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Abstract
Purpose The Medical Imaging Interaction Toolkit (MITK)
has been available as open-source software for almost 10
years now. In this period the requirements of software sys-
tems in the medical image processing domain have become
increasingly complex. The aim of this paper is to show how
MITK evolved into a software system that is able to cover all
steps of a clinical workflow including data retrieval, image
analysis, diagnosis, treatment planning, intervention support,
and treatment control.
Methods MITK provides modularization and extensibility
on different levels. In addition to the original toolkit, a mod-
ule system, micro services for small, system-wide features,
a service-oriented architecture based on the Open Services
Gateway initiative (OSGi) standard, and an extensible and
configurable application framework allow MITK to be used,
extended and deployed as needed. A refined software process
was implemented to deliver high-quality software, ease the
fulfillment of regulatory requirements, and enable teamwork
in mixed-competence teams.
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Results MITK has been applied by a worldwide community
and integrated into a variety of solutions, either at the toolkit
level or as an application framework with custom exten-
sions. The MITK Workbench has been released as a highly
extensible and customizable end-user application. Optional
support for tool tracking, image-guided therapy, diffusion
imaging as well as various external packages (e.g. CTK,
DCMTK, OpenCV, SOFA, Python) is available. MITK has
also been used in several FDA/CE-certified applications,
which demonstrates the high-quality software and rigorous
development process.
Conclusions MITK provides a versatile platform with a
high degree of modularization and interoperability and is well
suited to meet the challenging tasks of today’s and tomor-
row’s clinically motivated research.
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Introduction

Research in the medical imaging domain has become increas-
ingly complex over the years. The availability and variety
of modalities has grown, offering more and more options
for algorithmic research. Besides innovations in diagnos-
tic imaging methods like high-angular-resolution diffusion
MRI, PET-MRI or optical coherence tomography, intra-
operative modalities such as C-Arms or tracking devices
enter the operating room on a regular basis, enabling new
methods of intra-operative support for all kind of interven-
tions. This offers a variety of opportunities to improve patient
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treatment, but at the same time presents the researcher with
more and more challenges. The development of single meth-
ods has been replaced by whole pipelines of techniques work-
ing together, the static analysis of input data is often com-
plemented with methods for interaction with the data. The
site of operation has moved from the imaging researchers’
laboratory to the radiological reading room or the operating
room, bringing more live input data into the game and rais-
ing the expectations to the software with regard to usability,
stability, and reliability.

Consequently, a software system designed for develop-
ment of research software for a clinical environment must
fulfill the requirements of the following clinically relevant
tasks.

Data handling: Interfaces to clinical imaging systems
should allow a seamless retrieval of the medical imaging
data. New modalities such as diffusion tensor imaging offer
new possibilities for quantitative imaging and diagnosis but
also require specialized data handling, post-processing, and
visualization methods. To make these methods accessible, a
software environment should provide mechanisms to extend
even low-level or internal parts like data representation or
visualization.

Technical requirement: extensibility of data handling
Image analysis: Adding semantic value by image analy-

sis is often essential for further use in complex applica-
tion scenarios. A research environment should offer usable
tools to the clinical user and thus support the develop-
ment of new methods as well as their transfer into a usable
software.

Technical requirement: support for method and tool devel-
opment, e.g. rapid prototyping

Diagnosis support and treatment planning: After data
acquisition and analysis the results can be taken to the physi-
cian, supporting the diagnosis and planning the treatment in
an interactive way. Means of interaction and a certain level
of usability should exist to enhance the acceptance by the
clinician even in a research environment.

Technical requirement: interactivity and usability
Intervention support: The transfer of the planning results

to the patient is increasingly supported by guidance systems
that help the physician to follow the optimal path to target
structures, identify and avoid risk structures, or supply addi-
tional information during the intervention.

Technical requirement: operating room device interfaces,
live data processing, software robustness

Treatment control: The assessment of therapy results is
becoming increasingly quantitative and thus image-based.
An ideal environment also supports the structured acquisi-
tion and storage of follow-up measurements, supporting, for
example, clinical studies.

Technical requirement: integration with clinical imaging
systems

Furthermore, software applications are often directly used
by clinicians or in a clinical environment even while still
in research. This requires the software to be usable, reli-
able, and safe to use. Building functionally complex systems
with these characteristics requires a well-defined software
development process, eventually—depending on the usage
scenario—leading to a complete quality management sys-
tem. A recent publication by Ince et al showed the necessity of
a research environment being open-source [10]. They argue
that “with some exceptions, anything less than the release of
source programs is intolerable for results that depend on com-
putation.” Making the source code of new methods publicly
available should be compulsory. The fact that the manuscript
was accepted as a Nature publication underlines the impor-
tance of this topic. Publishing source code is the only way
to ensure that research results based on computation can be
reproduced and others can build upon them. This aids collab-
oration between scientists and encourages the contribution to
and enhancement of platforms. Many open-source packages
exist for medical imaging—either specifically dedicated to
the field or widely used for medical imaging purposes. Some
packages are toolkits for typical tasks like image process-
ing and analysis (ITK),1 visualization (VTK),2 tracking and
related tasks in image-guided surgery (IGSTK) [5], real-time
processing of image and video data (OpenCV) [3] or real-
time simulation (SOFA) [1]. Other packages focus on specific
topics like brain image analysis (SPM,3 FSL,4 freesurfer5).
Some packages are even more specialized, created by a small
team or even by a single person as the result of a research
project.

Toolkit-level packages leave the responsibility for overall
system design and—if more than one toolkit is required—the
integration and interoperability of toolkits to the developer.
Two other approaches try to provide additional support for
the developer: development environment and extensible end-
user oriented applications. Development environments pro-
vide developer-oriented applications, sometimes with visual
programming tools, and interfaces to a number of toolkit-
level solutions. Examples include SCIRun [19], OpenXIP,6

MevisLab7 and MATLAB8 (the last three are not or only
partially open-source). The other approach—extensible end-
user oriented application—provides all the necessary basic
methods in an integrated user interface, for example OsiriX

1 http://www.itk.org.
2 http://www.vtk.org.
3 http://www.fil.ion.ucl.ac.uk/spm/.
4 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/.
5 http://surfer.nmr.mgh.harvard.edu/.
6 http://www.openxip.org/.
7 http://www.mevislab.de/.
8 http://www.mathworks.com/.
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[21], Slicer [20], Volview,9 and Analyze.10 Methods of exten-
sion are usually provided by one or more plugin interfaces,
e.g. for command-line applications, shared objects or scripts.
A more detailed overview of existing packages can be found
in [25].

These approaches tackle problems on different levels and
all have their strengths. The optimal solution would allow the
developer to use the level of support that fits best to his prob-
lem, potentially even on different levels at different stages
of a project. At the same time it should be lean and flexible
enough not to impose a specific workflow on the developer.

In this article we show how the Medical Imaging Interac-
tion Toolkit has evolved into a software system that is able to
cover all steps of a clinical workflow including data handling,
image analysis, diagnosis, treatment planning, intervention
support, and treatment control.

Medical Imaging Interaction Toolkit

First planned as an in-house solution for reliable software
development in the medical imaging domain MITK was pub-
lished and released to the public in 2005 [26]. It started
primarily as a toolkit, focusing on support for interactive
multi-view applications by combining and extending ITK
and VTK. Since then it gained more and more users in the bio-
medical community. The initial scope of the toolkit expanded
over the years, some of the original ideas were adapted and a
lot of work went into the architecture to maintain a toolkit and
development environment for a diverse range of applications.

MITK is implemented in C++ and released under a BSD-
style open-source license that allows users to build applica-
tions using MITK without imposing any restrictions or oblig-
ations on them. It can be built on Windows, Mac OS and
Linux, using the cross-platform, open-source build-system
CMake.

MITK is based on ITK and VTK, reusing as much as possi-
ble from these toolkits. All other dependencies to third-party
libraries are optional to ensure a small footprint if required.
ITK is mainly used for its base concepts (smart pointers,
time-stamps, pipelines). Through connections to its large col-
lection of filters and file readers, MITK gets access to many
file formats of the medical imaging community. The visu-
alization pipeline of MITK allows the flexible combination
of VTK-based and OpenGL-based rendering, thus offering
the whole palette of common volume and surface visualiza-
tion techniques. In addition to VTK it cares automatically for
the synchronous update of multiple views of the data. The
addition of customized rendering methods to support novel
techniques such as, Q-Ball imaging [7] or the path planning of

9 http://www.volview.org/.
10 http://www.analyzedirect.com/.

Fig. 1 MITK architecture: The red part shows the original structure of
the toolkit, where the MITK Core extends ITK and VTK. The C++ micro
services (section “C++ micro services”) where added to the MITK Core
to enable a service-oriented architecture at the toolkit level. Domain-
specific code is added to separate MITK modules which depend on the
MITK Core and optionally on third-party toolkits. The dependencies
are handled by the MITK module system (section “The module sys-
tem”). For application-level support, MITK provides the MITK Work-
bench (section “MITK application framework”) which leverages the
BlueBerry application framework (see Fig. 3), itself based on the CTK
Plugin Framework (section “CTK Plugin Framework”)

needle insertions [23], is easily possible. Processing of color
images like pathological or histological data is supported,
although the focus is on radiological images like computed
tomography, magnetic resonance imaging, and ultrasound.
The creation of augmented reality applications [2,8,15] is
supported through methods for video background rendering
and real-time processing, e.g. camera distortion correction.

In the following sections we will describe how we
extended MITK from its originally basic toolkit-oriented
architecture (red part in Fig. 1) to a fully modularized envi-
ronment. We will in turn explain the different concepts for
modularization (Module system , C++ micro services and
CTK Plugin Framework) that exist in MITK today, how med-
ical data are retrieved and managed, the MITK Workbench
and its rapid prototyping capabilities as well as further tech-
nical enhancements. Finally, we will describe parts of the
software process we have established.

Extensibility and modularization

The growing scope of the toolkit and its increasing number
of contributors require concepts ensuring the extensibility
and modularization of the toolkit. A module in MITK is a
C++ class library covering a specific problem domain. The
employed concepts for managing and reducing dependen-
cies of modules, improving encapsulation and fostering reuse
of code within the toolkit will be presented in the follow-
ing sections, constituting the cornerstones of subsequently
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introduced features and techniques. These concepts enable
MITK to comply with the technical requirement of extensi-
bility of data handling.

The module system

On the build-system level the MITK module system provides
facilities to manage inter-module as well as optional external
dependencies, based on the following concepts:

Packages are third-party software packages that can be
used together with MITK. Apart from ITK and VTK,
all packages are optional, e.g. Qt,11 Boost,12 DCMTK,13

OpenCV or SOFA. For each package a configuration option
in CMake is created, MITK_USE_<PACKAGE>, that can be
controlled by the user. For most packages there is also the
option to download, configure, and build them automatically.
Depending on the selected packages different modules are
available.

Modules are created with a collection of CMake macros
that offer several advantages to basic CMake commands:

– resolve (optional) dependencies to other modules and
packages

– manage include paths, distinguish between internal and
exported ones

– create configuration files that can be used by custom
projects to facilitate the integration of MITK

– encapsulate low-level CMake code, so developers can
create their own modules without knowledge of CMake
and the build system is kept maintainable

– support unit testing and the creation of installers
– quality control, e.g. a WARNINGS_AS_ERRORS option

to enforce a module to be free of compiler warnings

Using this module system, researchers in the medical
imaging domain can extend MITK with their own modules
with minimal effort. They can build upon a large collection
of existing MITK modules and third-party packages.

C++ micro services

The extensive modularization of the code base leads to prob-
lems and anti-patterns that typically occur in any large and
modularized C++ system [12]:

– different build configurations exist with different sets of
provided functionality at runtime, e.g. by supporting dif-
ferent data formats

11 http://qt-project.org/.
12 http://www.boost.org/.
13 http://dcmtk.org/.

– an increased amount of factories and “manager objects”
for rendering, interaction, or other central tasks are dif-
ficult to maintain. They are typically implemented as
singletons or other static instances, possibly with inter-
dependencies.14

We have developed a new approach to these problems: the
C++ micro services. This is a C++ implementation of the ser-
vice layer of the Open Services Gateway initiative (OSGi) ,
an industry-grade and mature dynamic module system orig-
inally designed for Java.15 It provides mechanisms to gradu-
ally move to a service-oriented modular system. Since it does
not depend on any other libraries it can be used even on the
lowest toolkit level. Major features are

– type-safety for service interfaces and their implementa-
tions

– selection of services based on priorities and properties
– much less boiler-plate code for usage compared to typical

factory implementations.

In addition to the general advantages of a service-oriented
software architecture, MITK modules interfacing with hard-
ware devices especially benefit from the usage of such a
dynamic service layer. For example, tracking devices are rep-
resented by a common service interface and MITK modules
provide implementations for specific devices by registering
them as services. Connecting or disconnecting devices leads
to the registration or un-registration of the corresponding ser-
vice, and service properties reflect the current state of a con-
nected device.

Though developed by the MITK project the C++ micro
services library is independently available16 and potentially
useful for any modularized C++ project.

CTK plugin framework

The C++ micro services handle modularity on the toolkit
level. On the application level the requirements go further.
A modular application is composed of many components.
These should be well separated from each other, preferably
loaded or unloaded at runtime and should be allowed to
extend each other.

We have designed and implemented a generic plugin
framework to facilitate the development of service-oriented
and modular systems. Since this can be used independently
from other parts of MITK it was implemented as part of the
Common Toolkit (CTK) and has therefore been named CTK

14 The static (de-) initialization order fiasco is well known to any main-
tainer of a large C++ software system.
15 OSGi Alliance, http://www.osgi.org.
16 http://cppmicroservices.org.
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Fig. 2 The CTK Plugin Framework is conceptually divided into three
layers, based upon the original OSGi specifications. The Module layer
defines the units of modularization, a plugin meta-data format, a depen-
dency management system, and a code sharing model. The Life cycle
layer defines how the life cycle of plugins is controlled and is based
on the module layer. Finally, the Service layer defines a collaborative
model for plugins, integrated with the life cycle layer

Plugin Framework. CTK is a joint effort of several medical
imaging groups that develop software platforms. It focuses
on common-interest topics of the CTK community.17

Like the micro services it is a C++ implementation based
on the OSGi specifications [18], but implements almost all
specified layers (see Fig. 2).

So-called bundles are the physical units of modularization,
and they have an associated life cycle which is controlled by
the CTK Plugin Framework. They can be dynamically started
and stopped, adding and removing services and code from
the running system. In the CTK context, bundles are also
often called plugins.

Medical data management

Data handling is of high importance for a seamless integra-
tion of software in clinical workflows. This includes basic
data retrieval and handling, interfaces to operating room
devices and handling of live data. These improvements cope
with the requirements for intervention support and treatment
control as described in “Introduction” section. Detailed tech-
nical documentation of these concepts can be found online.18

Data retrieval and handling

DICOM data retrieval and import: The low-level DICOM
handling capabilities of DCMTK, GDCM, and ITK were
improved to enable easy PACS retrieval and the local man-
agement of DICOM file collections as well as enhance the
grouping of image slices for the correct assembly of 3D and

17 http://commontk.org.
18 http://mitk.org/Documentation.

3D+t datasets from CT, MR, and Ultrasound. Part of this
work was done in collaboration in the scope of the Common
Toolkit.

Protected image access: Low-level image processing toolk-
its like ITK, VTK, and OpenCV often deal directly with
C/C++ pointers to image data. Iterator concepts exist but
can include a serious runtime penalty, removing the advan-
tages gained through the usage of C++. In a larger environ-
ment the arbitrary or even concurrent access to image data
can lead to unpredictable results. We introduced the concept
of image accessors to control, read, and write access on a
higher level while still offering direct pointers when nec-
essary. This is comparable with semaphores controlling the
access to shared memory regions. Another benefit is the pos-
sibility of removing, compressing, or otherwise processing
image data on devices with limited capabilities and only pro-
viding the classic continuous memory representation of an
image when it is actually accessed.

DataStorage: The original MITK concept of a DataTree was
replaced with a more generic DataStorage, offering better
methods to express semantic relationships between data enti-
ties in the application. Predicates can be used to find DataN-
odes based on the data type, relationships, and properties, all
combinable with logical operations, e.g. “give me all DataN-
odes of type binaryimage that are derived from node x!”

Handling of operating room-related devices and live data

Increasing intra-operative use of devices, such as endoscopes
or tracking hardware, especially in image-guided therapy
systems required extensions of MITK that provide support
for live data acquisition and processing. The following parts
were introduced for handling live data within MITK:

– OpenCVVideoSupport: Allows grabbing of video data
from devices like endoscopes or video cameras and pro-
vides methods to access the video data in MITK-specific
data formats. The third-party library OpenCV is used for
hardware communication.

– MITK-IGT: Released as the image-guided therapy toolkit
within MITK, it provides methods of communicating
with tracking hardware, such as optical or electromag-
netical tracking devices, processing of tracking data by
means of a navigation pipeline and building navigation
applications in a rapid prototyping manner. Devices gen-
erating navigation data are available as micro services.

– MITK-US: Adds support of intra-operative live ultra-
sound data. Similar to MITK-IGT, data processing can be
easily implemented with a pipeline structure, and com-
mon GUI elements allow rapid prototyping of appli-
cations using US as intra-operative imaging modality.
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Again, US devices are made available as services, pre-
venting dependencies on device specific implementation
code.

– MITK-ToF: Handling of range data, such as Time-
of-Flight (ToF) data, mostly used for intra-operative
surface acquisition is supported through the ToF mod-
ules within MITK. Besides hardware communication for
image acquisition, data processing is again possible via
a pipeline concept and application development is sim-
plified by reusable GUI elements. As in the MITK-IGT
and MITK-US extensions, ToF devices are modeled as
service objects.

Rapid prototyping

To support an efficient implementation of applications for
clinical tasks like image analysis, diagnosis support, and
treatment planning, we added rapid prototyping capabilities
to MITK. The new capabilities were designed to enable sup-
port for method and tool development and interactivity and
usability as detailed in the requirements for a software system
in a clinical environment (section “Introduction”).

MITK application framework

Originally MITK was not intended as an application frame-
work and thus only contained basic support for building com-
plete applications. It merely provided an example of how
to build applications using MITK including a simple exten-
sion mechanism referred to as functionalities. It was purely
a configuration/build time mechanism using a single class
interface (QmitkFunctionality) and a few singletons
for access to some central application objects. To overcome
the limitations of this approach we created a C++ equiva-
lent of the Eclipse Rich Client Platform [14]:19 BlueBerry.
Inheriting most concepts, the key features are as follows:

– A consistent and thoroughly designed user interface con-
cept, leading to applications which by default have a uni-
form look and feel.

– A ready-to-use application frame for rapid prototyping.
– A modularized architecture based on the CTK Plu-

gin Framework. BlueBerry applications are created by
orchestrating a set of plugins, each of which contributes
specific functionality.

– Communication mechanisms allowing sharing of infor-
mation between unrelated plugins.

BlueBerry is build as a set of plugins, leveraging the
service-oriented and dynamic nature of the CTK Plugin

19 The Eclipse Rich Client Platform is best known as the basis for the
Eclipse IDE, http://wiki.eclipse.org/Rich_Client_Platform.

BlueBerry

Qt Core

Qt GUI CTK Plugin Framework

BlueBerry Runtime

BlueBerry
Workbench

Help Log

MITK Plugins

Fig. 3 BlueBerry is build on top of the CTK Plugin Framework and
logically divided into a runtime system and a generic application frame
called workbench

Framework. The block diagram in Fig. 3 gives a high-level
system overview. Logically, BlueBerry can be divided into
a runtime system that is independent of any user interface
technology and the workbench, a generic application frame.
Like Eclipse RCP, the workbench supports a consistent user
interface design based on the concepts of views (control
areas), editors (data viewing and editing areas), and perspec-
tives. The standard configuration of the workbench allows
the user to dynamically change the layout, to open and close
views and editors as well as to detach them from the main
application window. The concept of “perspectives” can be
used to create predefined layouts for related tasks or restrict
the possible layout changes by the user, e.g. for workflow-
oriented applications. The BlueBerry runtime system can
also be used as the base of custom applications, even for non-
medical-imaging tasks.

To allow for rapid prototyping and provide the devel-
opers with an easy way to create their own application-
level extensions—either as a thin wrapper around some new
algorithmic method or as a rich GUI for conducting some
workflow—MITK contains a plugin generator. It allows the
creation of a plugin with a GUI view that already contains
some sample code to get access to an image the user has
selected in the application. Using this tool a developer gets a
quick start into adding own functionality to the MITK work-
bench, whether it is a new algorithmic method for segmen-
tation or the start of a whole new application with its own
interaction mechanisms and user interface concepts.

Python prototyping

Another rapid prototyping capability was introduced into
MITK by creating language bindings of MITK and its
included packages i.e. ITK, VTK, and OpenCV for the
Python language [22]. The process relies on that of WrapITK
[13], i.e. we employ the combination of CMake, GCC-XML,
and CableSwig to create the language bindings during the
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CMake generation process. A plugin containing an inter-
active Python console provided by CTK allows for conve-
nient prototyping featuring, e.g. drag&drop of data from the
DataStorage, code completion, a command history, a variable
stack, and a script editor. As a result, images can for example
be processed with Python using, e.g. ITK, VTK, or OpenCV
code and be shown in the MITK application as usual.

Software development process

Building and maintaining a large software system is always
a challenge. MITK started reusing all the tools from the Kit-
ware process, e.g. as decribed in the ITK Softwareguide [9],
and added several enhancements. Specific requirements for
MITK resulted from the fact that its user and contributor base
had very different levels of experience, from computer sci-
ence students to experienced post-docs. At the same time a
high level of software and process quality was necessary so
MITK could serve as a basis for the development of med-
ical products. Finally we faced the challenge of designing a
release process that works in a predictable way despite the
sometimes limited or unprojectable resources in a research
environment. First results on this were described in [16], but
they had to be improved to get established on a more regular
basis.

Collaborative development

Large software systems with many contributors require con-
cepts for a collaborative development model. For MITK, the
following approaches were introduced:

Continuous integration and repository lock: The contin-
uous integration was extended to enable a repository lock
based on the dashboard status: In the dashboard driver script
a simple call to a web service was implemented to submit
the number of build errors and test failures via a http request.
This web service aggregates the results from the clients and
displays them on a web page similar to the official dashboard.
The current dashboard manager can decide which clients
“lock” the repository in case of a failure. These are usu-
ally the continuous clients for Windows, Linux, and Mac OS
X. We implemented a automatic check in the source code
repository that rejects all commits except for the ones that
are explicitly marked as compilation fixes. This mechanism
helps in a cross-platform and mixed-experience developer
team to minimize times when the current trunk or master
version does not build on all platforms. The locked reposi-
tory also adds a social component, encouraging developers
to fix their errors as soon as possible.

Version control and branchy workflow: To decouple the
work on different topics a branchy workflow based on the git

distributed version control system [4] was designed. Every
feature or bug fix is developed in a separate branch in the ver-
sion control system and can only be merged into the master if
several checks are passed. This has the advantage that devel-
opers can exchange and manage their intermediate results
using the central repository without interfering with each
other.

Several server-side scripts were developed that check the
intended changes before accepting them in the main repos-
itory. First, the naming scheme and the overall structure of
branches as well as certain coding styles are verified. Further
checks support the goals of the quality management and the
release process that are described in the next sections.

Quality management

MITK is the basis for projects that require a general safety
statement and is also used in several products that have a CE
mark or FDA clearance as a medical product. Two obliga-
tory standards are required for certification in the European
Union: ISO 13485 for quality management systems and ISO
14971 for risk management. They specify mainly actions on
the management level that focus on the actual product and
general workflows and responsibilities during the production
process. As such they are not specifically oriented to software
development but have their roots in the production of med-
ical device hardware of any kind, from surgical instruments
to pacemakers.

More important and useful for the software developer is
the relatively recent standard “IEC 62304—Medical Device
Software—Software Lifecycle Processes”, harmonized both
by the European Union and the FDA. It specifies require-
ments for a process which is suitable for developing and
maintaining a safe software system.

Traceability: One important requirement of IEC 62304 is
traceability:20 every change in the software shall be traceable
to a change request, which in turn is based on a new feature
request or a necessary bug fix. All feature requests and bugs
are recorded in the MITK Bugzilla issue tracker.21 To make
sure that this policy is followed we implemented another
pre-commit hook that checks the assignability of commits
to tickets in the bug tracker. From the commit messages and

20 IEC 62304, B.8.2 Change control: CHANGE REQUESTS can be
approved by a change control board or by a manager or technical lead
according to the software configuration management plan. Approved
CHANGE REQUESTS are made traceable to the actual modification
and VERIFICATION of the software. The requirement is that each
actual change be linked to a CHANGE REQUEST and that documen-
tation exists to show that the CHANGE REQUEST was approved. The
documentation might be change control board minutes, an approval
signature, or a record in a database.
21 http://bugs.mitk.org.
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the branch structure the bug id is derived and the Bugzilla
database is checked for the correct bug status.

Change tracking: If the requested change affects files in
the core libraries, there is another check for a flag in the
database that the change has been approved by a technical
lead developer. One criterion for approval is a written change
request, filed in the MITK wiki22 and directly linked from the
ticket. A template prompts for the motivation for the change,
the root cause of the problem, the proposed solution, and the
intended verification measure. This acts as a documentation
of corrective and preventive action (CAPA)—a well-known
principle from good manufacturing practice.

Release process

MITK had irregular releases for a long time but with a grow-
ing number of external users, both from research and industry,
the demand for fixed release versions has increased. Earlier
attempts were successful but also showed a significant impact
on the regular work of the developers [16].

The new release procedure is strictly date-based: at the
beginning of the 3-month cycle the release day will be defined
and different roles assigned to people:

– release manager: overall responsibility
– testing manager: distribution and collection of manual

checklists, filing of bugs
– promoter: editing of changelogs, release notes, websites,

upload of installers

Two weeks before that day the repository is put into release
mode, which means that only master merges approved by the
current release manager are allowed. From this point on man-
ual checklists are completed, verifying software functions on
the application level (MITK Workbench with basic plugins).
Bugs are filed and classified by the testing manager. As many
bugs as possible will be fixed; the remaining ones are doc-
umented as known issues and will be prioritized in the next
release cycle. Since the master branch is locked, there is no
need for an early release branch. The release branch will
be created right after the final test and fix day and usually
contains only updates to version numbers and small installer
customizations.

Results

Since its initial release MITK has seen a constant growth
regarding both the size of its code base (Fig. 4) and the num-
ber of contributors (Fig. 5). The introduction of the module

22 http://mitk.org/ChangeRequests.
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Fig. 4 Temporal development of the MITK code base with respect to
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parts. The MITK Core contains the basic toolkit functionality, Mod-
ules represents domain-specific functionalities, and Application groups
application-level code. Additionally, milestones in the MITK develop-
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or the introduction of new modularization techniques
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Fig. 5 Contributor count for the MITK. Over the last 8 years, a steady
increase in contributors can be observed

system in the year 2009 led to a leaner MITK core responsible
for the basic toolkit functionality. More specialized source
code was moved to several newly created modules.

The established software development processes have
led to regular releases of the toolkit and various appli-
cations as open-source software. Furthermore, the branch-
based workflow allowed to generally maintain a high-quality
software with a growing number of contributors of various
backgrounds and experience levels (Fig. 5). The acceptance
in the open-source community is established, as evidenced,
for example, by the number of posts on the MITK Users
List, which reached slightly more than 2,000 over the past
2 years.

MITK offers the user different levels of support for his
research:

– use the MITK Workbench and available plugins as a
ready-made application, for example, to perform a study
requiring semi-automatic segmentation or to record some
live data from trackers during an intervention
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Fig. 6 The MITK Workbench exemplary shown for the use case of interactive image segmentation. The screenshot shows a typical configuration
of several views on the left and an editor containing a multiplanar reconstruction (MPR) on the right

– extend the MITK Workbench as a platform and extend it
with own processing methods and interactive workflow
tools, reusing the integrated plugins for, e.g. connectivity
to clinical system or data analysis

– integrate MITK as toolkit to leverage some of its func-
tionality, e.g. data handling, visualization, or standard-
ized interfaces to special devices like trackers or video
systems. If necessary, enhance the toolkit by custom data
formats, visualization types, tracking devices, etc.

These different approaches are possible through the mod-
ularization and extension methods described in “Extensi-
bility and modularization ” section. For example, the C++
micro services have been used inside the MITK extensively
for the image-guided therapy (IGT), ultrasound (US), and
Time-of-Flight (ToF) extension modules. Service interfaces
were defined for the different data providers, for example
a tracking service. Implementations of this interface, for
example for NDI (Waterloo, Canada) or Claron (Toronto,
Canada) trackers can register themselves as a service and
allow application-wide access to the relevant devices.

The feasibility to develop applications for the various clin-
ical tasks identified in the introduction has been shown by

implementation of several applications which will be dis-
cussed in the following paragraphs. For more projects real-
ized with MITK within the medical imaging domain please
refer to see http://mitk.org/Projects for details.

Data retrieval and basic image analysis were made
widely available with the development of the MITK Work-
bench (Fig. 6) which is based on the CTK Plugin Framework
and the BlueBerry application framework. As an environ-
ment for easily creating medical image processing applica-
tions it comes with a defined set of basic plugins to perform
basic image review and analysis:

– DICOM Import and Retrieval
– Volume visualization
– Measurement and image statistics
– Interactive segmentation tools, slice-based and 3D

Around 30 more plugins exist in the open-source distri-
bution of MITK and can be enabled at build time, offering
various image processing tools or reference implementations
for the usage of specialized modules, e.g. IGTTracking [6]
or the Time-of-Flight tutorial [24].
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Fig. 7 Research Environment Nifty View, Image kindly provided by Matt Clarkson, The Center of Medical Image Computing, University College
London, UK

Building upon the MITK Workbench several other projects
have created complete applications:

Image analysis and diagnosis on diffusion-weighted
MR images can be performed with MITK-Diffusion, devel-
oped by Fritzsche et al. [7]. It is a customized Workbench-
based application with a large collection of plugins, directly
aimed at radiologists for research on diffusion-weighted MR
images. It is available from the MITK homepage or through
NITRC,23 a public repository for neuroimaging tools and
resources [11]. The underlying image processing methods
are available separately as open-source MITK modules.

The Center for Medical Image Computing, University
College London, UK, is using the MITK Workbench to create
NiftyView, a working environment for their clinical collab-
orators24 (Fig. 7), featuring a variety of analysis methods.

A treatment planning application for 3D ultrasound-
guided prostate biopsies has been realized by Eigen, Grass
Valley, CA. It is a 510(k) cleared software based on the MITK
Workbench (Fig. 8) that adds a planning solution to their 3D
ultrasound-guided prostate biopsy platform.25

23 http://www.nitrc.org/projects/mitk-diffusion/.
24 http://cmic.cs.ucl.ac.uk/home/software/.
25 http://www.eigen.com/.

One example of an intervention support system is
the MITK-based Computer Aided Medical Diagnosis And
Surgery System (CAMDASS), developed by Space Appli-
cations Services S.A., (Zaventem, Belgium), in cooperation
with the European Space Research and Technology Center
(ESTEC) (Noordwijk, the Netherlands), evaluating the fea-
sibility to support astronauts during space flight performing
medical procedures [17]. More applications are described,
e.g. in [2,8,23] and [15].

Besides the MITK Workbench-based applications there
exist projects that directly build on top of the toolkit MITK.
mint LesionT M for example is a certified application allow-
ing for treatment control developed by the Mint Medical
GmbH, Dossenheim/Heidelberg, Germany. It supports radi-
ologists and oncologists in assessing tumor measurements
according to several standards, such as RECIST, WHO, and
Choi. It is certified as a medical product in the European
Union and the United States and uses various MITK mod-
ules for image data handling, measurements, and visualiza-
tion (Fig. 9). Enhancements and bug fixes are regularly con-
tributed back to the open-source MITK.

The Graphical Interface for Medical Image Analysis and
Simulation (GIMIAS)26 is a research environment using

26 http://gimias.org/.
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Fig. 8 510(k) cleared application ProFuse, used for planning of 3D ultrasound-guided prostate biopsy. Image kindly provided by Eigen, Grass
Valley, CA, USA

MITK (Fig. 10). It is being developed by the Center for
Computational Image and Simulation Technologies in Bio-
medicine (CISTIB) at Universitat Pompeu Fabra, Barcelona,
Spain. It shows the flexibility of the MITK approach by using
wxWidgets instead of Qt as a GUI toolkit, combining its own
application framework with the MITK modules.

Discussion

Medical image processing research has become increasingly
demanding over the past decades due to the introduction of
new imaging modalities, the growing number of algorithms
available for processing the mass of imaging data, more com-
plex clinical workflows, and the trend to intra-operative use
of image analysis methods. Meeting the requirements for
efficiently conducting research in this interdisciplinary envi-
ronment is a challenge for many existing software environ-
ments.

The MITK presented in this work met these requirements
by introducing novel modularization concepts and an appli-
cation frame suited for both rapid prototyping and sustain-
able development. The connectivity to clinical storage sys-
tems was improved, and interfaces to acquire live data from

devices in the operating room were created. The flexible user
interface of the MITK Workbench with its configurable lay-
out, using multiple views and screens, allows a quick adap-
tion to various clinical workflows. Finally, the general soft-
ware robustness was increased. MITK proved useful in the
commercial development of intervention planning and treat-
ment control solutions and carries the aspects of quality man-
agement for medical devices into the software development
process onto the toolkit level, something that is not very com-
mon in the open-source community. Furthermore, in combi-
nation with the modularization it is possible to manage soft-
ware parts of different quality levels in one system, fostering
technology transfer from experimental research to medical
products.

Development of medical imaging software was shown to
be supported by MITK on different levels. Applications using
MITK at the toolkit level typically make use of its data man-
agement, visualization, and data processing capabilities by
accessing the low-level interfaces. In this case many com-
plex tasks like creating a suitable user interface or combin-
ing the functionality of existing MITK modules have to be
tackled by the application developer. At the next level, the
MITK Workbench provides an extensible application frame-
work for creating custom medical imaging applications. This
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Fig. 9 FDA/CE-certified product mint LesionT M for assessment of
tumor measurements according to standards such as RECIST, WHO,
and Choi, using MITK for image data handling, measurements, and

visualization. Image kindly provided by Mint Medical GmbH, Dossen-
heim/Heidelberg, Germany

is the preferred way to rapidly develop software prototypes
by reusing many of the existing MITK plugins. Its flexible
and customizable user interface makes it well suited for usage
in different clinical settings. Even without own development
the MITK Workbench can be used as a research tool to con-
duct or support different studies. The online documentation
features several examples and howtos to find the best suited
approach.

Current technical solutions in a clinical setting often lack
the usability that is necessary to get accepted by the physi-
cians. Novel approaches like the use of today’s powerful
mobile devices open up new possibilities to create human–
computer interfaces that fit seamlessly into the existing clin-
ical workflows. In [15] we already showed that MITK is a
well-suited environment to conduct research in this area.

As briefly—and by no means exhaustively—described in
the introduction, many other software systems exist that sup-
port medical imaging researchers in their tasks. They all have
their strengths, their right to exist and established user com-
munities, which means ongoing projects and successful solu-

tions. Because of this a mere comparison of features and per-
formance figures would not make much sense in this context.
We nevertheless want to identify a few exemplary keypoints
in a comparison to other solutions:

Proprietary solutions like Matlab, Mevislab, and Analyze
are powerful and widespread, but restricted in their usage.
Some are free-as-in-beer to use but not open-source: the
researcher is subjected to vendor lock-in or license changes.
The publication of own results as open-source is possible but
the verifiability by other scientists can be limited for the same
reasons.

OsiriX is especially well accepted by radiologists for its
exceptional usability. But since it is not cross-platform it
also locks the user, and its licensing policy (GPL) limits the
developer.

OpenXIP was released cross-platform and, because it is
based on an industry-grade prototyping platform, has a strong
feature set. However, only the library is open-source, while
the visual programming tool is closed-source though free
to use, and to date there is no visible public community
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Fig. 10 Graphical Interface for Medical Image Analysis and Simulation (GIMIAS) using MITK at toolkit level

supporting the project, which makes it difficult for a potential
user to evaluate.

The 3D Slicer is cross-platform and open-source and fea-
tures a flexible and mature plugin system. The community
is very large and active. Projects built upon the Slicer plat-
form cover the whole range of medical image processing and
intervention support. Compared to MITK its approach is gen-
erally more application-centric though this has been recently
addressed by the possibility of running modules on their own
without the application main window.

Since all these “issues” are, on the whole, signs of dif-
ferent philosophies there is no possible conclusion of A-is-
better-than-B-because-of-X. The direct comparison of fea-
tures of the different solutions may not be appropriate. But
as communities and foci of research change, there will be
a fluctuation of existing and new environments, all having
their individual strengths. Solving everything on one’s own
or reinventing the wheel again and again is not a viable solu-
tion. The combination of strengths should be the goal.

First efforts in this direction have been made by devel-
opers of MITK, 3D Slicer, MAF3, medInria, GIMIAS, and

other research software environments27 by contributing to
the Common Toolkit initiative in order to make as much
of their work as possible available and usable for others.
This is an important step in the right direction, leveraging
work from others on the platform level, enhancing methods
of interoperability between platforms and thereby opening
new opportunities for technically sustainable collaborations
in the research community.

It is our strong belief that modularization and interoper-
ability of existing successful solutions help to meet the chal-
lenging tasks of today’s and tomorrow’s clinically motivated
research. The open-source MITK, from its toolkit-level to
the extensible application frame, has been designed in this
spirit.
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