 2

3 + Δ3S−1.
Motivated by this example, we approximate the calibra-

tion function ρ(S) by a third degree polynomial of S− 1
3

ρ(S) = 1 + αS− 1
3 + βS− 2

3 + γ S−1. (5)

In order to find the optimal parameters [α, β, γ ], we used
100 corresponding calcium lesions marked in cCTA and CS
studies of the T1 training set. For each lesion, we calculated
the Agatston score Si

true from CS, and the virtual calcium
score Si from cCTA. Parameters [α, β, γ ] are selected as the
solution to the least squares problem

[α, β, γ ]=arg min
α,β,γ

∑

i

(
1+αS

− 1
3

i +βS
− 2

3
i +γ S−1

i − Si
true

Si

)2

,

s.t. α > 0, β > 0, γ > 0.

(6)

The resulting calibration function is depicted in Fig. 10a.
Figure 10b shows the calibration effect on 100 lesions. Si

before and after the calibration are plotted against Si
true. The

MAPD defined as:

APD =
{

0, if Si
true + Si = 0,

|Si
true−Si |

(Si
true+Si )/2

· 100%, otherwise
(7)

is 58 % before the calibration and 44 % after.
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Results

Our system for fully automatic cCTA calcium scoring was
implemented as a stand-alone PC application. As discussed
in “Methods” section, the system includes three parts: coro-
nary tree reconstruction, calcium detection and scoring. The
coronary artery tree reconstruction part was tested in Rotter-
dam Coronary Artery Algorithm Evaluation Framework [22]
and demonstrated some of the best results among competing
fully automatic solutions [23] (COR Analyzer group).

Even though calcium detection is not the ultimate goal
of the developed system, we tested the performance of the
calcium lesion detection part separately. It was tested on a
set of 15 corresponding CS CT and cCTA studies. Those
studies are not part of the evaluation set used in the overall
system performance trials described below. The size of the
test set used in this experiment is relatively small due to a
large amount of manual labor required to prepare the ground
truth and to do the analysis—a per-lesion correspondence
is to be established between the modalities, while the same
lesion in CS can be split into several lesions in cCTA and
vice versa.

Sixty-seven lesions detected in 15 CS studies were com-
pared with those automatically detected in cCTA. Out of 67
lesions, the system correctly detected 63, missed 4 and gen-
erated 14 false alarms, yielding the sensitivity of 94 %. Three
out of 4 missed lesions and all 14 false lesions were small:
1 ≤ CS ≤ 10. Interestingly, 3 out of 14 false alarms were
likely to be calcium lesions invisible in CS CT. For the small
lesions subgroup, the system identified 17 out of 20 lesions
(85 % sensitivity).

Figure 11 shows an example of a small calcified
coronary lesion. The lesion peak intensity is lower than
the maximal lumen intensity. Therefore, it cannot be cor-
rectly segmented, without producing false alarms, by con-
stant thresholding. The lesion is correctly delineated using
the proposed approach as the local difference between the
image and the model is larger than 3σc.

Testing the accuracy of calcium segmentation per se seems
to be unfeasible, as no reliable ground truth is available, and
the inter-observer variability in manual segmentation of cal-
cium is too high.

The overall system performance for calcium score estima-
tion was tested in two clinical double-blind trials conducted
independently by Carmel Medical Center (CMC), Haifa,
Israel, and Medical University of South Carolina (MUSC),
Charleston, SC. Our system was installed in medical centers,
and the trials were conducted by the hospital staff, without
our participation. Full clinical reports on those trials were
published in [24] and [25], respectively. Here, we summa-
rize the two trials and provide a more technical insight into
the achieved results.

The trials included 136 (CMC) and 127 (MUSC) con-
secutive patients who underwent both CS and cCTA proce-
dures. Patients with stents, pacemaker leads and prior coro-
nary bypass graft surgery were excluded. Patient statistics,
used equipment and scanning protocols for the two trials are
summarized in Table 1.

To eliminate any bias, the trials were conducted as double-
blinded experiments. The standard Agatston score from CS
CT was computed in a routine clinical way and not revealed
to the person who ran the system. Vice versa, physicians,
who performed the standard Agatston score assessment, did
not know the score computed by the system. Trial organiz-
ers (hospital) received both results and performed the sta-
tistical analysis. The system was not trained and did not
run on the test studies used in the trials prior to the experi-
ment.

Agatston score (SCS) was computed from CS studies by
expert readers in the hospitals (routine medical reports were
used), using commercially available semi-automatic/manual
software packages (see Table 1).

Calcium score (ScCTA) was computed from cCTA studies
using our fully automatic system. The average processing
time was 6 ± 1.3 min. 8 studies out of 127 (6.3 %) in MUSC
were rejected by the system due to inability to automatically

Fig. 11 a Coronary artery cross section. The intensity of the small, eccentric CA lesion is lower than the lumen peak intensity. b Lumen intensity
profile (blue) overlapped with the parabolic intensity model (red). c Segmented lesion mask (green)
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Fig. 12 SCS versus ScCTA scatter plots for CMC (a) and MUSC (b) studies
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Fig. 13 Bland-Altman percent difference plots between SCS and ScCTA for CMC (a) and MUSC (b) studies

segment the coronary artery tree. No studies were rejected in
CMC trial.

SCS and ScCTA correlated well (see Fig. 12), achieving
Pearson correlation of 0.95 (CMC) and 0.91 (MUSC), P <

0.0001. The MAPD between SCS and ScCTA was 39 % in
CMC trial and 36 % in MUSC.

Bland-Altman percent difference plots are presented in
Fig. 13. The mean score is computed as MS = (ScCTA +
SCS)/2 and the relative difference as (ScCTA − SCS)/MS ·
100 %. Horizontal lines in the plots are the bias (−1 % for
CMC and 5 % for MUSC) and 95 % CI of limits of agreement
(σ = 40.1 % for CMC and σ = 39.6 % for MUSC).

Table 2 presents confusion matrices of calcium score cat-
egorization into standard risk groups [26] according to SCS

and ScCTA for the two trials.
Combining the results of the two evaluations, 211 out of

255 patients (82.7 %) were categorized into the same risk
group by both SCS and ScCTA. 43 patients (16.9 %) were clas-
sified to an adjacent risk group, and only 1 patient (0.4 %) was
classified to a non-adjacent risk group. There were 4 (1.6 %)
false negative cases—patients with SCS > 0 reported as hav-
ing no coronary calcium according to cCTA (ScCTA = 0)—
all in the CMC group.

Table 2 CS risk categories confusion matrices for CMC (a) and MUSC
(b) studies

CS

cCTA 0 1–10 11–100 101–400 >400

(a)

0 24 4 0 0 0

1–10 5 6 3 0 0

11–100 1 1 29 2 0

101–400 0 0 5 26 2

>400 0 0 0 2 26

(b)

0 35 0 0 0 0

1–10 8 8 2 0 0

11–100 0 3 22 0 0

101–400 0 0 2 13 2

>400 0 0 0 2 22

Overall, the system performance was slightly better for
MUSC studies than for CMC, both in terms of the MAPD—
36 versus 39 %, and misclassification rate—15.9 versus
18.3 %. This can be possibly explained by the higher aver-
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age noise level in CMC studies—σ̄c = 42.6 HU versus
σ̄c = 30.8 HU in MUSC.

Discussion

Error analysis

Errors in calcium score estimation can be attributed to the
two main factors—wrong calcium detection/segmentation
and wrong scoring. The former can be caused by two major
reasons:

– Centerline tracking and vessel boundary segmentation
errors,

– Vessel intensity modelling and noise estimation errors.

Errors of the first type simply leave a calcium lesion out-
side the area analyzed by the algorithm. Figure 14 shows an
example where the system failed to track an artery beyond
a total occlusion. The calcium lesion in the untracked distal
part of the vessel is undetected and hence not scored.

Errors in vessel intensity modeling are mainly caused by
wrong contrast intensity assessment, or by inaccurate center-
line detection. Figure 15 demonstrates an example of false
alarm caused by wrong centerline position assessment.

Modeling errors can result in both misses and false alarms,
while the binarization threshold (we used 3σc) controls the
position on the ROC curve. One possible way to improve the
2D intensity modeling is by using local estimations of con-

Fig. 14 Vessel tracking failure: tracking stopped due to a total occlu-
sion. Calcium in the tracked proximal part of the vessel (green arrow) is
scored, whereas the lesion in the distal part (red arrow) remains unde-
tected

trast intensity and noise level for calcium segmentation. The
aorta-based assessment used here may not be valid for every
part of the coronary artery tree. Another source of error in the
3D intensity model is the excessive averaging of model para-
meters across bifurcations. This can be possibly addressed by
explicit handling of bifurcation points in the bilateral filter
(Eq. 3).

Scoring errors are due to the inability of the system to
match the standard CS CT Agatston score even if all calcium
visible in cCTA is perfectly detected and segmented.

Low calcium score studies are the major contributors to
the absolute percent error. In general, small lesions are easier
to misinterpret, especially for noisy studies (e.g., see Fig. 16).
For studies with low total calcium score, the relative influence
of small lesions is high. Therefore, the confidence of score
assessment for low SNR studies with low calcium score is
low. Automatically rejecting or warning about such studies
can further improve the accuracy of the system. This is espe-
cially important because of the clinical significance of the
distinction between zero and nonzero (small) CA score.

The model we used for score calibration is somewhat
limited and based on spherical lesions. It can be possibly
improved by taking into account other parameters, e.g., con-
trast intensity, vessel radius, lesion compactness, etc. In addi-
tion, the calibration can be made site specific by training on
the site data to accommodate for differences in CT equip-
ment, contrast injection, image acquisition and reconstruc-
tion protocols.

Another source of score assessment instability against
small variations in image intensity is the Agatston score
step weighing function (Fig. 1). A possible way to improve
the robustness of the technique is by replacing it with a
smooth function. Moreover, besides Agatston, there are other
calcium scoring methods (e.g., calcium volume or calcium
mass) that could be a better choice for assessment from cCTA
in terms of accuracy and reproducibility. The main reason to
use the Agatston score is a huge body of clinical research
that has been performed to link it to the likelihood of cardiac
events. Agatston score is the standard of care today, which
was our motivation to use it when designing a clinically use-
ful system.

Comparison with the prior art

Comparing with results published in prior art, our system
performed better, or with a similar level of accuracy. Müh-
lenbruch et al. [5] and van der Bijl et al. [3] reported risk
categories misclassification rate of 57 and 20–27 % respec-
tively, compared with 16.9 % for our system. The method
presented by Glodny et al. [4] demonstrated high correlation
of 0.93 (Spearman) to the Agatston score, but the proposed
score was not adapted to match the Agatston values, and
hence, no error or risk group analysis is possible in this case.
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Fig. 15 a Vessel cross section. X—estimated center-line position; red—calcium false alarm. b Vessel intensity model (blue) and the actual intensity
profile (red). Calcium is reported for pixels on the right side, where image intensity is higher than the model prediction

Fig. 16 Small CA lesion in CS study (a) and in low SNR cCTA (b) of the same patient. High-intensity noise pixel in cCTA (false alarm) is brighter
than calcium. Notice that the same calcium lesion has higher intensity in cCTA, due to less expressed partial volume effect

Bischoff et al. [7] reported misclassification rate of 9 %, while
combining the “1–10” and “11–100” Agatston risk categories
into a single group. Applying the same analysis to our data
collected in MUSC study (that used the same CT scanner as
in [7]) yields a comparable misclassification rate of 11 %. The
correlation of 0.95 between SCS and ScCTA reported in [7] is
slightly better than ours in MUSC test (0.91) and equal to
ours in CMC. Otton et al. [2] reported a very high correla-
tion (0.99) to the Agatston score, but their method cannot be
directly compared with ours, as manual lesion detection and
segmentation was used there: lumen and vessel boundaries
are drawn by automatic tool and then manually corrected;
calcium is detected in the volume between the boundaries by
thresholding.

It should be noted though that all prior reported
methods mentioned above used a semi-automatic/manual
selection of coronary lesions (candidates are detected and
segmented automatically and then coronary lesions are man-
ually selected), whereas our system performed the analysis
in a fully automatic mode.

Comparison with the standard of care

In the previous section, we reported our system’s diagnos-
tic performance by treating the Agatston score derived from
CS CT as the gold standard. The more practical question,
though, is whether the accuracy of the proposed technique
lies within the error range of the standard CS CT. It is
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well known that many factors can significantly influence the
Agatston score obtained from CS CT scan. Those include
cardiac phase, reconstruction filter, field of view, recon-
struction offset and others. Takahashi et al. [27] reported
32 % MAPD between scans that used different tube cur-
rents. Mao et al. [28] computed MAPD between consecu-
tive CS CT scans reconstructed at different cardiac phases.
The lowest MAPD (15 %) was reported for cardiac phase
of 40 % and larger MAPD (23–25 %) for other cardiac
phases (50, 60, 80 %). Small variation in starting position
of CS CT scan reconstruction was found to be responsi-
ble for risk category misclassification of 9 % of the sub-
jects [21].

Comparing between calcium score computed with CS CT
and EBCT (for which the Agatston score was designed),
reveals 65 % MAPD as reported by Stanford et al. [29]. Rein-
sch et al. [30] reported 14 % misclassification rate between
EBCT and dual-source CT for 4 Agatston score risk cate-
gories (combined “1–99” category). Moreover, the calcium
score computed from the EBCT itself also suffers from high
inter-scan variability. Yoon et al. [31] reported 38 % MAPD
between identical repeated EBCT scans.

The MAPD of 36–39 % and misclassification rates of 16–
18 % (5 categories) and 11–15 % (combined “1–99” cate-
gory) we measured for our system lie within the variability
limits reported above.

Conclusions

In this paper, we presented new methods for automatic cal-
cium detection, segmentation and scoring in cCTA stud-
ies. The proposed model-based approach for calcium lesion
detection and segmentation deals with intrinsic calcium
imaging limitations of cCTA that could not be addressed by
thresholding techniques reported in prior art. The suggested
scoring method uses a virtual CS CT image to match the
standard Agatston score by coping with its highly nonlinear,
non-physical and non-geometric nature.

The two methods were implemented as part of a fully auto-
mated system for calcium score estimation in cCTA studies.
The system was tested in two independent clinical trials on
263 studies. The diagnostic performance of the system mea-
sured in these tests is better or comparable with the previ-
ously published results and lies within the error margins of
the standard of care—Agatston score from CS CT.

High correlation between calcium scores derived by our
system from cCTA and Agatston scores obtained using con-
ventional CS CT, coupled with the benefits of our fully auto-
matic solution, suggest that the proposed methods can be
used to eliminate the need in a separate CS CT scan, thus
reducing the radiation exposure for the patient and costs for
the health-care system.
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