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Abstract
Purpose Femur segmentation is well established and widely
used in computer-assisted orthopedic surgery. However, most
of the robust segmentation methods such as statistical shape
models (SSM) require human intervention to provide an ini-
tial position for the SSM. In this paper, we propose to over-
come this problem and provide a fully automatic femur seg-
mentation method for CT images based on primitive shape
recognition and SSM.
Method Femur segmentation in CT scans was performed
using primitive shape recognition based on a robust algo-
rithm such as the Hough transform and RANdom SAmple
Consensus. The proposed method is divided into 3 steps: (1)
detection of the femoral head as sphere and the femoral shaft
as cylinder in the SSM and the CT images, (2) rigid registra-
tion between primitives of SSM and CT image to initialize
the SSM into the CT image, and (3) fitting of the SSM to the
CT image edge using an affine transformation followed by a
nonlinear fitting.
Results The automated method provided good results even
with a high number of outliers. The difference of segmen-
tation error between the proposed automatic initialization
method and a manual initialization method is less than 1 mm.
Conclusion The proposed method detects primitive shape
position to initialize the SSM into the target image. Based
on primitive shapes, this method overcomes the problem of
inter-patient variability. Moreover, the results demonstrate
that our method of primitive shape recognition can be used
for 3D SSM initialization to achieve fully automatic segmen-
tation of the femur.

L. Ben Younes (B) · Y. Nakajima · T. Saito
Graduate School of Medicine, The University of Tokyo,
7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
e-mail: benyounes@image.t.u-tokyo.ac.jp

Keywords Statistical shape models · Primitive shape ·
Hough transform · RANSAC · 3D femur segmentation ·
CT image

Introduction

Here, we address the problem of the automation of the femur
segmentation. The segmentation of the femur is well estab-
lished. On the one hand, the conventional methods cannot
offer satisfactory results, and the shape-based method [1,2]
is preferred in order to obtain a robust and accurate result.
On the other hand, deformable models require initialization
in order to fit the model with high accuracy. In practice,
deformable models are initialized manually which introduce
intra-operator error, and it is also time-consuming. Therefore,
there is a need for an automatic shape initialization method.
Despite the need of organs localization, most researchers
focus on improving the segmentation accuracy and only few
of them focus on organ position recognition [3,4].

The initialization task has received little attention. As a
result, user interaction methods are commonly applied for
initialization. In general, it is sufficient to roughly align the
mean shape of the statistical shape models (SSM) to the
target. In [5], they interactively drag and drop the mean shape
of SSM over the target image to be segmented. This method is
relatively easy for 2D images but it is more time-consuming
for 3D images due to the need of image rotation. In [6], they
manually selected only four landmark points for initializa-
tion. In [7], their method helps the user to select, from the
SSM, few landmark points which best describe the shape. All
those initialization methods require human assistance, which
could turn into a cumbersome task given the increasing num-
ber of medical images.

Full automation of the initialization can be done by solu-
tions adapted to the specific task. Often those solutions
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include histogram analysis or morphologic operator. Thus,
they often need adaptation to new problems. Also, approaches
based on registration using labeled atlas [8] are popular. How-
ever, in such methods, registration errors are highly related
to inter-individual variability. Robustness can be improved
by using multi-atlas, but at the cost of slower process.
As an alternative, evolutionary algorithm can be used. In
[9], Bayesian network with a particle filter was applied
only for 2D fluoroscopic images of the femoral head. The
method depends on many heuristics conditions, which limit
its reusability. In [10,11], they used genetic algorithm (GA)
[12] to initialize the SSM. From the initial random solutions,
the algorithm provides new solutions based on the best pre-
vious solutions using cross-over with some degree of muta-
tion. Following the concept “survival of the fittest”, the algo-
rithm iterates until the best solution is chosen. GA is highly
dependent on its fitness function that evaluates the proba-
bility for survival of each solution. Moreover, those global
search methods are known for their slow convergence and
often speed-up strategies need to be added. In [13], the gen-
eral Hough transform (GHT) [14], a template-based method
where each point on the image edge vote for the possible
template location, was used for vertebra bone. But it was
limited to 2D images. In [15], the GHT was extended to 3D
and applied for the pelvic bone SSM initialization. However,
the orientation and the scale of the bone in the CT image were
limited due to the huge need for memory and computational
time. Also in [16], they used GHT in order to initialize the
SSM of the femoral head. But they decreased the complexity
of the method by reducing the number of points in SSM and
limit the orientation and the scale.

Among initialization methods described above, in case of
2D images, atlas registration is very popular for simultane-
ous multi-organ registration, and GHT is preferred for single-
organ recognition due to its robustness. But for 3D images,
the selection of landmark points is preferred for initialization
due to the complexity and the long average duration of the
evolutionary algorithms and the memory needed to perform
GHT. Moreover, for our case of study, where the femur is
spread over 400 slices and the SSM is described by 2,562
points, GHT and GA are difficult to use without harsh lim-
itations. The cost of GA fitness function will be very high:
each proposed position needs to be compared point by point.
GHT needs size limitation of the target image or region of
interest (ROI) selection in order to save memory. In addition,
both require harsh limitations on variation of scale, orien-
tation, and translation. Also, the number of the SSM points
needs to be reduced during the initialization process. Those
limitations make associated methods less general and then
less effective for new cases.

In this paper, we propose a new method to automatically
initialize the SSM of the femur based on the detection of
primitive shapes and without any human intervention or ROI

selection. In “Method” section, we explain how to build the
SSM, our method for initialization, and the segmentation
process. In “Experiments and results” section, we expose the
experiments and results.

Method

3D deformable model

Deformable model is very popular as a segmentation tool
due to its way of deformation following training shape con-
straint, which can avoid result degeneration. Here, we briefly
explain how we build our SSM. Deformable model is statis-
tically computed by conventional procedures [17] using an
18 CT DICOM image as a training data set. Every femur is
segmented manually using mouse clicks. Then, normal bone
surfaces are made from the CT volume images using the
well-known marching-cubes method [18]. After the surface
generation, scaling is performed by referencing the amount
of each bone area. Next, the three principle axes, x, y, and z,
are determined by eigenvalue analysis of the bone volume in
terms of each bone. By corresponding the bone scales and the
principle axes, iterative closest point (ICP) algorithm [19] is
employed to determine for each bone a group of correspon-
dence points with other bones. The new coordinates of those
points are stacked in a vector mi ∈ R3 with i the number of
bones. Then, an average shape m is consequently determined,
and principle component analysis (PCA) for mi is performed
to get their deforming eigenvectors � = [�1, . . . , �M ] and
eigenvalues λ = [λ1, . . . , λM ] where M is the number of
principal modes of variation. As explained in [17], a new
shape can be described according to the following formula:

m ≈ m + �b (1)

where m is the new shape and b = [b1, . . . , bM ] are mode
weights. Upper limit and lower limit are fixed for b as
−3

√
λ < b < +3

√
λ. The result is shown in (Fig. 1) in

term of deformation magnitude of each part of the bone.

High Deformation

Low Deformation 

Fig. 1 Deformable shape model with magnitude of deformation
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Fig. 2 Femur and primitive shapes: a red circle represents the primitive
shape of the femoral head, and the red cylinder represents the primitive
shape of femur shaft. b In green, the mean shape of SSM and in red the
detected sphere and cylinder. c Detected sphere and cylinder into CT
Image

Primitive shapes recognition

Our initialization method is based on the primitive geometry
of the femur. When we see a femur, we can easily distinguish
a spherical shape for the femoral head and a cylindrical shape
for the femoral shaft (Fig. 2a). Based on this simple obser-
vation, we tried to detect those two primitive shapes: sphere
and cylinder. The recognition of primitives like sphere and
cylinder is widely established due to their simplicity in the
mathematical equations [20]. In 3D space, a sphere descrip-
tion consists of four parameters (cx , cy, cz, R), with c denot-
ing the center of the sphere and R denoting the radius. The
most commonly used method for primitive shapes detection
is Hough Transform (HT) [21]. The HT is adapted to differ-
ent shapes like line and circle [22]. The HT for sphere can
be considered as

(x − x0)
2 + (y − y0)

2 + (z − z0)
2 = R2 (2)

|(x − x0)
2 + (y − y0)

2 + (z − z0)
2 − R2| < ε (3)

with (x0, y0, z0) as the sphere center, (x, y, z) the points
coordinates in the sphere surface, and ε the tolerance. In [23],
they used a 2D HT for circle detection and processed 3D CT
images, slice by slice, to successfully detect the femoral head.
In our case, we used a 3D extension of the HT circle detec-
tion [24] based on the Insight Segmentation and Registration
Toolkit (ITK) library. This method is based on a radial voting:
for each point on the edge, the normal is drawn and points
along that normal, within a radius range, are selected for
sphere parameters (center and radius) estimation. The vote
of each edge point is accumulated into the Hough accumula-
tor space, also called the parameters space (Fig. 3a). The set
of parameters receiving the maximum vote number will be
considered as the center of the sphere with the correspond-
ing radius. Even without any radius limitation, the femoral
head will still have the maximum vote into the accumula-
tor space. However, providing a range for the femoral head
radius will make the program faster and reduce the proba-
bility of false detection. In our case, we used R ∈ [16; 25]
extracted from literature [25]. In addition, since we are deal-
ing with a bone, which has a high CT value, a simple thresh-
old is used at the beginning to remove soft tissues and thus
making the detection faster. Furthermore, a morphological
opening [26], erosion followed by dilation, is performed as
a preprocessing to remove noise and enhance the separation
between the femoral head and the acetabula without exten-
sive properties (Eq. 5). The erosion removes any foreground
object smaller than the structured element such as noise or
small part beyond the edges. Also, the size of the object is
reduced by the size of structured element. Then, the dilation
dilates any foreground object by the structured element. But
noise has been already removed by the erosion. Then, the
object recovers its original size without the removed noise.
A small ball of radius 1 is used as a structured element. The
opening of an image I by structured element E, with � for
erosion and ⊕ for dilation, is expressed by

Fig. 3 Accumulator space:
each edge point vote for sphere
position and cylinder direction,
a HT accumulator for the sphere
detection, b Gaussian sphere
accumulator space for the
detection of the cylinder
direction. The arrow indicates
the cell with the highest number
of votes
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I ◦ E = (I � E) ⊕ E (4)

I ◦ E ⊆ I (5)

For the cylinder detection, on the one hand, the use of sur-
face fitting based on common nonlinear regression requires
an initial estimation. On the other hand, the use of HT
is time- and memory consuming due to the high number
of parameters. Furthermore, RANdom SAmple Consensus
(RANSAC), which is based on a random selection of a min-
imal set of points and a trial of all possible combinations of
shape parameters until the highest set of points is extracted,
is more fitted to detect the cylinder [27]. But the use of a min-
imal set of points to detect the cylinder is not intuitive, and
the cylinder direction seems to cause most of the trouble [28].
Therefore, we followed the method used for point cloud data
set from industrial sites to extract cylinders [29]. The method
splits the cylinder detection into two parts: direction detec-
tion, then radius and position. Here, we only used the first
step which consists of a Gaussian sphere to find the direc-
tion of the cylinder. The normal of each point on the image
edge is projected into the Gaussian sphere. As explained in
[29], normal of points of the cylinder will form a great cir-
cle in the Gaussian sphere. The normal to this circle is the
orientation of the cylinder. More explicitly, first a uniform
mesh is applied for a unit sphere: an icosahedron edge mesh
is divided into n triangular mesh and each vertex point is pro-
jected into the unit sphere which gives a uniform triangular
mesh for the unit sphere. Then, the meshed unit sphere is
used as Hough space and the normal direction of each edge
point is projected into the unit sphere. Finally, for each pro-
jected normal, the big circle, which lies on the plane which
passes through the sphere center, is drawn and correspond-
ing mesh cells values are incremented as shown in (Fig. 3b).
We can observe a symmetry in the sphere due to the symme-
try of the human bone. Also, there are two big sets of cells
with high intensity, which corresponds to the two femoral
shafts. Since the femoral shaft is not a perfect cylinder, the
normal of each edge point does not fall in the same cell.
The arrow shows the cell that has the highest accumulator
value. The normal to that cell is considered as the cylinder
direction. The drawback of this method is that a plane can
be considered as a cylinder into the Gaussian sphere. That is
why a preprocessing to remove planes from the point set is
performed.

For the radius and position of the cylinder, we use
RANSAC [27]. The combination of the RANSAC method
with the found direction will make RANSAC less depen-
dent on outliers than more robust and faster. RANSAC is
applied along the found axis with a possible deviation of
5 degrees. The biggest set of points found by RANSAC is
considered to be the cylinder. More formally, let us con-
sider the point cloud constituted by the edge point of the
CT image as P = {p1, . . . , pN } with P the set of points

and N number of points, and the result found by RANSAC
as Ps = {

ps1 , . . . , psn

}
with Ps the set of points of the

cylinder, n number of cylinder points and Ps ∈ P . After-
ward, a connectivity condition is applied to Ps to keep only
connected points. Moreover, a range for femur shaft radius,
R ∈ [12; 15] extracted from literature [25], is used to speed
up the cylinder detection process and to avoid the detection
of the internal edge of the femur (spongy bone) instead of
the external edge. In addition, as preprocessing, a threshold
is used to remove soft tissues followed by a morphological
opening to remove noise.

To enhance our detection, we used a heuristic knowl-
edge of the femur derived from the SSM to link the relation
between the sphere (femoral head) and the cylinder (femur
shaft) as the femur head offset, which is the distance between
the femoral head center and the natural axe of the femur.
Those conditions help to reject false detected pairs of sphere
and cylinder, especially when there are two femurs in the
CT image. Every time we reject a detected set of points,
we remove them from P so that they will not be detected
again.

The algorithm of our cylinder detection is as follows:

1. Remove any existing plane in the set of points.
2. Calculate the normal for each point.
3. Project each normal into a uniform meshed unit sphere

and draw its corresponding big circle by incremented cell
mesh.

4. Find the cell with the highest value and consider it normal
as cylinder direction.

5. Apply RANSAC for cylinder along that direction with a
5 degree of tolerance.

6. Select the highest set of points found by RANSAC.
7. Remove points not connected along the cylinder direc-

tion.
8. Extract the cylinder parameters: center, direction and

radius.
9. If the found cylinder does not satisfy the heuristic condi-

tions as femur offset, found points are removed and the
process is repeated from step 5 but using the next highest
value into the unit sphere as cylinder direction.

Primitive shapes detection is also applied for the average
shape of SSM to detect the sphere and the cylinder (Fig. 2b).
In this case, the number of outliers is very low, and heuris-
tic conditions are not needed. Figure 2c shows the result of
sphere and cylinder recognition in the CT Image.

Registration

After the extraction of primitives from the average shape
SSM and CT Images, a rigid registration is performed. First,
the SSM model is scaled based on the ratio between the
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sphere radius of SSM and the sphere radius of CT image.
Then, the two cylinders directions are registered using dot
product between the two vectors to get the angle of rotation.
Let us consider 	VSSM as the normalized vector direction of
the detected cylinder into the SSM and 	VCT the normalized
vector direction of the detected cylinder into CT image. The
normal of the plane defined by the two vector is given by
the cross-product 	N = 	VSSM ∧ 	VCT and the angle of rota-
tion α is given by the dot product of the tow direction vector
α = cos−1( 	VSSM · 	VCT). The SSM primitive is rotated around
	N by α. After the registration of the two cylinders directions,

the next step is to register the femoral head center. The SSM
primitive will be rotated around 	VCT until the sphere center
of the SSM fall in the same plane as the sphere center of
the target image. Finally, this transformation is applied to the
mean shape of SSM for initialization.

Iterative fitting process

First, we roughly segment the bone in the target image using
simple conventional methods: Gaussian blur followed by a
threshold for CT image. Second, an iso-surface is constructed
based on the previous segmentation. Then, the mean shape of
SSM is initialized into the image target using the registration
method explained before (step 2.3). Finally, the following
iterative process is applied to fit the SSM to the segmented
image.

1. For each point of the mean shape, the normal direction is
calculated.

2. For each point, the nearest point through the normal direc-
tion, into the target image, is selected and stored into
a vector y = [x0, y0, z0, . . . , xn−1, yn−1, zn−1] with n
number of corresponding points.

3. An affine transformation is applied between points of the
average shape m and their corresponding points y.

4. To fit the mean shape m with corresponding edge points y,
the well-known Levenberg-Marquardt nonlinear regres-
sion is used. This fitting consists on the minimization of
the distance between m and y by varying the parameter
b using the following optimization equation.

O (b) =
n∑

i=1

[yi − f (mi |b)]2 (6)

mi is the shape points, yi corresponding edges points,
f (mi |b) = mi +�m b explained in Eq. (1), b is the mode
weight and O(b) sum of the squares of the deviations to
minimize.

5. The fitting result is used instead of the mean shape m
for normal calculation and the process is repeated until
convergence.

Experiments and results

Results of primitives detection

We automatically detected the sphere and the cylinder using
the proposed method. Twenty CT images of patients were
used. All images contain the pelvis and the femur as shown
in (Fig. 4). Some images contain screw in the femur shaft or
implant instead of the femoral head. The results are compared
to the manually traced sphere and cylinder.

The femoral head was successfully detected as sphere. The
two femoral heads always have the two highest values of HT
Accumulator. As shown in Table 1, the difference in para-
meters between manual sphere and automatically detected
sphere is calculated, including the difference between the
radius and the distance between sphere centers. The results
show that the errors between the manually traced sphere and
the automatically detected one are minimal. The mean of the
spherical center error is 2.12 mm and the mean of radius error
is 0.65 mm.

For the femoral shaft, despite the presence of the pelvis
bone which induces a high number of outliers, the cylin-
der detection succeeded in the majority of the cases with
good results as shown in Table 2. The mean of radius error
between the automatically detected cylinder and the manual
one is 0.41 mm and the mean of angular deviation �O (angle
between the two directions in the common plane) is 4.43◦.
If there is no big difference, the direction of the cylinder can
be corrected during the fitting process because the edge of
the femoral shaft is easy to extract. The algorithm is more

Fig. 4 Segmentation result using the proposed method. The red sur-
face is the result of the segmentation, a a coronal view, b a 3D planar
view

Table 1 The sphere detection results reported as: mean ± standard
deviation

�C (mm) �R (mm)

Error 2.12 ± 1.11 0.65 ± 0.62
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Table 2 The cylinder detection results reported as: mean ± standard
deviation

�R (mm) �O (mm)

Error 0.41 ± 0.22 4.43 ± 2.02

Table 3 Results of experiment 1: segmentation results reported as
mean, maximum and dice coefficient

Initialization method Average error
(mm)

Max error
(mm)

Dice
(%)

Proposed method 1.48 ± 0.28 10.53 ± 3.19 87 ± 2.6

Manual initialization 1.34 ± 0.22 8.25 ± 2.62 90 ± 2.3

Landmark based
initialization

1.36 ± 0.2 8.40 ± 2.42 89 ± 2.4

sensitive to the femoral head position. The cylinder detection
can fail in cases where the femur is cut and the shaft portion
is small relative to the pelvis.

Results of segmentation

After the primitives’ detection, we tested the quality of the
overall segmentation. Eight CT images of patients were used
for this experiment. First experiment is the standard one: ini-
tialization of the SSM using our method, segmentation of
the CT image based on threshold, and the fitting of the SSM
to the CT image using Levenberg-Marquardt as explained
in “Iterative fitting process” section. We compared the pro-
posed method, with a manual initialization by dropping and
dragging the SSM at the right position into the target image.
In addition, we compared it with landmark-based method.
We proposed three landmark points into the SSM which best
represent the shape and easy to detect into the CT image. And
we asked the user to choose same landmark points into the
CT images as in [6,7]. The results of the comparison between
each method and the manual segmentation (gold standard)
are reported in Table 3 and Fig. 4. The results show that our
initialization method yields good result as a manual initial-
ization or landmark-based initialization with an average dis-
tance of 1.48 mm. Also, the dice similarity index was used to
compare the results of the proposed method with the manual
segmentation. The dice similarity coefficient was 87 ± 2.6.
Results can be improved by enhancing the stability against
outlier during the fitting process which is widely described
in the literature. The complete segmentation of CT image of
600 slices of 512 × 512 took about 3 min (around 2 min for
initialization) using a C++ implementation on 64 bit desktop
PC (3.10 GHz Core, 16 GB RAM).

The results of the segmentation also depend on how opti-
mal is the detection of the corresponding edge points in the
CT image. Thus, we cannot evaluate the initialization cor-

Fig. 5 The result of experiment 2 using our initialization. a The result
after initialization: the gray color is the mean shape of SSM and the
green color is the bone to segment. b The result after the fitting process
of the SSM: the blue color is the target bone and the yellow color is the
result

Fig. 6 The result of experiment 2 using ICP registration. a The result
after initialization: the gray color is the mean shape of SSM, and the
green color is the bone to segment. b The result after the fitting process
of the SSM: the blue color is the target bone and yellow color is the
result

rectly. Therefore, we performed a second test to better evalu-
ate our initialization method. The second test consists of the
fitting of the SSM to a manually segmented bone. The man-
ual segmentation replaces the corresponding points detected
in the CT image using threshold from the previous experi-
ment. Here the image noise cannot mislead the quality of the
segmentation. We compare our initialization method with
one of the best methods for rigid registration between two
shapes ICP [19]. Once the initialization is performed, the iter-
ative process of “Iterative fitting process” section is applied.
Results of 8 data sets are shown in Figs. 5, 6 and Table 4.
The ICP initialization might look better. However, the ICP
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Table 4 Results of experiment 2: segmentation results reported as mean
± standard deviation and maximum

Initialization method Average error (mm) Max error (mm)

ICP initialization 1.31 ± 0.22 8.45 ± 1.61

Proposed method 1.37 ± 0.29 10.61 ± 3.04

method cannot be applied to the CT image. The ICP will fail
to detect the position of the femur because of the presence of
other bones such as the pelvis in the CT image. Also in this
experiment, the difference between the segmentation results
using ICP initialization and our method is minimal. The aver-
age distance using our method is 1.37 mm. The difference of
the average distance error between the ICP initialization and
our method is less than 0.1 mm. Also dice coefficient was cal-
culated for the proposed method. All images have high sim-
ilarity with the manual segmentation (dice = 0.89 ± 0.01).
The dice index increases compared to the precedent experi-
ment because here there is no outlier on the corresponding
edge.

Discussions

It is known that the SSM performs well with a good initializa-
tion but fails badly in the case of a wrong initialization. Our
initialization method based on primitive shapes recognition
yields a satisfying result. In experiments, our segmentation
results were as good as a manual initialization which demon-
strates the quality of the initialization. Moreover, our primi-
tive shapes recognition method based on robust algorithms,
HT and RANSAC, works well even for data containing many
outliers. The drawback of the use of the unit sphere to detect
the cylinder is that, if there are many cylinders, the biggest
cylinder, in terms of number of points, will be detected first.
Also, planes must be removed not to be detected as a cylinder
into the unit sphere. In case of image having a small section
of the femur shaft, the detection of the cylinder direction can
be corrupted by the presence of the pelvis.

Compared to method based on user interaction such as
landmark selection, our method releases users from the bur-
densome task of manual initialization. Other than methods
such as GHT, which is based on template shape, this method
uses a general approach based on primitive shapes. In addi-
tion, due to it memory requirement, the GHT is mostly
impractical in 3D without harsh limitations on orientation
and scale. GA is very slow especially in 3D because of its
fitness function: every solution must be compared to the
edge of the CT image. To reduce the processing time of
GA, many assumptions and limitations should be considered
which make this method less interested. Also in our case,
the femur head spread over 400 slices which make GHT

and GA almost impossible to use without harsh limitation.
Thus, primitive shapes detection method is faster and needs
less heuristics conditions. Also, since it is based on primitive
shapes, our method is less dependent to the inter-variability
between patients, which is an advantage for new cases. For
example, our primitives’ recognition can be applied to right
or left femur without change. Further, the proposed method
is user friendly, such that users can expect the method will
work or not just by looking at the image.

Conclusion

We described how to make one of the best segmentation
methods (SSM) fully automatic for the femur segmentation.
The method is based on primitive shapes: the femoral head
has been detected as sphere, and the femoral shaft has been
detected as a cylinder. Then, primitives were used for regis-
tration to give initial position for the SSM. The segmentation
was carried out using the deformation of the SSM. The results
are as good as when manual initialization is performed. The
whole segmentation process needs less than 3 min. Further-
more, based on primitive shapes our method can be applied
for segmentation of other objects, if a primitive shape can be
extracted from the object.
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Toki Saito declare that they have no conflict of interest.

References

1. Heimann T, Meinzer HP (2009) Statistical shape models for
3D medical image segmentation: a review. Med Image Anal
13(4):543–563

2. Fritscher KD, Grünerbl A, Schubert R (2007) 3D image segmen-
tation using combined shape-intensity prior models. Int J Comput
Assist Radiol Surg 1(6):341–350

3. Criminisi A, Shotton J, Robertson D, Konukoglu E (2011)
Regression forests for efficient anatomy detection and localiza-
tion in CT studies. In: Menze B, Langs G, Tu Z, Criminisi
A (eds) Medical computer vision. Recognition techniques and
applications in medical imaging. Springer, Berlin Heidelberg,
pp 106–117

4. Ruppertshofen H, Lorenz C, Rose G, Schramm H (2013) Discrimi-
native generalized Hough transform for object localization in med-
ical images. Int J Comput Assist Radiol Surg 8(4):593–606

5. Rao M, Stough J, Chi YY, Muller K, Tracton G, Pizer SM, Chaney
EL (2005) Comparison of human and automatic segmentations of
kidneys from CT images. Int J Radiat Oncol Biol Phys 61(3):954–
960

6. Yokota F, Okada T, Takao M, Sugano N, Tada Y, Sato Y (2009)
Automated segmentation of the femur and pelvis from 3D CT data
of diseased hip using hierarchical statistical shape model of joint
structure. In: Medical image computing and aomputer-assisted
intervention-MICCAI 2009. Springer, Berlin Heidelberg, pp 811–
818

123



196 Int J CARS (2014) 9:189–196

7. Hug J, Brechbühler C, Székely G (2000) Model-based initialisation
for segmentation. In: Ccomputer vision—ECCV 2000. Springer,
Berlin, Heidelberg, pp 290–306

8. Shimizu A, Ohno R, Ikegami T, Kobatake H, Nawano S, Smutek D
(2007) Segmentation of multiple organs in non-contrast 3D abdom-
inal CT images. Int J Comput Assist Radiol Surg 2(3–4):135–142

9. Dong X, Zheng G (2006) Fully automatic determination of mor-
phological parameters of proximal femur from calibrated fluoro-
scopic images through particle filtering. In: Image analysis and
recognition. Springer, Berlin, Heidelberg, pp 535–546

10. Heimann T, Münzing S, Meinzer HP, Wolf I (2007) A shape-guided
deformable model with evolutionary algorithm initialization for
3D soft tissue segmentation. In: Information processing in medical
imaging. Springer, Berlin, Heidelberg, pp 1–12

11. McIntosh C, Hamarneh G (2006) Genetic algorithm driven sta-
tistically deformed models for medical image segmentation. In:
ACM workshop on medical applications of genetic and evolution-
ary computation workshop

12. Holland JH (1975) Adaptation in natural and artificial systems:
an introductory analysis with applications to biology, control, and
artificial intelligence. University of Michigan Press, Ann Arbor

13. Howe B, Gururajan A, Sari-Sarraf H, Long, LR (2004) Hierarchical
segmentation of cervical and lumbar vertebrae using a customized
generalized hough transform and extensions to active appearance
models. In: 6th IEEE Southwest symposium on image analysis and
interpretation. pp 182–186

14. Ballard DH (1981) Generalizing the hough transform to detect arbi-
trary shapes. Pattern Recognit 13(2):111–122

15. Seim H, Kainmueller D, Heller M, Lamecker H, Zachow S, Hege
HC (2008) Automatic segmentation of the pelvic bones from ct
data based on a statistical shape model. In Eurographics workshop
on visual computing for biomedicine (VCBM). pp 93–100

16. Schramm H, Ecabert O, Peters J, Philomin V, Weese J (2006)
Towards fully automatic object detection and segmentation. In:
Medical imaging. International society for optics and photonics.
pp 614402–614402

17. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape
models-their training and application. Comput Vis Image Underst
61(1):38–59

18. Lorensen WE, Cline HE (1987) Marching cubes: A high resolution
3D surface construction algorithm. In: ACM Siggraph Computer
Graphics, vol 21, no 4, ACM, pp 163–169

19. Besl PJ, McKay ND (1992) A method for registration of 3-D
shapes. IEEE Trans pattern Anal Mach Intell 14(2):239–256

20. Roth G, Levine MD (1993) Extracting geometric primitives.
CVGIP: Image Underst 58(1):1–22

21. Hough PVC (1962) Methods and means for recognizing complex
patterns. US patent 3069654

22. Illingworth J, Kittler J (1988) A survey of the hough transform.
Comput Vis Graph Image Process 44(1):87–116

23. Cao MY, Ye CH, Doessel O, Liu C (2006) Spherical parameter
detection based on hierarchical hough transform. Pattern Recognit
Lett 27(9):980–986

24. Mosaliganti K, Gelas A, Cowgill P, Megason S (2009) An opti-
mized N-dimensional Hough Filter for detecting spherical image
objects

25. Mahaisavariya B, Sitthiseripratip K, Tongdee T, Bohez EL, Oris P
(2002) Morphological study of the proximal femur: a new method
of geometrical assessment using 3-dimensional reverse engineer-
ing. Med Eng Phys 24(9):617–622

26. Haralick RM, Sternberg SR, Zhuang X (1987) Image analysis using
mathematical morphology. IEEE Trans Pattern Anal Mach Intell
PAMI-9(4):532–550

27. Bolles RC, Fischler MA (1981) A RANSAC-based approach to
model fitting and its application to finding cylinders in range data.
In: Proceedings seventh international joint conference on artificial
intelligence, pp 637–643

28. Chaperon T, Goulette F, Laurgeau C (2001) Extracting cylinders
in full 3D data using a random sampling method and the Gaussian
image. In: Proceedings of the vision modeling and visualization
conference, pp 35–42

29. Rabbani T, Van Den Heuvel F (2005) Efficient hough transform for
automatic detection of cylinders in point clouds. ISPRS WG III/3,
III/4, 3, pp 60–65

123


	Fully automatic segmentation of the Femur from 3D-CT images using primitive shape recognition and statistical shape models
	Abstract 
	Introduction
	Method
	3D deformable model
	Primitive shapes recognition
	Registration
	Iterative fitting process

	Experiments and results
	Results of primitives detection
	Results of segmentation

	Discussions
	Conclusion
	Conflict of interest
	References


