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Abstract
Purpose To develop a fully automated, accurate and robust
segmentation technique for dental implants on cone-beam
CT (CBCT) images.
Methods A head-size cylindrical polymethyl methacrylate
phantom was used, containing titanium rods of 5.15 mm
diameter. The phantom was scanned on 17 CBCT devices,
using a total of 39 exposure protocols. Images were manually
thresholded to verify the applicability of adaptive threshold-
ing and to determine a minimum threshold value (Tmin). A
three-step automatic segmentation technique was developed.
Firstly, images were pre-thresholded using Tmin. Next, edge
enhancement was performed by filtering the image with a
Sobel operator. The filtered image was thresholded using an
iteratively determined fixed threshold (Tedge) and converted
to binary. Finally, a particle counting method was used to
delineate the rods. The segmented area of the titanium rods
was compared to the actual area, which was corrected for
phantom tilting.
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Results Manual thresholding resulted in large variation in
threshold values between CBCTs. After applying the edge-
enhancing filter, a stable Tedge value of 7.5 % was found.
Particle counting successfully detected the rods for all but
one device. Deviations between the segmented and real
area ranged between −2.7 and +14.4 mm2 with an average
absolute error of 2.8 mm2. Considering the diameter of the
segmented area, submillimeter accuracy was seen for all but
two data sets.
Conclusion A segmentation technique was defined which
can be applied to CBCT data for an accurate and fully auto-
matic delineation of titanium rods. The technique was vali-
dated in vitro and will be further tested and refined on patient
data.
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Introduction

Cone-beam computed tomography (CBCT) is a commonly
applied technique for a variety of dental applications, such
as implant planning, orthodontics and endodontics. CBCT
devices are able to produce three-dimensional images of the
oral and maxillofacial region at a high resolution and a rel-
atively low radiation exposure level [1]. CBCT has proven
to be particularly useful for the planning and follow-up of
dental implant placement.

Regarding the post-operative evaluation of implant loca-
tion and integration, there have been various reports on the
use of CBCT or multi-slice CT (MSCT) for verification of
implant position and evaluation of osseointegration and bone
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Fig. 1 PMMA phantom (left)
and insert containing titanium
rods (right)

architecture in the vicinity of the implant [2–4]. Standardiza-
tion and clinical acceptance of peri-implant bone analysis on
CBCT images will be greatly enhanced if it is possible to
accurately delineate the implant on the image. This would
enable the evaluation of bone architecture using a region of
interest (ROI) at a preset distance from the implant’s surface,
taking into account that voxels in the immediate vicinity of
the implant will be affected by metal artefacts.

In CT imaging, segmentation of objects or tissues is com-
monly done using thresholding based on prior knowledge of
the density of the region of interest. However, it has been
shown that grey values cannot be used directly in a quan-
titative way in CBCT imaging for various reasons, namely
excessive X-ray scatter detection, histogram shifting and the
effect of tissues outside the scanned volume [5,6]. Therefore,
it can be expected that segmentation of metal objects cannot
be performed accurately and reproducibly by directly apply-
ing a fixed or adaptive threshold, as the ideal threshold value
will differ between scanners as well as between images from
the same scanner. Furthermore, the image quality of CBCT
images is severely hampered due to the presence of metal
objects (e.g., dental implants, crowns and fillings, orthodon-
tic brackets) causing metal artefacts [7,8]. These artefacts are
typically displayed as dark and bright streaks in the vicinity
of the metal objects,further complicating the segmentation
of implants on CBCT images.

The objective of this study was to develop a fully auto-
mated, robust and accurate method for implant segmentation
on CBCT images and to validate it in vitro using titanium
rods of known size.

Materials and methods

Test object

A head-size cylindrical polymethyl methacrylate (PMMA)
phantom (160 mm diameter, 177 mm height) manufac-
tured by Leeds Test Objects (Boroughbridge, UK) was used
(Fig. 1). The phantom contains seven cylindrical holes, allow-
ing the placement of inserts for image quality analysis [9]. A
specific type of insert (34.5 mm diameter, 20 mm height)
was used in this study. It consists of three titanium rods
of 5.15 ± 0.1 mm, fully embedded into PMMA and posi-
tioned in a straight line with a distance of 10 mm between
the centres (Fig. 2). The size of the rods corresponds to
commonly used wide-diameter dental implants [10]. The
insert was placed in one of the peripheral columns of the
head-size phantom. Empty columns were filled using PMMA
inserts.

The phantom was scanned using 17 CBCT devices: 3D
Accuitomo 170 (J. Morita, Kyoto, Japan), 3D Accuitomo
XYZ image intensifier version (J. Morita), CBMercuRay
(Hitachi Medical, Tokyo, Japan), CRANEX 3D (Sore-
dex, Tuusula, Finland), DentiiScan (NECTEC & MTEC,
National Science and Technology Development Agency,
Pathum Thani, Thailand), GALILEOS Comfort (Sirona Den-
tal Systems, Germany), i-CAT Next Generation (Imaging
Sciences International, Hatfield, PA, USA), Kodak 9000 3D
(Carestream Health, New York, NY, USA), Kodak 9500
(Carestream Health), NewTom VGi (Quantitative Radiol-
ogy, Verona, Italy), Pax-Uni3D (Value Added Technologies,
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Fig. 2 Schematic drawing of insert containing three titanium rods. All
distances are expressed in mm. From SEDENTEXCT IQ phantom user
manual, Leeds Test Objects, Boroughbridge, UK

Yongin, Republic of Korea), Picasso Trio (Value Added
Technologies), ProMax 3D (Planmeca Oy, Helsinki, Fin-
land), SCANORA 3D (Soredex), SCANORA 3Dx (Evalu-
ation Unit, Soredex), SkyView (Cefla Dental Group, Imola,

Italy), Veraviewepocs 3D (J. Morita) and WhiteFox (Acteon
Group, Mérignac, France). The phantom was also scanned
with a multi-slice computed tomography (MSCT) device
(Somatom Sensation 64, Siemens, Erlangen, Germany). Dif-
ferent exposure protocols were used where possible by vary-
ing imaging parameters which are known to affect segmen-
tation accuracy (i.e. FOV size, tube output (mAs), voxel size,
peak voltage). All exposure protocols are shown in Table 1.

Reference values for metal area

To verify the efficacy of the segmentation, the actual area of
the segmented objects was determined based on their known
diameter and the phantom’s tilt (i.e. angle to the z-axis) dur-
ing each scan. The metal rods in the test object all have a
diameter of 5.15 mm with an uncertainty of ± 0.1 mm as
estimated by the manufacturer. If the phantom would be
positioned exactly level, the axial cross section through the
rods would be a circle with an area of 20.8 mm2 ± 0.8 mm2.
However, it was assumed that there was a slight phantom tilt
in some cases, which needed to be corrected for. The axial
cross section through the rods was therefore considered as

Table 1 CBCT and MSCT exposure parameters

FOV (cm) kVp mA Exposure time (s) mAs Voxel size (mm)

CBCT

3D Accuitomo 170 6×6; 17×12 90 5 31 155 0.08; 0.25

3D Accuitomo XYZ 4×3 80 4 18 72 0.125

CBMercuRay 14.8×14.8 80; 120 15 10 150 0.29

Cranex 3D 8×6 90 5 12.6 63 0.2

Dentiiscan 16×3.4; 16×13 90 6 18 108 0.2; 0.4

Galileos Comfort 15×15 85 7 4 28 0.29

I-CAT Next Generation 16×13; 23×16 120 5 3.7; 4.0; 7.3 18.5; 20; 36.5 0.25; 0.3; 0.4

Kodak 9000 3D 5×3.6 70 10 11 110 0.076

Kodak 9500 14.5×8.3; 20×18 90 10 11 110 0.2; 0.3

NewTom VGi 12×8 110 4; 12 10; 15 40; 180 0.16; 0.24

PaX-Uni3D 5×5 85 6 20a N/A 0.2

Picasso Trio 12×7 85 4.8 15; 24a N/A 0.2; 0.3

ProMax 3D 8×8 84 7; 14 3; 12 21; 168 0.16; 0.32

SCANORA 3D 10×7.5 85 8 2.5; 3.8 20; 30 0.2; 0.3

SCANORA 3Dx 10×8; 16.5×14 90 8 6; 4 48; 32 0.15; 0.2

SkyView 17×17 90 6.5 6; 8; 15 39; 52; 98 0.34

Veraviewepocs 3D 8×8 70 3 17 51 0.125

WhiteFox 6×6; 19.8×16.9 105 9 6; 9 54; 81 0.1; 0.3

MSCT

Somatom Sensation 64 Full 120 127; 139 1 127; 139 0.39

A selection of protocols was made based on the available settings of the device and the clinical relevance of the protocol. Other clinical exposure
protocols may be available
FOV field of view
a These values represent the acquisition (scan) time, as the actual exposure time could not be retrieved from the DICOM header and was not shared
by the manufacturer
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Fig. 3 Effect of phantom tilt on cross-sectional area of the titanium
rods. A perfectly vertical rod has a circular axial cross section. A tilt of
the rod results in an elliptical cross section. The small axis of the ellipse
corresponds to the diameter of the rod. The long axis is a function of the
tilt angle θz . A heavily exaggerated tilt angle is shown for the purpose
of visualization. All lines with double arrows denote equal distances

an ellipse rather than a circle, seeing that the cross section
through a cylinder is elliptical for non-zero angles (Fig. 3).
The area A of an ellipse is determined as follows:

A = πab

with a and b as the major and minor radius of the ellipse,
respectively. For a cylindrical section, the minor radius cor-
responds to the radius of the cylinder. To estimate the major
radius, the angle of each rod and implant to the z-axis were
estimated. As measuring the actual angle would require man-
ual oblique reformatting of the image, which can be prone to
error, the angle with the z-axis was measured in the coronal
and sagittal planes separately. In a three-dimensional (xyz)
Cartesian coordinate system, the angle αz of a vector to the
z-axis can be estimated as follows:

tan2 θ z = tan2 θx + tan2 θy

with θx and θy the angle between the x- and y-projections
(i.e. coronal and sagittal slices) of the vector and the z-axis.

The major radius a of the ellipse is then calculated as
follows:

a = r

cos (θ z)

with r the radius of the cylinder.

Segmentation methods

Method 1: Manual thresholding

Manual thresholding was performed for two purposes. First
of all, it was hypothesized that these thresholds would vary
considerable between CBCT models and exposure protocols.
This would indicate that the determination of a fixed, relative
threshold applicable to all CBCT data sets (i.e. a threshold
value varying with the minimum and maximum grey value of
the image, but at a fixed relative position along the grey scale)
would not be feasible. Secondly, manual thresholding served
to determine a minimum threshold value for the automatic
segmentation method’s first step (see following subsection).
All images were manually thresholded by a researcher with
extensive experience in image analysis using ImageJ (US
National Institutes of Health, Bethesda, Maryland, USA).
The grey value range was calculated for each data set as
the absolute difference between the minimum and maximum
grey values within the axial slice, and the position of the
threshold within the grey value range was expressed as a
percentage with 0 and 100 % corresponding to the minimum
and maximum grey values, respectively.

To illustrate the potential variability in manual threshold-
ing due to image display, the phantom scan of the Kodak
9000 3D CBCT was selected. The image was displayed at
two extreme grey value display (i.e. ‘level’) settings and man-
ually thresholded to obtain a segmented area corresponding
to the perceived edge of the titanium rods. Resulting areas
were compared with the true area of the rods’ cross sections
as well as the area obtained from the segmentation method
proposed below.

Method 2: Pre-thresholding, edge detection and particle
counting

All processing and analysis steps were performed within
ImageJ. Two pre-processing steps were performed: standard-
ization of the grey value range and pre-thresholding. Firstly,
all data sets were transformed to 16-bit to standardize the
grey scale. This was done on a slice-by-slice level, ensur-
ing that within each axial slice, the lowest grey value was 0
and the highest 65,535 (216 − 1). Although this grey scale
transformation was not strictly required for further analysis,
it facilitated the application of an overall threshold value and
the creation of a binary mask by avoiding that the thresh-
old value needed to be calculated slice-by-slice. Secondly,
pre-thresholding was performed to eliminate unwanted edges
from the image such as air-PMMA interfaces and artefact–
artefact or artefact–PMMA transitions. The lowest of the
manually determined threshold values for all CBCT data sets
(Tmin) was selected as pre-threshold.
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Fig. 4 Sobel operator for edge enhancement. a Original image of phan-
tom insert with three titanium rods (Veraviewepocs 3D). b Filtered with
Sobel operator. c x-Component of Sobel operator. d y-Component of
Sobel operator

Next, all CBCT data sets were filtered with a Sobel oper-
ator to highlight edges. The operator uses two 3 × 3 convo-
lution kernels (Sx and Sy) which calculate the derivative of
the image in the x- and y-direction:

Sx =
⎡
⎣

+1 0 −1
+2 0 −2
+1 0 −1

⎤
⎦ Sy =

⎡
⎣

+1 +2 +1
0 0 0

−1 −2 −1

⎤
⎦

The two derivates are then combined into one output image
by calculating the square root of the sum of squares. The
output image corresponds to the gradient of the edges in the
original image. Figure 4 shows the x- and y-derivatives and
the output image.

The edge image was then thresholded with a second
threshold value (Tedge) and converted into a binary (i.e.
black and white) mask. As the Sobel operator rearranged
grey values according to the magnitude of the edge in each
voxel, it was expected that a consistent Tedge could be found
for all CBCT data. The optimal Tedge value was iteratively
determined by attempting various thresholds at continuously
smaller intervals and verifying the results.

After thresholding with Tedge, the binary image was sub-
jected to particle counting. Particle counting is an application
of pixel counting, which is commonly used in the detection
and measuring of cells or cellular structures on binary or
thresholded microscopy images. The main purpose of using it
in this context was to discard loose or grouped voxels outside
the area of the titanium rods that were thresholded due to large

local edges. Using this method, the binary image was scanned
slice per slice. When a thresholded pixel was encountered, it
was grouped together with all connected thresholded pixels
within the same axial slice as a particle. The particle was
counted and measured if it passed pre-determined size and
circularity restrictions. Size limits were expressed in mm2,
circularity was defined as follows:

Circularity = 4π × Area

Perimeter2

and ranged between 0 and 1, with 1 corresponding to a per-
fect circle. Varying values for size range and circularity were
investigated, allowing some room for error for both parame-
ters. The size range was initially determined by considering
a maximum allowable deviation of one voxel at each side of
the titanium rod for a low-resolution image (i.e. voxel size
0.4 mm), resulting in a minimum area of 14.9 mm2 and a
maximum of 27.8 mm2. As it was seen that areas were over-
estimated for some data sets, the maximum area was adjusted
to 37 mm2. The minimum circularity was set at 0.5.

All objects that passed particle counting were subse-
quently fitted to an ellipse to smooth out small aberrations. As
initial results showed the segmented areas to be consistently
too large, the ellipses were filled and eroded. Using erosion,
the outer voxels of the segmented region are removed, as all
voxels not fully surrounded by other segmented voxels are
turned into background (i.e. white, in this case). After erod-
ing the segmented ellipses, their area was compared to the
real area of the rods, taking into account the correction for
phantom tilting.

Figures 5 and 6 illustrate the different steps used in the
currently proposed segmentation method.

Results

Method 1: Manual thresholding

A histogram showing the manually determined threshold val-
ues is shown in Fig. 7. Out of 37 included CBCT data sets, 11
data sets from 5 different devices showed a threshold value
close to the maximum grey value. For other data sets, the
threshold was found within a wide range, averaging at 72 %
with a standard deviation of 7 %. The position of the thresh-
old value along the grey scale showed no overall consis-
tency between data sets. Different exposure protocols from
the same CBCT device generally showed similar threshold
values.

Figure 8 illustrates the effect of grey value display on the
perceived area of the titanium rods. A difference of 5 mm2

was seen between segmented areas obtained from the same
image displayed using a low and high ‘level’ setting.
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Fig. 5 Successive steps in segmentation method. a Original CBCT image (WhiteFox). b Pre-thresholded using a Tmin of 60 %. c Filtered using
Sobel operator. d Thresholded using a Tedge of 7.5 %. e Fitted to an ellipse after particle counting. f Filled and eroded

Fig. 6 Flowchart of the different steps involved in the proposed implant
segmentation technique. Thumbnails of the images from Fig. 5 are
added at their respective position along the segmentation flow

Method 2: Pre-thresholding, edge detection and particle
counting

Based on the manually determined thresholds from Fig. 7, a
Tmin value of 60 % was selected as pre-threshold. Figure 9

shows the effect of the pre-thresholding on the edge image.
It can be seen that most of the artefacts, noise and unwanted
edges were removed after pre-thresholding.

The most optimal Tedge value was determined at 7.5 %.
Many data sets showed reasonable flexibility regarding the
choice of Tedge, whereas others displayed a more narrow
range of applicable thresholds. As the segmentation is fully
automated, reproducibility between repeated measurements
was perfect. Segmented areas were consistent between the
10 axial slices that were analysed for each data set, with a
deviation from the mean area averaging at 0.4 %.

For 36 out of 39 data sets, all metal rods were successfully
detected. For the three data sets from the SkyView CBCT
device, some rods were not segmented. A more adequate
segmentation could be obtained for data sets from this model
by adapting the segmentation parameters (i.e. increasing the
area range and threshold value), but areas were still grossly
overestimated. In addition, the increased threshold value was
not applicable for several other CBCT data sets. Therefore,
it was chosen to optimize the segmentation parameters for
all other devices instead.

After correcting for phantom tilting, cross-sectional areas
of the titanium rods were between 20.831 and 20.865 mm2.
For the 36 data sets, which were used to optimize the segmen-
tation algorithm, the smallest error range was obtained by
applying a single erosion step before particle analysis, result-
ing in errors between −2.7 and +14.4 mm2 with a median
of −0.0 mm2. The average of the absolute error values was
2.8 mm2. One device (Picasso Trio) showed a relatively large
overestimation of the metal area for both of its exposure pro-
tocols (+11.5 and +14.4 mm2). The MSCT device (Somatom
SENSATION 64) also showed overestimation for both expo-
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Fig. 7 Variability of manual
thresholding on CBCT images.
Histogram showing the location
of the manually determined
threshold along the grey scale of
the image for 39 data sets, with
100 % corresponding to the
maximum grey value

Fig. 8 Potential implant segmentation error from manual threshold-
ing or delineation. Phantom images from Kodak 9000 3D, cropped to
highlight one of the titanium rods. Left column shows the same rod at
different display (i.e. ‘level’) settings. Right column shows manually
thresholded images of the perceived rod. Areas corresponding to the
manual thresholds are provided. Real area of the rod’s cross section:
20.8 mm2, area obtained from automatic segmentation using the parti-
cle counting method: 21.1 mm2

sure protocols (+10.2 and +3.0 mm2). Out of 36 data sets, 28
showed an absolute error of 3.0 mm2 or lower, with the aver-
age absolute error within this group being 1.1 mm2.

For eleven data sets, which showed a relatively large
degree of oversegmentation, the number of erosions was
increased to verify the potential use of a custom number of
erosions. For these data sets, the number of erosions required
to obtain the most accurate representation of the real area of
the titanium rods was either two (n = 8) or three (n = 3). The
gain in accuracy, expressed as the difference in the deviation
(%) from the true area, resulting from optimizing the number

Fig. 9 Effect of pre-thresholding on edge image. Left column original
edge image. Right column edge images after pre-thresholding (60 %).
Top row GALILEOS Comfort, bottom row i-CAT Next Generation

of erosions ranged between 1 and 62 % with an average of
25 %.

The overall average absolute error was reduced from 2.8
to 1.2 mm2 by using the most optimal number of erosions
for each data set. In addition, all errors were below 3 mm2.
Figure 10 shows the reduction in overall error when using a
custom number of erosions compared with the use of a single
erosion.

The accuracy of the segmentation was re-calculated in
function of diameter of the rods and the voxel size of the
data set. When comparing the diameter of the segmented area
with the actual diameter of the rod, errors ranged between
−0.4 and +1.6 mm. The average absolute deviation from the
real diameter was 0.3 mm. Considering the 34 CBCT data
sets, the deviation was less than 1 mm for all but two and
less then 0.5 mm for all but seven data sets. The linear error
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Fig. 10 Histograms comparing the distribution of absolute errors of
the segmented area for 36 data sets when using a single erosion (top) or
a custom number of erosions (bottom) after particle counting. Between
both histograms, results from 25 out of 36 data sets are unchanged, as
multiple erosions only resulted in improved area estimations for 11 data
sets

regarding the segmented versus real diameter of the rod was
calculated and expressed in voxels. The average deviation
was 1.5 voxels, ranging between 0.0 and 6.3 voxels. Similar
to the errors in the segmented area, this average was affected
by a few data sets with relatively high oversegmentation, as
the deviation was 2.0 voxels or lower for 28 out of 36 data
sets.

Figure 11 demonstrates the feasibility of the proposed seg-
mentation method on a clinical image using the i-CAT Next
Generation CBCT. The image of the selected patient con-
tained two adjacent implants in the upper jaw. Both implants
were detected and delineated with no interference from sur-
rounding tissues.

The total runtime of the algorithm using a medium-end
workstation was 10–20 s, depending on the size of the data
set.

Discussion

In this study, the segmentation of titanium implants on
CBCT images was explored. A fully automated segmenta-
tion algorithm was developed using a combination of pre-

Fig. 11 Applicability of the proposed segmentation method on clinical
data. Left CBCT (i-CAT Next Generation) image of patient with two
adjacent implants in the upper jaw. Image was cropped for the purpose
of visualization. Right result of implant segmentation using particle
counting

thresholding, edge detection and particle counting. The algo-
rithm was optimized and validated in vitro using a head-
size PMMA phantom including cylindrical titanium rods of
known dimensions.

The algorithm showed considerable accuracy for the
majority of the evaluated data sets. When focusing on the
diameter of the segmented area versus the real diameter of
the titanium rods, the segmentation showed submillimeter
accuracy for 34 out of 36 data sets. This can be considered as
clinically acceptable, seeing as the immediate vicinity of a
dental implant is not clinically useful on a CBCT image due
to the presence of different types of metal artefacts [7,8].

Various studies have reported on the segmentation of
structures on CBCT images, mostly focusing on anatomi-
cal structures such as bones, teeth and air cavities [11–13].
Although it has been proven that CBCT data sets allow for
accurately segmentations of regions of varying size, shape
and density, the low contrast-to-noise ratio and lack of stan-
dardized grey values complicate the application of basic
thresholding for automated segmentation.

Although segmentation is mostly performed on anatomi-
cal structures, different studies have focused on the segmenta-
tion of metallic objects in the oral region on MSCT or CBCT
images in the context of metal artefact reduction (MAR) [14–
16]. The available literature on MAR shows that a robust,
automated technique for the delineation of metal objects on
CBCT images has not yet been determined. In particular,
previous segmentation methods with demonstrated efficacy
on MSCT images may not be directly applicable on CBCT
due to its relatively high image noise and the unavailabil-
ity of standardized grey values. Yazdi et al. use a thresh-
old at 90 % of the maximum grey value to segment metallic
dental objects for MAR using data replacement [14]. In a
study on MAR in head and neck CT, Lell et al. also deter-
mine a threshold based on a fixed ratio of the maximum
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grey value [15]. The variation between manually determined
thresholds for the 17 CBCT devices included in this study
shows that this approach, while valid for MSCT, is not fea-
sible for CBCT (Fig. 7). Tohnak et al. presented a segmenta-
tion method for dental CT scans based on a combination of
thresholding and filtering of the binary mask using a disc-
shaped element [16]. Although this approach can lead to
accurate segmentations, the values for the two input para-
meters (threshold and radius) are expected to vary between
CBCT devices.

The segmentation method presented in this study was suc-
cessfully applied to data sets from all but one of the included
CBCT devices. This can be attributed to the particularly poor
image quality of this CBCT model, which exhibited a low
spatial resolution, high noise and excessive artefacts as con-
firmed by several studies [7,17,18]. It should be noted that
a proper segmentation could still be obtained for this device
by increasing the Tedge value.

Although the edge filter redistributed grey values and
facilitated the choice of an appropriate threshold (i.e. Tedge)
value, it was expected that certain data sets would be over-
or under-segmented given the wide variation of grey value
distributions in the original images. Although the original
objective was to develop a fixed segmentation method valid
for all CBCT data sets, it was seen that certain CBCT images
show excessive metal blurring or metal artefacts. To cope
with these extraordinary cases, a straightforward solution
was proposed involving applying multiple erosions (Fig. 10).
The amount of erosions needed would have to be determined
for each type of CBCT specifically and possibly needs to
be verified for each exposure protocol. A one-time ‘calibra-
tion’ using a test object such as the phantom used in this
study would suffice. Given the large amount of CBCT data
already obtained in this study, a list specifying the number
of erosions for each type of CBCT data can be used in con-
cordance with the segmentation algorithm. This list can be
updated as data from other CBCT models becomes available.
The list can serve as a look-up table, and the algorithm can
automatically check the required number of erosions (e.g.
by matching device-specific information from the DICOM
header with this predetermined table).

There are a few limitations to the in vitro set-up used in
this study. A cylindrical PMMA phantom was used, sim-
ilar in size to standard head phantoms for dosimetry and
image quality used in MSCT imaging. Although it provides
an appropriate representation of the size and average den-
sity of an adult human head, it lacks a few defining char-
acteristics. The material surrounding the titanium rods was
homogeneous PMMA, whereas the tissues surrounding the
dental implants consist of trabecular and cortical bone. A
second limitation of the phantom set-up used in this study is
the use of perfectly cylindrical titanium rods with a smooth
surface. Although loose restrictions on circularity could be

used in this study, it remains to be seen how screw threads
and variations in implant shape would affect the accuracy of
the segmentation. It should be noted that, even if the original
CBCT data are sharp enough to displays these slight irregu-
larities of the implant’s surface, there is no clinical purpose
for segmenting them as the immediate vicinity of an implant
on a CBCT image is affected by metal artefacts. Even if the
clinician wishes to evaluate the tissue adjacent to the screw
threads, there would be no sense in performing any kind of
image processing for segmentation as the original data will
suffice for this kind of assessment. Another possible issue
for patient images is the occurrence of other metals or high-
density objects and tissues in the oral cavity. Fillings, crowns,
enamel and other objects could be wrongfully segmented if
they pass the predetermined conditions regarding area and
circularity. Furthermore, they may induce additional arte-
facts which may affect the segmentation of the implants. The
first issue can be solved by imposing stricter area and circu-
larity ranges than those proposed in this study. Furthermore,
when integrating the slice-by-slice segmentations, volumet-
ric restrictions regarding the minimum length or volume of
the segmented objects can be implemented. Regarding the
effect of artefacts, seeing that fillings and crowns are found
at different axial heights compared to implants, it is expected
that the effect of artefacts from objects other than implants
will be minimal as metal artefacts primarily manifest within
the axial plane.

The next step in the validation of the currently developed
segmentation technique is to implement it on patient images
from various CBCT devices to verify its potential for clin-
ical application. An example is shown in Fig. 11, showing
that two implants could be successfully segmented from a
patient’s CBCT image. However, true clinical validation of
the method would require a large patient sample from differ-
ent CBCT models. The exact size of each implant would have
to be known as well to verify the accuracy of the segmenta-
tion. One particular challenge of clinical validation will be to
determine an appropriate size range for the particle counting
step, ensuring that small- and large-diameter implants pass
this criterion.

The prospective application of the developed technique
in clinical practice is two fold. As proposed in the introduc-
tion, it can be used for automated analysis of CBCT images
containing implants, both as a verification of implant posi-
tion and as a first step in peri-implant bone analysis. An
accurate delineation of the implant’s edge would enable the
clinician to check and measure the placement of the implant
in relation to the surrounding bone and other structures such
as the mandibular canal. However, it is not feasible to dis-
tinguish the exact edge of the implant, which can lead to
considerable errors during manual segmentation (Fig. 8).
Automated segmentation could also be used to compare the
actual position with the planned position on the pre-operative
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image, although in that case, a registration of pre- and post-
operative scans may suffice [3]. An important and emerging
application of this segmentation technique would be as a
first step in the analysis of bone architecture after implant
placement using techniques such as morphometric and frac-
tal analysis [19,20]. All of these techniques are highly sen-
sitive to the size and placement of the ROI. Although the
most optimal parameters for bone structure analysis are still
to be determined, an accurate segmentation of the implant
would greatly facilitate the standardization of these tech-
niques.

The second potential application of metal segmentation
is found in image reconstruction. MAR algorithms use a
variety of approaches to reduce or remove metal artefacts
from CT images. Although the literature on MAR is mainly
found in the field of medical CT, a few studies on MAR in
CBCT are available and different manufacturers have imple-
mented a MAR option [21]. A crucial aspect of any MAR
algorithm is to make a distinction between metal and non-
metal in order to properly correct the raw data. Severe over-
or under-segmentation could lead to improper correction of
metal artefacts or the loss of anatomical information in the
image. When used in MAR, the currently proposed technique
will have to be adapted in order to include all possible metals
including fillings, crowns and orthodontic brackets. This can
be done by applying looser restrictions on area and circularity
during particle counting.

In conclusion, a segmentation technique was defined
which can be applied to CBCT data for an accurate and
fully automatic delineation of titanium rods. The segmenta-
tion method is versatile and allows for further customization
towards specific CBCT devices or other metal objects. The
technique was validated in vitro and will be further tested and
refined on actual dental implants using patient data, focusing
specifically on the limitations of the currently used phantom
set-up. In addition, the incorporation of this segmentation
algorithm as a first step in post-operative bone analysis and
MAR will be investigated.
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