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Abstract
Purpose Detection and segmentation of a brain tumor such
as glioblastoma multiforme (GBM) in magnetic resonance
(MR) images are often challenging due to its intrinsically
heterogeneous signal characteristics. A robust segmentation
method for brain tumor MRI scans was developed and tested.
Methods Simple thresholds and statistical methods are unable
to adequately segment the various elements of the GBM, such
as local contrast enhancement, necrosis, and edema. Most
voxel-based methods cannot achieve satisfactory results in
larger data sets, and the methods based on generative or dis-
criminative models have intrinsic limitations during applica-
tion, such as small sample set learning and transfer. A new
method was developed to overcome these challenges. Multi-
modal MR images are segmented into superpixels using algo-
rithms to alleviate the sampling issue and to improve the sam-
ple representativeness. Next, features were extracted from the
superpixels using multi-level Gabor wavelet filters. Based on
the features, a support vector machine (SVM) model and an
affinity metric model for tumors were trained to overcome
the limitations of previous generative models. Based on the
output of the SVM and spatial affinity models, conditional
random fields theory was applied to segment the tumor in
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a maximum a posteriori fashion given the smoothness prior
defined by our affinity model. Finally, labeling noise was
removed using “structural knowledge” such as the symmet-
rical and continuous characteristics of the tumor in spatial
domain.
Results The system was evaluated with 20 GBM cases and the
BraTS challenge data set. Dice coefficients were computed,
and the results were highly consistent with those reported by
Zikic et al. (MICCAI 2012, Lecture notes in computer sci-
ence. vol 7512, pp 369–376, 2012).
Conclusion A brain tumor segmentation method using
model-aware affinity demonstrates comparable performance
with other state-of-the art algorithms.

Keywords Brain tumor segmentation · Model-aware
affinity · SVM · CRF · Superpixels

Introduction

Automatic brain tumor segmentation in magnetic resonance
(MR) images has been an active research area for over a
decade. Correct quantification of brain tumor size and growth
is paramount to accurate prognosis and treatment planning;
yet, manual delineation of brain tumor in dense MR images
is costly and prone to error [1]. However, automatic detec-
tion and quantification of brain tumor are very difficult. MR
images are often corrupted by factors, such as poor radio
frequency (RF) coil uniformity, inhomogeneous static field,
etc. [2]. Although methods for intensity standardization and
inhomogeneity correction are widely known [2–4], valuable
information is still lost in this process [4]. Furthermore, brain
tumors are highly varied in size, shape, and appearance [5],
as shown in Fig. 1. It is, for instance, difficult or implausible
to segment a GBM by a simple threshold [6].
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Fig. 1 Examples of tumor in three slices from different samples (T1CE channel)

Voxel-based methods have seen wide use for brain tumor
segmentation. Philips et al. [7] give an early proof-of-concept
fuzzy clustering by operating on the raw multi-sequence data.
Clark et al. [8] integrate knowledge-based techniques and
multi-spectral histogram analysis. Fletcher-Heath et al. [9]
take a knowledge-based fuzzy clustering approach followed
by 3D-connected components to build the tumor shape.
Prastawa et al. [6] also present a knowledge-based detec-
tion algorithm that incorporates tumor-specific learned voxel
intensity distributions. Voxel-based statistical classification
methods are also used [10–12]. However, these methods are
limited by their high degree of locality, since they do not take
global context into account. As a result, their performance on
larger data sets remains unsatisfactory.

Methods based on generative models have also been
applied to tumor segmentation. Guillemaud et al. and Wells
III et al. use a Gaussian Mixture Model (GMM) method
[13,14]. Corso et al. [15] present a brain tumor multi-level
detection algorithm with integrated Bayesian model classi-
fication. The statistical model is also a GMM. Voxel-based
generative models have intrinsic limitations: It is hard to con-
struct an accurate model when the number of samples is insuf-
ficient, and spatial information is not taken into account, for
all the data points are considered to be independent samples
drawn from the sample population.

Recent advances in machine learning have had an impact
in brain tumor segmentation: Methods based on discrimina-
tive classifiers have become a strong emphasis for tumor seg-
mentation. For example, Zhou et al. [16] use SVMs, Xuan et
al. [17] and Corso et al. [18] use the Adaboost algorithm [19],
Dettling et al. [20] adopt the random forest algorithm [21],
and Zikic et al. [22] use decision forests based on models inte-
grating context-aware spatial features and GMM. In practice,
however, it remains a challenge to learn a single, satisfactory
classifier. For example, if every single pixel is considered
as a training sample for the classifier, the amount of data
in the training set is too huge to be applied directly. There-
fore, how one should sample and train becomes a key prob-
lem, and it strongly impacts the classifier performance [23].

Note also that most GBM brain tumors are heterogeneous and
that the learning problem is inherently imbalanced (most data
are still normal brain) [24], both of which further increase the
difficulty of the problem.

To overcome the limitations of strictly voxel-based meth-
ods, Markov and conditional random fields (MRFs) have also
been applied to brain tumor segmentation [25]. They allow
the classification of one voxel to depend on the labels (the
classification) of neighboring voxels. Zhang et al. [26] real-
ize segmentation through a hidden MRF and expectation–
maximization (EM) algorithm. Corso et al. [18] use a hierar-
chical minimization algorithm to segment voxels in a condi-
tional random field (CRF) framework with features learned
by Adaboost. Lee et al. [27] use a context-sensitive dis-
criminative random fields model. They incorporate a set
of knowledge-based features coupled with support vector
machines in a voxel-level CRF framework to perform the seg-
mentation and classification. The CRF-based methods have
summarily outperformed earlier voxel classifier-based meth-
ods. However, to the best of our knowledge, all previous
CRF-based methods for brain tumor detection and segmen-
tation have a weak model on the binary potential relating to
pairs of labels: Most use the Ising or Potts model, and Lee et
al. [27] use a feature difference model. These simple affinity
models fail to capture the potential rich relational features
that can be modeled on neighboring pixels.

In this paper, we improve on the CRF-based methods to
incorporate a model-aware affinity metric: The binary affin-
ity relating two neighboring pixels is based on the likelihood
of the two pixels being a particular tissue type, and hence,
it varies as a function of the two pixels’ labels. The model-
aware affinity was first proposed in our earlier work [15], but
not used within the context of the CRF framework. Based
on the affinity model, the relationship between neighboring
nodes becomes more explicit and interpretable, for they are
learned from the training set directly. In addition to adopting
the model-aware affinity on the CRF edges, we also incor-
porate a superpixel-level affinity function to regularize the
features over many pixels.
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We use a state-of-the-art superpixel oversegmentation
algorithm (graph-based image segmentation [28]) to seg-
ment the multi-channel MR images, alleviating the sampling
issue and improving the sample representativeness. Although
the superpixel oversegmentation algorithm can be applied in
three dimensions volumetrically [29], we strictly use two-
dimensional segmentation in this paper, to account for data
sets with limited resolution in one or more dimensions. Then,
multi-level Gabor wavelet filters are adopted to extract fea-
tures from the superpixels. Based on the features, an SVM
classifier and a model-aware affinity model are constructed
and trained for tumors. With the output of the SVM (scores),
we realize the tumor detection and segmentation with a CRF
that uses a model-aware affinity for the binary term. Finally,
we incorporate a set of denoising routines on the CRF out-
put based on the structural properties of the brain and the
tumor. Our extensive experiments demonstrate that the pro-
posed method systematically outperforms both the original
model-aware affinity method due to Corso et al. [15] and the
CRF method of Lee et al. [27].

Mathematical background

This section introduces the model-aware affinity model and
the CRF model for brain tumor detection and segmentation.
The methods for parameter learning of these models are also
given.

Model-aware affinity

The input data induce a graph with each node in the graph
denoted u, ν ∈ S where S is the full spatial coordinate system
(the lattice) and sμ is the set of properties (intensity or tex-
ture) at node μ. In a GB representation for segmentation, we
consider graph nodes for each voxel in the image and anno-
tated graph edges in which the weight represents a so-called
affinity of two neighboring nodes. Intuitively, affinity is the
preference of the two nodes to be grouped together into a sin-
gle segment; it is commonly but does not need to be defined
directly by pixel feature similarity. The affinity is denoted by
ωμν for connected nodes (i.e., μ and ν are neighbors in the
graph). We consider affinity functions of the following form
as in [15]:

ωμν = exp(−D(sμ, sν; θ)), (1)

In this work, the GBM MR image data set we use has four
channels: T1 weighted pre-contrast (T1) and post-contrast
(T1CE), FLAIR and T2 weighted. D is a non-negative dis-
tance measure, and θ = {θ1, θ2, θ3, θ4} is the set of learned
weights for the four channels.

There are three kinds of “objects” or classes of tissue in the
MR images at hand: normal brain tissue, tumor, and edema.

The classes are denoted as random variables m : mμ, mν are
the model labels at nodes μ and ν, respectively. We define a
model-aware affinity function (see [15] for a full derivation
of the model-aware affinity, which is based on a Bayesian
interpretation of the affinity as a binary random variable):

ωμν(mμ, mν) = exp(−D(sμ, sv; θ [mμ, mν])). (2)

In order to promote efficient calculation, we use the following
functional form of D(·):

ωμν(mμ, mν) = exp

(
−

∑
c

θc
mμmν

|sc
μ − sc

ν |
)

, (3)

where superscript c indicates vector θ at channel c. The
class-dependent coefficients are learned from the labeled
training data by constrained optimization. Intuitively, the
affinity between two nodes of same class should be near 1,
and near 0 for different classes. Thus, we learn the coeffi-
cients by optimizing the following functions under the con-
straint that the coefficients sum to one for each class pair:∑
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mμ,mν
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(4)

To learn the parameters and obtain the optimal coefficients
for each class pair, we first set an initial parameter based
on stochastic sampling. Then, we adopt a steepest coordi-
nate descent procedure to search for the best coefficients.
The gradient of the function is estimated numerically at each
iteration, and the single coordinate of optimal modification
is pursued. When no further improvements can be made, the
iterative procedure is terminated. Convergence to some local
optimal point is guaranteed.

A new image Imap, which we call the affinity map of the
tumor, can be formed using the parameter θ and the four
channel original images based on the affinity function in Eq.
(1). In order to avoid decay in our future steps, we redefine a
new affinity relation between two nodes μ and node ν based
on an affinity map of the tumor Imap.

w(μ, ν) = 1 − |Imap(μ) − Imap(ν)|
max

(
Imap

) . (5)

Figure 2 is an example of an affinity map of the tumor. Here,
sμ is a 4D vector whose values come from the intensities in
the 4-channel image as in [15]. We notice that although there
is high noise, the regions of the tumor have high intensity,
implying the pixels in the regions have strong similarity and
hence have a preference to be grouped (note this is the tumor
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(f)

(a) (b) (c)

(d) (e)

Fig. 2 An example of the affinity map of the tumor class. [The yellow region is edema, and the red region is tumor in image (e)]. a T1, b T1CE,
c T2, d Flair, e the ground truth, f the affinity map of the tumor

class-specific affinity map), which is very important in our
future process.

Conditional random fields

CRFs are a discriminatively trained MRFs. The underlying
idea is that of defining a conditional probability distribution
over label variables given a particular observation, rather than
a joint distribution over both labels and observations. This
subtle difference alleviates the need to model the distribu-
tion over the observations, which is important in medical
imaging applications since tumors have complex shape and
intensity distributions that are not easy to model and may
not be appropriately modeled in factorized form. CRFs have
been used to some degree in brain tumor imaging [27,30].

We use a standard pairwise CRF model:

p(m|x) = 1

Z
exp

⎛
⎝∑

μ∈S

Au(mμ, xμ)

+
∑
μ∈S

∑
ν∈Nμ

Iμν(mμ, mν, xμ)

⎞
⎠ , (6)

where Aμ is the association (observation matching) poten-
tial for modeling dependencies between the class label mμ

and the set of all observations μ. xμ is the real-valued SVM

response on the pixel (or node) μ. Nμ is the neighborhood
of pixels μ (a subset of the full spatial coordinate system S
from above). Iμν is the interaction (local-consistency) poten-
tial for modeling dependencies between the levels of neigh-
boring elements. Z is the partition function: a normalization
coefficient (sums over possible labels).

While Eq. (6) holds for a set of multiple labels mμ, herein,
we only use it for 2 classes with mμ = 1 and mμ = −1. We
use an SVM to represent the association potential [27,31] (we
realize many representations are plausible—see the related
work discussed in the Introduction Section—but we choose
the SVM based on its generalization characteristics):

Aμ(mμ, xμ) = 1

1 + exp(B × xμ + C)
, (7)

where the parameters B and C are estimated from the training
data represented as pairs 〈xμ, tμ〉, and tμ denotes a related
probability that mμ = 1, represented as the relaxed proba-
bilities: tu = N++1

N++2 if mμ = 1, and tu = 1
N−+2 if mμ = −1,

where N+ and N− are the number of positive and negative
class instances.

Platt et al. [31] use a Levenberg–Marquardt approach that
tries setting C to guarantee that the Hessian approximation
is invertible. Using these training instances, we can solve
the following optimization problem to estimate parameters
B and C (see [27] for a detailed solution),
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min −
∑

xμ∈�

[
tμ(B × xμ + C) + log(1 + exp(−B × xμ − C))

]
.

(8)

� denotes the set of training instances.
We adopt the following pairwise local-consistency poten-

tial:

Iμν(mμ, mν, xμ) = mμmν(γ φμν(xμ)). (9)

The coefficient φμν(xμ) expresses the relation for sites μ and
ν. The specification of this functional coefficient is one main
advantage of our paper: The inhomogeneity characteristics
of MR images and tumor images, specifically, are high. It is,
hence, improper to define φμν(xμ) as constant function, as
has been defined in early methods using MRF (or CRF) in MR
images for brain tumor detection, such as an Ising model in
[30]. Lee et al. [27] define φμν(xμ) as the pixel-level feature
vector difference, to better reflect the actual input to the SVM
classifiers. Their setup remains unable to capture the full vari-
ation of local consistency, as we show in our experiments.
Since two neighboring pixels’ feature vectors are extracted
from two highly overlapping regions, their local-consistency
potential φμν(xμ) has little effect on the random field model.
Furthermore, their model is subject to and tends to propa-
gate the noise introduced at the feature extraction level, as
opposed to the typical settings where the local-consistency
potential acts as contextual priors that help to overcome the
noise introduced in the feature extraction and classifier train-
ing process.

In contrast, we use a generative model (model-aware affin-
ity) to represent the relation between neighboring pixels,
which is more explicit and interpretable, for it is learned
from the training set directly. Equation (5) is used to cal-
culate φμν(xμ). Thus, the spatial affinity model has been
directly integrated into the CRF, and our results demonstrate
the importance of such an adaptive binary term in the CRF
over the earlier, simpler, fixed terms or classifier-based terms.

The coefficient γ is the vector of local-consistency para-
meters to be learned. We estimate it from the l training pixels

from each of the K training images using pseudo-likelihood
(see [27] for the full solution):

γ̂ = arg max
γ

⎧⎨
⎩

K∑
k=1

∑
μ∈�

{
p(mμ|xμ)n

+
∑
ν∈Nμ

mμmν(γ φμν(xμ)) − log
(

zk
μ

)⎫⎬
⎭ − 1

2τ
γ Tγ,

(10)

where zk
μ is a partition function for each site μ in image

k and τ is a regularizing constant. Keeping the observation
matching constant, the optimal local-consistency parameters
γ can be found by gradient descent.

Our approach for brain tumor segmentation

Our framework for brain tumor detection is shown in
Fig. 3. For the training data, the multi-channel MR images
are segmented into many superpixels using [28]. Then, the
features are extracted from the superpixels using multi-level
Gabor wavelet filters. Based on the features and labels of the
superpixels, the SVM model is trained and an affinity model
for tumor is learned from the training data set. The parame-
ters of the CRF are also computed in the stage. For testing
data, the output of the SVM and the spatial affinity model
is integrated into the CRFs. After the brain tumors are seg-
mented by the CRF, false positives are effectively removed in
a structural denoising process. In the subsequent subsections,
we explain these system parts in detail.

Superpixel segmentation

Many existing algorithms in medical imaging use pixels as
the underlying representation [5,6,11,12]. Pixels, however,
are not a natural representation of visual scenes. They are
rather an “artifact” of the MR imaging process, similarly
as in natural images [32]. Superpixels—regions in an over-
segmentation of the image—would be more natural and pre-

Fig. 3 Framework of brain tumor detection
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(a) slice 11 (b) slice 12 (c) slice 13

(d) segmentation for (a) (e) segmentation for (b) (f) segmentation for (c)

Fig. 4 An example segmentation based on GB algorithm. For the
visual convenience, we use a pseudocolor rendering of each MR slice.
The pseudocolor is composed of channel T1CE, T2, and Flair. d–f are

the segmentation results of a, b, and d, where each superpixel is ran-
domly and uniquely colored

sumably lead to more efficient processing. Superpixels have
many desirable properties:

(a) Computational efficiency: Superpixels reduce the com-
plexity of images from hundreds of thousands of pixels
to only a few hundred superpixels.

(b) Representational efficiency: Pairwise constraints bet-
ween superpixels, while only for adjacent pixels on the
pixel grid, can now model much longer-range interac-
tions between superpixels.

(c) The superpixels are perceptually meaningful: Each
superpixel is a perceptually consistent unit; all pixels
in a superpixel are most likely uniform or at least homo-
geneous.

(d) Completeness: Because superpixels result from an over-
segmentation, many structures in the image are con-
served. There is little loss in moving from the pixel grid
to the superpixel map.

There are many methods for obtaining superpixels. We adopt
the graph-based (GB) algorithm because it has good affinity
in the superpixels. Although the shape of its superpixels is
slightly irregular, it has better precision than the other super-
pixels method in the recent benchmark study [28,29]. The
basic idea of the algorithm is based on converting the image
into a graph and then manipulating the graph to segment the

image. In the process of converting the image into a graph,
each pixel has a corresponding vertex and each pixel vertex
has an edge to its neighbors (inherited from the pixel lattice).
The weight of edges between pixel vertices is determined by
a function that promotes homogeneity, and the graph is seg-
mented to minimize the energy function defined by the edge
weights. The algorithm can be applied for ND images.

Figure 4 is an example segmentation based on the GB
superpixels algorithm. We apply the algorithm to take the
MR image as a set of 2D images with 4 channels (recall our
transverse resolution is too low to consider it as a true 3D
volume). Every pixel is a 4D vector that contains the value
of the corresponding position from images T1, T1CE, Flair,
and T2. The four channel values are normalized to a common
scale. Then, we can apply the GB superpixels algorithm to
obtain superpixel regions. Image (a), (b), and (c) are three
neighboring slices (slice numbers 11, 12, and 13, respec-
tively) from the B1 data set (the data set is explained later in
section “Experiments”). From the figure, we can see that the
superpixels effectively represent homogeneous regions in the
MR images without violating the tumor/edema boundaries.

Feature extraction

We use a Gabor wavelet transform to extract features [33,34]
of the brain tumor. Among various wavelet bases, Gabor

123



Int J CARS (2014) 9:241–253 247

functions provide the optimal resolution in both the time (spa-
tial) and frequency domains, and the Gabor wavelet trans-
form is the preferred basis to extract local features for several
reasons:

(a) Biological motivation: The simple cells of the visual cor-
tex of mammalian brains are best modeled as a family
of self-similar 2D Gabor wavelets [34].

(b) Mathematical and empirical motivation: The Gabor
wavelet transform has both the multi-resolution and
multi-orientation properties and is optimal for measur-
ing local spatial frequencies. It has been found to yield
a distortion tolerance space for pattern recognition tasks
[34].

In the spatial domain, a 2D Gabor filter is a Gaussian kernel
function modulated by a sinusoidal plane wave as follows
(we apply the superpixel segmentation at each slice sepa-
rately due to limited transverse resolution and hence apply
the feature extraction in the planes too):

G(x, y) = exp

(
− x2 + y2

2σ 2

)
exp( jω(x cos θ + y sin θ))

(11)

where σ is the standard deviation of the Gaussian function
in the x- and y-directions, and jω denotes the spatial fre-
quency. A family of Gabor kernels can be obtained from
Eq. (11) by selecting different center frequencies and orien-
tations. These kernels are used to extract features from an
image.

Due to the uncertain brain tumor size, we use 5 scales of
Gabor wavelets in the experiments, each with 8 directions,
as shown in Fig. 5. After filtering by the Gabor wavelet, we
calculate the mean value of response for every superpixel, and
by adding the mean intensity (4 channels), each superpixel
has 164 (5 × 8 × 4 + 4) features.

Fig. 5 Gabor filters: 5 scales with 8 directions

Model formulation, solution, and application

SVM training and application

Due to the advantages of superpixels, it is possible to train
a classifier without paying excessive attention to data sam-
pling issues while obtaining comparatively better precision
(avoiding improper sampling) and less calculation (decreas-
ing the amount of data) than training the classifier directly
on pixel samples.

For training, every superpixel is labeled based on the
ground truth. We use the labels and features of the super-
pixels to train the SVM model, but the common challenge
of data imbalance is present [24]. Most of the ground truth
data are non-tumor; only a small amount is tumor. We use
hard negative mining to handle this issue. A “hard negative”
is a false positive detection, meaning that a classifier marked
a non-tumor sample as tumor. The SVM’s learning can be
refined by iteratively incorporating these hard negatives into
the training set and retraining the SVM.

The hard negative mining proceeds as follows. The SVM
is first trained on random negative samples, establishing a
baseline. Then, the trained SVM is evaluated on a set of
strictly non-tumor data, so that any positives it returns are
guaranteed to be false positives. A subset of the collected
false positives is then incorporated into the negative training
samples, and the SVM is retrained. This approach improves
the SVM at each iteration, since difficult samples that it has
misclassified are disambiguated and then explicitly trained
into it. In practice on our data, the SVM’s overall accuracy
is improved by 1 %. Here, overall accuracy of SVM is (Tp +
Tn)/

(
Tp + Tn + Fn + Fp

)
, Tp is the true positive and Tn is

the true negative, Fp is the false positive and Fn is the false
negative.

CRF training and application

The results of the SVM are based on superpixels. Although
minor, it is inevitable there is some precision loss based on
superpixels. In order to recover the loss, we use the CRF
model based on pixel affinity. We use Eq. (4) to study the
spatial relation between the pixels. Equation (8) is applied
to acquire the transform parameters from the response of
SVM to the association potential. Equation (10) is applied to
confirm the coefficient of CRFs.

For testing data, we use Eqs. (5) and (7) to compute the
association potential of pixels and associate it with the rel-
evant edges in the CRF (the SVM’s scores of the pixels are
assigned the value of superpixel to which they belong). The
CRF is based on a standard pixel framework. For every pixel,
the relation between it and its neighbor pixels is calculated
by Eq. (9). In this paper, we strictly use a 2D CRF because
the transverse resolution of our data is low, but we note that
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a direct extension of the approach to a 3D CRF is plausi-
ble. We, hence, adopt a 4-pixel neighbor. For convenience
of application, we express the relations for all pixels using
two edge maps. One is the horizontal relation map, the other
is vertical relation map. Then, the CRF is applied to smooth
and segment the tumor regions [35–39].

Structural denoising

The candidate regions (the results of output CRF) may con-
tain false positive pixels. We remove some false positive pix-
els according to structural properties of the brain and the
tumor: symmetry and continuity of the brain/tumor. Sim-
ilar knowledge-based routines have been proposed in pre-
vious brain tumor research [6,8,12], but primarily as the
main tumor segmentation methodology and not as a struc-
tural denoising post-processing step.

Denoising based on symmetrical characteristic

The position of most brain tumors is random. Most of them
are not symmetrical if they are measured from the axis of
the brain [40], but most normal tissues are approximately
symmetrical about the axis of the brain. Therefore, we can
use the symmetrical characteristic to remove some false pos-
itives. The midline axis of the brain is very important, even
in the case of midline shift from brain tumor [6].

We propose an algorithm that can effectively detect the
symmetry plane in our data. The algorithm is based on the
theory of dynamics and assumes the symmetry axis is a rigid
body with the minimal value of inertia. According to the
theory of dynamics, the moment of inertia is defined as: I =∑

r2dm.
In the image, every pixel is taken as a small rigid object.

If the function of symmetry axis is y = kx + b, then we can
get a moment of inertia of a pixel as Ii = ∑N

i=1 αD2
i , where

Di = |yi −kxi −b|√
1+k2 , α is a constant set to 1. Now, we solve the

parameter k and b according to the condition of minimizing
the value Ii ,

⎧⎨
⎩

∂ Ii
∂b = 1

1+k2

∑N
i=1 (b + kxi − yi ) = 0

∂ Ii
∂k =

[∑N
i=1 (b+kxi −yi )

]
(1+k2)2

∑N
i=1 (xi − kb + kyi )=0

. (12)

We get k1,2 = −N±√
4M2+N 2

2M , in which we choose an
appropriate value for k according to the prior information,
where M = ∑N

i=1 (xi − X̄)(yi − Ȳ ), N = ∑N
i=1(xi − X̄)2

(yi − Ȳ )2, X̄ = ∑N
i=1 xi/N , Ȳ = ∑N

i=1 yi/N , b = Ȳ − k X̄ .
After getting the symmetry axis, we make a symmetri-

cal transform about the symmetry axis for the pixels in the
image. If the coordinate of a pixel in image is (x0, y0), the

Fig. 6 Flow diagram for the continuity-based denoising filter

symmetrical coordinate of the pixels is (x1, y1):{
x1 = 2xc − x0

y1 = 2yc − y0
, (13)

where x ′ = x0+(y0−b)k
k2+1

, and y′ = kxc +b. Since it is unlikely
that two symmetrical points (x0, y0) and (x1, y1) are both
classified as tumor, we treat such occurrences as noise.

Denoising based on continuity

Tumors, unlike random noise, occupy a continuous volume
in the MR images. A 3D CRF could remove the discontinu-
ous noise in transverse plane if consistency in z-direction is
ensured at some point. When the transverse resolution is too
low—as in our data—we design a continuity filter to remove
the noise, as shown in Fig. 6. If a tumor is detected in an
image, we expect to find tumor in the previous or next slice
accordingly.

The image is dilated first, and then, it is intersected with
the two adjacent slices (previous and next). Finally, we make
a decision to remove the false positive regions: If both results
are zero, the region is treated as noise; otherwise, the region
is preserved.

Experiments

For the ease of comparison, we first use the same data set
as in [15], and the same twofold cross-validation testing
approach. The data set consists of 20 expert-annotated GBM
studies. The data set is pre-processed through the follow-
ing pipeline: (1) spatial registration, (2) noise removal, (3)
skull removal, and (4) intensity standardization. Following
[15], the data are split into two groups, ‘A’ and ‘B’, and each
experiment is performed on twofold cross-validation (first
train on ‘A’ and test on ‘B’ and then train on ‘B’ and test on
‘A’).

The experiments that we have conducted evaluate both
the various aspects of our method as well as make a thor-
ough comparison with the state of the art. In the results,
we denote the method of Corso et al. [15] as “Model-
Based SWA” (SWA, segmentation by weighted aggrega-
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Table 1 Comparison of SVM’s
accuracy of brain tumor (%)

In here, “OA” is overall
accuracy score, “J” is Jaccard
score, “P” is precision score,
and “R” is recall score
Bold values indicate the best
results

Method based on pixels Method based on superpixels

OA J P R OA J P R

Train data (set A) 95.8 45.2 97.3 45.8 99.4 78.7 88.5 87.7

Test data (set B) 96.6 38.0 88.1 40.1 97.5 52.3 66.6 70.9

Train data (set B) 97.0 51.9 97.7 52.6 99.5 75.8 91.4 81.6

Test data (set A) 95.0 40.1 88.3 42.3 97.4 46.3 58.5 69.0

tion algorithm), the CRF method of Lee et al. [27] as
“SVRF”, the SVM classifier with a simple Ising model as
“SVM”, and our proposal CRF with SVM and model-aware
affinity as “SVM + AM”. SVM based on both superpix-
els and AM (affinity metric) are the main novelties in this
paper.

Superpixels versus pixels

Our first experiment directly compares the use of superpixels
against the raw pixels, with the SVM classifier. The compar-
ison of the SVM’s accuracy using methods based on pixels
and superpixels is shown in Table 1. Here, overall accuracy of
SVM is (Tp + Tn)/(Tp + Tn + Fn + Fp), the Jaccard score
is Tp/(Tp + Fp + Fn), the precision score is Tp/(Tp + Fn),
the recall score is Tp/(Tp + Fp), Tp is the true positive and
Tn is the true negative, and Fp is the false positive and Fn is
the false negative.

From Table 1, we find that methods using superpixels have
better overall accuracy. It is easy to explain: There is noise
in the MR images. If we use an SVM based on pixels, the
training data are too large to be applied directly, so it must be
sampled to train a model. Both of these two reasons cause a
loss of overall accuracy. By adopting the superpixels, much of
this pixel noise is smoothed during the segmentation of super-
pixels, and the number of training samples is also decreased.
We can gather more effective samples to train the model, and
it is even possible to load all the training samples (for this
data set), therefore, yielding models with higher precision. A
point worth mentioning is that the size of superpixels must be
limited (i.e., one can over-segment too much). In the paper,
the merging threshold is set to 5.

We also find the results of SVM based on superpixels
have better performance than those based on pixels in the
Jaccard score and the recall score. The method based on
superpixels achieves a better balance between precision and
recall than that based on pixels. This attribute is vital to the
upcoming steps. Although pixel-based SVMs have good pre-
cision, the low recall due to the excessive amount of noise
causes irreversible errors on the final output. Although the
CRF model can smooth noise, if the noise is high, it hardly
can be removed.

Evaluation of performance against state of the art

Figure 7 shows 6 slices segmentation from the test set, where
each column shows a different test case. The first row is the
pseudocolor displays of slices (pseudocolor is composed of
channel T1CE, T2, and Flair, for the MR image in channel T1
is relatively smooth). The second row is the ground truth. In
here, the red regions indicate edema and the yellow regions
indicate tumor. The process of edema segmentation is same as
that of brain tumor. The third row is the result of Ising model
using SVM based on superpixels. The fourth row is the output
of SVRF (Lee et al. in [27]), and the fifth row is the output
from our algorithm (SVM + AM). For fair comparison, the
features in method of SVRF are the same as our method.
The affinity method of our algorithm is same as that of SWA
method.

We can find that the results of our algorithm are closer
to ground truth than those of the other two methods, in par-
ticular the detail along the boundaries, because the spatial
information of tumor is integrated.

In Table 2, we show the Jaccard results taking a weighted
averaged over the set. The results demonstrate that our algo-
rithm has the best performance. Twofold cross-validation
also confirms the conclusion. Notice the positive correla-
tion of stronger spatial prior models with the SVM algo-
rithm’s performance. The simple spatial prior model used in
the SVRF, which does not taken into account whether two
pixels belong to the same tumor region or not, improves the
SVM performance by 8 %. Our spatial prior model, which
penalizes the spatial discontinuity using model-level con-
straints, improves the SVM result by 12 % while improving
the SVRF result by 4 %.

In Table 3, we give quantitative Jaccard scores for specific
cases B1–B10 as in [15]. It is worth noting that despite our
overall better performance, the simple GMM model used in
[15] yields slightly better results on the individual samples
B1–B4. This is due to the tumor region in those samples
better satisfying the GMM assumption, therefore allowing a
simpler generative model to outperform our more complex
discriminative model.

From Tables 2 and 3, we also show that our algorithm
has better performance than that in [15,27] for edema. The
process for edema, in our method, is the same as that of tumor.
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B1- slice 11 B2-slice 8 B3-slice 13 B5-slice 12 B6-slice17

Ground truth 

SVM 

SVRF 

Input 

SVM+AM 

B8-slice 11

Fig. 7 Results of some slices from the test set. See the description in text

Table 2 Statistics of the result
of (Jaccard %)

Bold values indicate the best
results

Algorithm Tumor Edema

Twofold Twofold
cross-validation cross-validation

Train Test Train Test Train Test Train Test

Model-Based SWA 69 69 68 55 63 62 65 54

SVM 80 55 79 48 65 58 66 57

SVRF 81 64 80 56 68 61 68 62

SVM+AM 85 73 87 60 71 66 72 64

The segmentation is done based on a CRF model for edema,
including the affinity model and SVM for edema.

Importance of structural denoising

We study the proposed structural denoising for removing
false positives in a post-processing step. Figure 8 is an exam-
ple of denoising based on the symmetrical characteristics.
Image (a) and (b) are the pseudocolor displays of slices 7
and 8 form B9 test set (pseudocolor is composed of chan-
nel T1CE, T2 and Flair, for the MR image in channel T1
is relatively smooth). Image (c) and (d) are the outputs of
slice 7 and 8 based on CRF. The two slices are normal tissue
with no trace of edema or tumor. So the yellow regions in

image (c) and (d) are both false positives for wrongly taking
the symmetrical normal tissue as tumor. This false positive
is effectively removed with our symmetrical characteristic-
based noise removal process.

The method of denoising based on continuity is also effec-
tive. Some isolated noise is removed in 8 slices according
to our statistics. As with many denoising algorithms, the
improvement to the Jaccard score is minimal; yet, the quali-
tative improvement is easily noticeable to the human.

Failure modes

As shown in Table 3, our algorithm cannot get a satisfactory
result in B7 test set, and the Jaccard score is worse than that
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Table 3 Quantitative Jaccard
score of Algorithm for tumor
and edema (Jaccard %)

Bold values indicate the best
results

Data Tumor Edema

Model-
Based SWA

SVM SVRF SVM + AM Model-
Based SWA

SVM SVRF SVM + AM

B1 58 32 45 50 73 59 63 70

B2 73 62 57 64 65 56 58 64

B3 80 73 72 76 73 60 59 68

B4 78 49 69 67 83 75 76 84

B5 72 86 82 87 66 64 79 84

B6 37 83 84 85 13 25 47 53

B7 27 24 29 35 33 59 81 66

B8 85 50 82 86 73 70 71 80

B9 72 50 65 71 75 45 79 67

B10 82 89 89 91 66 65 80 83

(a) Input of Slice 7

(pseudocolor display)

(b) Input of slice 8

(pseudocolor display)

(c) Output of

CRF(SVM+AM)

for slice 7

(d) Output of

CRF(SVM+AM)

for slice 8

(e) Output of

denoising for

slice 7 and 8

Fig. 8 An Example of denoising based on symmetrical characteristic.
a and b are two continuous slices from a normal brain MR image, while
c and d are false positives detections from the CRF step. Such types of

false positive are effectively removed with our noise removal process
based on symmetrical characteristic

of the SWA algorithm in B1, B2, B3, and B4. Our observa-
tion is that the features we use, despite an improvement from
the former methods, are still not optimal for the problem and
cannot fully capture the diverse and complicated nature of
the tumors. In order to overcome the problem in the future,
we expect more effective features would improve the perfor-
mance of the classifier. Furthermore, spatial features based
on 3D superpixels can also be applied if the data set has have
enough precision in the transverse plane.

Results on data sets of BraTS challenge

We also apply our approach on the data sets in the BraTS
challenge (http://www2.imm.dtu.dk/projects/BRATS2012).
The data sets contain separate high-grade (HG) and low-
grade (LG) data sets. This results in 4 sets (Real-HG, Real-
LG, Synth-HG, Synth-LG).

For convenience of comparison, the process testing our
approach is same as that of Zikic et al. [41], which is one
of the best performing methods in the challenge. For the real
data sets, leave-one-out cross-validation is used: For each test
image, the training is performed on all other images from the

data set, excluding the test image itself. For the synthetic
images, we perform a leave-five-out cross-validation.

Our segmentation run times is about 30 min per patient
(including time for feature extraction). The training of one
data set takes approximately one and a half hours on a sin-
gle desktop PC (including time of two SVM training pro-
cedures for tumor and edema, not including time of feature
extraction). We summarize the results for the Dice score in
Table 1, and the Dice score can be calculated as follows:
Dice = 2 × Jaccard/(1 + Jaccard).

From the Table 4, our method achieves a satisfactory
result. With respect to live performance results, our scores
are slightly under-performing although not significantly.

Conclusion

Our paper brings together two recent trends in the brain tumor
segmentation literature: (1) model-aware similarity and affin-
ity calculations with (2) CRF models with SVM-based evi-
dence terms. In doing so, we make three main contributions.
We use superpixel-based appearance models to reduce com-
putational cost, improve spatial smoothness, and solve the
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Table 4 Evaluation summary
Method Dice score High-grade (real) Low-grade (real) High-grade (synth) Low-grade (synth)

Edema Tumor Edema Tumor Edema Tumor Edema Tumor

SVM + AM Mean 0.61 0.62 0.43 0.59 0.58 0.86 0.47 0.61

SD 0.18 0.12 0.21 0.16 0.30 0.05 0.27 0.25

Zikic et al. Mean 0.70 0.71 0.44 0.62 0.65 0.90 0.55 0.71

SD 0.09 0.24 0.18 0.27 0.27 0.05 0.23 0.20

data sampling problem for training SVM classifiers on brain
tumor segmentation. Also, we develop an affinity model that
penalizes spatial discontinuity based on model-level con-
straints learned from the training data. Finally, our structural
denoising based on the symmetry axis and continuity charac-
teristics is shown to remove the false positive regions effec-
tively. Our full system has been thoroughly evaluated on a
challenging 20-case GBM and the BraTS challenge data set
and shown to systematically perform on par with the state of
the art. The combination of the two tracts of ideas yields bet-
ter performance, on average, than either alone. In the future,
we plan to explore alternative feature and classifier methods,
such as classification forests to improve overall performance.
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