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Abstract
Purpose We present a novel approach for the registration of
pre-operative magnetic resonance images to intra-operative
ultrasound images for the context of image-guided neuro-
surgery.
Method Our technique relies on the maximization of gra-
dient orientation alignment in a reduced set of high confi-
dence locations of interest and allows for fast, accurate, and
robust registration. Performance is compared with multiple
state-of-the-art techniques including conventional intensity-
based multi-modal registration strategies, as well as other
context-specific approaches. All methods were evaluated
on fourteen clinical neurosurgical cases with brain tumors,
including low-grade and high-grade gliomas, from the pub-
licly available MNI BITE dataset. Registration accuracy of
each method is evaluated as the mean distance between
homologous landmarks identified by two or three experts. We
provide an analysis of the landmarks used and expose some
of the limitations in validation brought forward by expert
disagreement and uncertainty in identifying corresponding
points.
Results The proposed approach yields a mean error of
2.57 mm across all cases (the smallest among all evaluated
techniques). Additionally, it is the only evaluated technique
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that resolves all cases with a mean distance of less than 1 mm
larger than the theoretical minimal mean distance when using
a rigid transformation.
Conclusion Finally, our proposed method provides reduced
processing times with an average registration time of 0.76 s
in a GPU-based implementation, thereby facilitating its inte-
gration into the operating room.

Keywords Neurosurgery · Multi-modal registration ·
GPU · Ultrasound

Introduction

A common setup for image-guided neurosurgery (IGNS) is
one that allows for the visualization of a tracked pointer onto
a pre-operative 3D magnetic resonance (MR) image in order
to expose internal regions of interest (e.g., tumors) and use
the pre-operative image for guidance during the procedure.
However, brain movements during open-skull operations as
well as inaccurate image-to-patient registrations are known
to reduce the utility of using the images for guidance. Intra-
operative imaging modalities have thus been proposed for
improved guidance. Nonetheless, some modalities, such as
intra-operative MR, involve a prohibitive cost, as well as
requiring major modifications to the operating room and sur-
gical procedure. For such reasons, intra-operative ultrasound
(iUS) continues to be a highly appealing option given its
ease of use and relatively inexpensive costs. The iUS is typ-
ically tracked and superimposed on the pre-operative MR
with the use of a navigation system, allowing the surgeon
to assess a misalignment or deformation with relation the
MR. Unfortunately, the comparatively poor image quality of
iUS allows for the exposure of only a limited (yet important)
set of coarse anatomical structures such as the brain tumor,
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the lateral ventricle boundaries, and the falx. For example,
the accuracy of iUS for identifying brain tumor boundaries
such as gliomas and metastases has been well documented in
previous work [23]. However, there are many other important
anatomical references that are left undepicted, thus limiting
the direct use of iUS for guidance purposes.

The approach we follow in this work consists of matching
a tracked iUS to a pre-operative MR (pMR) image, thereby
permitting the updating of the pMR during surgery. The clin-
ician can therefore benefit from the soft-tissue imaging detail
found in the MR volume, as well as any other preoperative
images, while taking advantage of the practical ease of US
acquisition and the physical reality represented by the iUS.
The critical challenge thus lies in quickly and accurately reg-
istering the MR image to an iUS image, thereby minimizing
the time required to obtain an updated MR image and allow-
ing for seamless integration in the operating room.

Registration of MR to iUS is a problem faced with multi-
ple challenges brought forward by the widely different image
formation models of each modality. Magnetic Resonance
Imaging can be largely characterized as a tissue-type based
modality, where the image intensity of a given voxel is mainly
a function of the tissue found within the voxel’s volume.
On the other hand, US images illustrate different acoustic
impedance transitions encountered by the ultrasonic wave.
Figure 1a–d shows four different neurosurgical cases and
illustrates the differences between the two modalities. Notice
that the MR image allows for an accurate identification of
multiple soft-tissue types such as gray matter, white matter,
and bone and hence also permits the localization of many
anatomical structures on the brain (e.g., lateral ventricles,
falx, sulci, gray and white matter surface, etc.). Alternatively,
the corresponding US image exposes the tumor tissue and its
boundary (with some degree of uncertainty) and also depicts
part of some key structures like the falx and the lateral ven-
tricles.

In the particular context of brain tumors, we are also
affected by the fact that pathologies from different cases
can have quite unique image features in each modality.
Figure 1a–c contrasts three cases with significantly different
depictions in each modality. In particular, we can observe
that the inner tumor tissue and the tumor boundaries in the
iUS are exposed with quite distinctive image characteris-
tics in each case. For example, Fig. 1c depicts tumor tis-
sue with very high US intensity values, but does not allow
for an accurate identification of its boundary. Alternatively,
in Fig. 1b, the tumor tissue is depicted with a low US
intensity and the boundary can be identified with increased
certainty. Furthermore, Fig. 1b, c provides a prominent
depiction of the lateral ventricles in the iUS, a highly infor-
mative anatomical structure for identifying a match across
modalities. On the other hand, Fig. 1a provides a very weak
depiction of the boundaries of the lateral ventricles. This

kind of variability in exposing anatomical structures in iUS
is a clear challenge for conventional multi-modal registra-
tion approaches that assume a global hard mapping between
image features of one modality to image features of a second
modality.

The registration of MR to US images has been previ-
ously addressed by various groups [1,10,12,16,25]. Some
approaches [3,20] rely on gradient magnitude as an image
feature of interest in conjunction with a conventional multi-
modal similarity metric such as mutual information (MI) or
normalized cross-correlation (NCC). Other proposed tech-
niques rely on local-phase [14,25] as a feature in conjunction
with MI. A major challenge encountered by such approaches
is that the image intensity response found in US is signifi-
cantly non-homogeneous. Consider the coronal view found
in Fig. 1d where we can clearly observe how the US inten-
sity decays with relation to the distance from the probe. In
particular, notice that the US pixel intensities corresponding
to white matter are far from consistent and will likely result
in a degradation of registration performance when using a
similarity metric that involves the full image domain. There
have also been approaches [10,12] that propose a preprocess-
ing stage in which imaging artifacts (e.g., speckle, noise) are
reduced and consequently register the preprocessed images
with a multi-modal metric like normalized mutual informa-
tion (NMI) evaluated over a sampling mask that typically
covers the tumor volume and part of its surrounding region.
Previously, our group has proposed [1,16] the generation
of a pseudo-US from segmented structures in the MR and
then registering the pseudo-US with the acquired iUS. Sim-
ilarly, in [24], the registration of US to CT is addressed
through a simulated US obtained from the CT. This tech-
nique makes use of a hard mapping of the CT intensity to the
tissue’s echogeneity, which relies on a functional relationship
between those two values. Unfortunately, the strong presence
of speckle and the wide variability across IGNS cases do not
allow for a straightforward implementation of such strategy
in this highly variable context.

In this paper, we propose a new MR to US registration
framework, with the goal of providing substantially improved
robustness and computational performance in the context of
image-guided neurosurgery (IGNS). Registration is based on
gradient orientation alignment, motivated by the fact that gra-
dient orientations are considered to characterize the underly-
ing anatomical boundaries found in the scene and are more
robust to the effect of non-homogeneous intensity response
found in US. However, orientation estimates can be noisy in
this context and using the full set of orientations would lead
to undue computational cost and increase the risk of errors.
An important distinction with other approaches based on gra-
dient orientations [2,7,9,11,14,18,19] is that we restrict the
evaluation of the similarity metric to a small set of loca-
tions of interest with low uncertainty gradient orientations,
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Fig. 1 Pre-operative MR volume and the initial unregistered iUS vol-
ume in a brain tumor resection surgery, corresponding to cases 4, 6,
8, and 9. The first column shows the MR image in grayscale with the
corresponding iUS overlapped and heat map colored. The second col-
umn shows the MR image. The third column shows the iUS. The top

row shows a coronal view, the middle row shows a sagittal view, and
the bottom row shows a transverse view. Anatomical structures found
in the iUS are identified by a green arrow and label, while structures
found in the MR are identified by a white arrow and label. a Case 4,
b Case 6, c Case 8, d Case 9

which allows for improved robustness and computational
performance. In order to address such limitations, our tech-
nique [5,6] first selects locations whose gradient orientations
have high certainty (i.e., minimal noise) and likely corre-
spond to structures of interest. Once such locations have been

identified, we maximize their alignment with corresponding
orientations. Our approach is thus asymmetric in the sense
that the fixed image (US) plays a different role than the mov-
ing image (MR), allowing the registration task to focus on
the alignment of boundaries that appear in the US and likely
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have a counterpart in the MR image, and thereby improving
registration robustness against the variability in iUS found
throughout the cases evaluated.

Experimental findings show that our approach brings for-
ward gains in computational performance and registration
accuracy, as evaluated over fourteen clinical cases obtained
from the publicly available MNI BITE dataset. In particu-
lar, we can achieve a robust performance, in the sense that
all fourteen cases used for validation have a resulting mean
distance between corresponding points that is larger than the
smallest possible mean distance (under a rigid transforma-
tion) by no more than 1 mm. Furthermore, such performance
is achieved with a highly reduced subset of voxels (e.g., 2 %
of the image) and a GPU-based implementation, which leads
to an average processing time of 0.76 s. This achievement
should permit the strategy to be easily embedded in the clin-
ical IGNS system, minimizing the delay suffered every time
an updated MR is required.

Validation of registration performance is measured with
a significant number of clinical cases, which we argue pro-
vides a much more informative indication of real registration
accuracy and robustness in comparison with controlled brain
phantom-based setups. However, the lack of a gold standard
does involve some limitations in the validation strategy. In
particular, given the limited number of homologous land-
marks, the uncertainty in identifying the precise location of
such points, and the potential disagreement between experts,
there is some ambiguity as to how accurate the performance
metric is. In this work, we provide an analysis of the land-
marks identified by each expert in order to demonstrate the
degree of agreement between experts, the potential need for
a non-rigid registration and to illustrate the challenges of an
accurate registration validation based on real clinical cases.
Given this ambiguity in measuring registration accuracy, we
choose to evaluate the performance of a rigid registration
only, and we demonstrate that even though a non-rigid regis-
tration may be required, a rigid registration can characterize
most of the deformation encountered.

Clinical data

We make use of fourteen clinical neurosurgical cases
obtained from the Montreal Neurological Institute’s Brain
Images of Tumors for Evaluation (MNI BITE) [15], an open
access online1 dataset of clinical MR and US images of brain
tumors. In particular, we evaluate the registration of pre-
operative MR images to intra-operative US images obtained
prior to tumor resection, identified as Group 2 of the MNI
BITE dataset. The cases involve low- and high-grade gliomas
(LGG and HGG, respectively), at different depths and loca-
tions in the brain and with tumor volumes ranging between

1 http://www.bic.mni.mcgill.ca/Services/ServicesBITE.

0.2 and 79.2 cm3. The initial location of each case corre-
sponds to a preliminary registration involving the manual
identification of corresponding points on the skin and the
MR image, as is common in standard clinical procedures.

All pre-operative images used consist of T1-weighted
gadolinium-enhanced MR images. All cases, except case
8, were acquired with an axial SPGR sequence. The pre-
operative MR image of case 8 was acquired with a 3D
MPRAGE acquisition. Two-dimensional US images were
acquired on the dura with an HDI 5000 (ATL/Phillips, Both-
ell, WA, USA) machine using a P7-4 phased array trans-
ducer at a depth of 6.5 and 8 cm. The US probe was tracked
with reflective spheres and the 2D images were captured
using a Pinnacle PCTV frame-grabbing card. Each acquisi-
tion includes between 200 and 600 frames. A 3D US volume
of voxel spacing of 1.0 × 1.0 × 1.0 mm is then reconstructed
with a distance-weighted pixel-based method [22]. Note that
the reconstructed volume used is different than the one found
in the MNI BITE dataset. In particular, we adopt a coarser
voxel spacing which reduces the number of holes found in
the volume and tends to decrease the presence of noise. The
processing time of reconstructing a 3D US volume currently
represents a significant delay with an average processing time
of 90 s, largely due to lack of software optimization. We note
that an implementation of 3D US reconstruction performed
in real-time was recently demonstrated in [4].

Gradient orientation-based registration

In this section, we describe the proposed registration
approach [6,5], characterized by three major components:
(1) a local similarity metric based on gradient orientation
alignment, (2) a multi-scale selection strategy that identi-
fies locations of interest with gradient orientations of low
uncertainty, and (3) a computationally efficient technique for
evaluating gradient orientations of the transformed moving
image. The registration pipeline consists of two stages. First,
a pre-processing stage involving the computation of image
derivatives of both volumes and the identification of loca-
tions with low uncertainty gradient orientations. The second
stage consists of an optimization strategy which maximizes
the average value of the local similarity metric evaluated on
the locations of interest. Optimization is performed with a
covariance matrix adaptation evolution strategy (CAE) [8],
a non-gradient-based optimization strategy.

Local similarity measure

The similarity metric employed evaluates the alignment of
corresponding gradient orientations as:

S(∇ IF ,∇ IM ) = cos (Δθ)2 (1)
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where Δθ is the inner angle between corresponding image
gradients, ∇ IF and ∇ IM . Note that the fixed image, IF , is
set to be the reconstructed 3D US volume, while the moving
image, IM , is set to be the pre-operative MR image.

In order to improve registration robustness and computa-
tional performance, we restrict the evaluation of the similarity
metric to a small set of locations with low uncertainty gra-
dient orientations. In the following section, we describe the
principles behind the selection strategy employed.

Gradient orientations from a noisy image

The main motivation behind the use of gradient orientations
as an image feature of interest lies in the fact that they are
directly related to the direction of anatomical boundaries.
Thus, it is of critical importance to give greater importance to
locations whose orientations correspond to tissue transitions
and disregard all locations whose gradient orientations are
brought forward by image artifacts or noise.

In this work, we adopt a selection strategy that identifies
locations of interest whose corresponding gradient orienta-
tions are considered reliable or of high certainty, and we then
restrict the evaluation of the local similarity metric to such
locations. It is important to note that such locations are iden-
tified on the fixed image and there is no selection made on the
moving image. This asymmetrical nature of this approach is
very well-suited for this multi-modal context. In particular,
we note that for the cases found in the MNI BITE dataset,
most of the strong tissue-type transitions exposed by the fixed
image (US) can also be found in the moving image (MR),
while the converse is typically not true. For such purposes, we
demonstrate an approach for obtaining a reliable indicator of
the certainty of a given gradient orientation and consequently
select a reduced set of locations with high certainty gradient
orientations.

In this work, we consider the main source of uncertainty in
gradient orientations to be additive Gaussian noise on voxel
intensities from the reconstructed US volume. It is important
to state that commonly used US noise models are typically
more complex. However, they are generally defined with rela-
tion to the raw “envelope” (i.e., before log-compression) US
intensity or on the log-compressed US intensity (i.e., US
intensity displayed on screen). For example, a proposed noise
model for log-compressed US intensity, commonly known
as the Loupas model [13], characterizes the noise as additive
Gaussian with a location-dependent variance proportional to
the original (i.e., undegraded) intensity value. We highlight
the fact that intensities found in the reconstructed US volume
are obtained by a linear combination (i.e., weighted mean)
of a large number of pixel intensities from log-compressed
US slices and thus involve a different noise model from the
one in log-compressed US.

Our simplifying assumption is to characterize such noise
as an additive Gaussian model,

I [i] = F[i] + ε[i] (2)

where F is the undegraded (i.e., noiseless) image, i is a
voxel index, and ε[i] is an i.i.d. Gaussian random variable
with variance σ 2.

The corresponding probability density of a voxel’s inten-
sity is expressed as,

p(I [i] | F[i]) = 1√
2πσ 2

exp
(

− (I [i] − F[i])2

2σ 2

)
(3)

If we also consider that the image gradient at a particular
location is obtained by convolution with linear operators that
act solely on the axis (dimension) of interest, we can derive
the posterior probability of, φ, the gradient orientation of the
undegraded image, F , given m and θ the observed gradient
magnitude and orientation of I . The resulting expression is

p(φ | m, θ) = e
− −m2 sin2 Δ

2||K||2σ2 · Φ(m cos Δ
|K|σ )

π
√

σ |K| · I0(
m2

4||K||2σ 2 ) · e
− m2

||K||2σ2

(4)

where Δ = φ − θ and Φ() is the cumulative distribution
function of a Gaussian random variable and K is the discrete
kernel characterizing the derivative linear operator.

The posterior density mainly expresses a unimodal direc-
tional density whose variance is a monotonically decreasing
function of m

|K| . Thus, we obtain that m
|K| represents a com-

mon indicator of the precision (i.e., inverse of variance) of a
given gradient orientation and which we can use as a cue for
identifying locations of interest.

In this work, we automatically identify a gradient orien-
tation selection threshold which corresponds to the 80th per-
centile of gradient magnitude (i.e., the threshold above which
the top 20 % locations with highest gradient magnitude are
found) for each particular case. To allow for reduced process-
ing times, we also consider a random selection of a reduced
number (e.g., 8,000) of voxels found within such mask.

Evaluation of transformed moving image gradients

Instead of adopting a straightforward approach for evaluating
the gradient of the transformed moving image, in which pixel
intensities are evaluated first by interpolation and the image
derivatives are consequently computed by convolution, we
adopt a more computationally efficient approach [6] which
simply maps the gradients computed (once) by convolution
on the original moving image.

The linear mapping of gradients can be easily found by
expanding the expression for the derivative of a transformed
moving image. Consider a D-dimensional moving image,
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IM , whose coordinate space is inversely mapped by a contin-
uous transformation function, T, to the fixed image coordi-
nate space. In other words, a location, x = (x1, . . . , xD),
in the fixed image coordinate space corresponds to loca-
tion T(x) = (T1, . . . , TD) in the coordinate space of the
original moving image. The derivative of the moving image
with respect to a particular dimension, x j , of the fixed image
coordinate space is expressed as,

∂ Im

∂x j

∣∣∣∣
T(x)

=
D∑
i

∂ Im

∂Ti

∣∣∣∣
T(x)

· ∂Ti

∂x j

∣∣∣∣
x

(5)

where the term ∂Ti
∂x j

corresponds to the (i, j)-th component
of the spatial Jacobian matrix of the transformation function.

JT =

⎡
⎢⎢⎣

∂T1
∂x1

· · · ∂T1
∂xD

...
. . .

...
∂TD
∂x1

· · · ∂TD
∂xD

⎤
⎥⎥⎦ (6)

Re-arranging terms we obtain the expression for the trans-
formed image gradient,

∇x Im
(
T(x)

) = J T
T (x) · ∇T Im

(
T(x)

)
(7)

where ∇T Im(x) =
(

∂ Im (T(x))
∂T1

, . . . ,
∂ Im (T(x))

∂TD

)
is the gradient

of the original moving image. The gradient of the transformed
moving image is therefore evaluated as the product of the
transpose of the spatial Jacobian matrix and the gradient of
the original (undeformed) moving image.

In other words, the gradient of the transformed moving
image can be evaluated as the product of the transpose of the
spatial Jacobian matrix and the gradient of original (unde-
formed) image. Hence, the derivatives of both images are
computed only once and the computational complexity of
the method is significantly reduced.

It is of interest to note that in the case of a rigid transforma-
tion, the spatial Jacobian matrix is the same for all locations
in the domain and simply reflects the rotational component
of the transformation.

Alternative techniques for comparison

We evaluated the registration performance of a variety
of intensity-based registration techniques with and with-
out relevant pre-processing stages. The first set of exper-
iments involve conventional multi-modal intensity-based
approaches such as the maximization of normalized cross-
correlation (NCC), the maximization of mutual information
(MI), and the maximization of normalized mutual informa-
tion (NMI). Since the optimization strategy can potentially
play a critical role in the registration performance, we evalu-
ated the registration with the same non-gradient-based opti-
mization strategy employed in our technique, as well as a
gradient descent (GD) strategy with an adaptive gain.

The second set of experiments involve the use of gradi-
ent magnitude images as input images instead of the original
volumes, and employing the same intensity-based similar-
ity metrics from the first set of experiments. Finally, we also
evaluate the performance of an approach largely based on the
registration pipeline proposed in [10]. This techniques relies
on a filtering pre-processing stage which aims to reduce the
presence of speckle, noise, and other image artifacts in both
modalities and thereby improve registration robustness. In
particular, the US volume is first Gaussian blurred to reduce
the effect of speckle. Then, high-intensity regions in the US
are automatically identified as those whose intensity values
lie above the Otsu threshold [17]. The mask is then dilated
by a few voxels so as to allow for an increased registration
aperture range. The MR image is similarly processed with
a median filter, which tends to increase the intensity homo-
geneity in regions with a common tissue type. Finally, the
processed images are registered by maximization of NMI.

Registration validation

Given the lack of a gold standard, we measure the reg-
istration accuracy of each method as the mean distance
between homologous landmarks independently identified by
two or three experts,2 commonly referred as the mean target
registration error (mTRE). Each case has between 19 and
40 landmarks in total. It is of critical importance to note
that the minimal mTRE under a rigid transformation has a
unique non-zero value for each case, both for each expert’s
landmarks as well as for the combined set of all experts’
landmarks. There are two main reasons behind this phenom-
enon. The first is the inherent uncertainty from the experts in
accurately identifying anatomical locations in both modali-
ties (particularly in the US volume). Thus, large errors in the
identification of landmarks reduce the accuracy of the per-
formance metric (i.e., mTRE) and also result in a potentially
false large value for the minimal mTRE under a rigid trans-
formation. The second is the potential presence of non-rigid
deformations. In particular, in the case of perfectly accurate
landmarks, a non-zero minimal mTRE effectively quanti-
fies the “residual” part of the deformation that is not fully
explained by a rigid transformation. Hence, a large minimal
mTRE can reflect the presence of errors in the identified land-
marks and/or significant non-rigid components in the true
deformation. For the purposes of illustrating the variability
of landmark identification between experts and the potential
need for a non-rigid registration, we provide a quantitative
analysis of the chosen points.

2 Note that the third expert in the MNI BITE dataset identified homol-
ogous landmarks for the first six cases only.
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Analysis of expert landmarks

For each expert’s landmarks, we evaluate the initial mTRE of
each case. We also report the mTRE evaluated with the opti-
mal rigid transformation. The optimal rigid transformation
given a set of landmarks is obtained analytically by solving
the corresponding Orthogonal Procrustes problem [21]. Note
that the mTRE evaluated with the optimal rigid transforma-
tion corresponds to the minimal mTRE that can be obtained
with a rigid transformation given that set of landmark points.
In order to analyze the agreement between different experts,
we also evaluate the mTRE of a given expert’s landmarks
with relation to the optimal rigid transformation obtained
with another expert’s landmarks. Such measure is particu-
larly informative in cases that do not seem to require a non-
rigid transformation.

Table 1 lists the results from such analysis. For exam-
ple, Table 1a evaluates the mTRE based on the landmarks
identified by Expert 1. The column labeled Initial lists the
mTRE values computed at the initial (unregistered) location
of each case. The column labeled Expert 1 Solution lists
the mTRE values computed with the optimal rigid transfor-
mation (analytically) obtained from Expert 1’s landmarks.
Hence, the column labeled Expert 1 Solution in Table 1a
also lists the minimal possible mTRE. We identify all val-
ues of the minimal mTRE larger than 2 mm (highlighted in
bold) as cases with potential need for a non-rigid model.
Notice that between Expert 1 and 3, only Expert 1 yields
one case with a minimal mTRE larger than 2 mm. In direct
contrast, Expert 2 yields six cases with a minimal mTRE
larger than 2 mm. We therefore conclude that for most of
the evaluated cases and their corresponding landmarks, a
rigid transformation can characterize most of the deformation
encountered.

In Table 1, all mTRE values larger than 3 mm and evalu-
ated with relation to a different expert’s solution are identified
as cases with significant disagreement between experts (high-
lighted in italic). The most striking case of disagreement is
found in Case 1, where each expert has a corresponding min-
imal mTRE of 1.23, 1.23, and 1.35 mm. Thus, there seems to
be no strong need for a non-rigid transformation. However,
the rigid solution obtained with the landmarks from Expert
2 results in a mTRE value of 11.55 mm with Expert 1’s land-
marks. In contrast, the rigid solution obtained with the land-
marks from Expert 3 results in a mTRE value of 2.11 mm
with Expert 1’s landmarks. Additionally, the rigid transfor-
mation from Expert 2 results in a mTRE of 10.69 mm when
evaluated with the landmarks chosen by Expert 3. In contrast,
the rigid transformation from Expert 1 results in a mTRE of
2.66 mm when evaluated with Expert 3’s landmarks. Hence,
we can state that Expert 1 and 3 seem to somewhat agree on
the deformation encountered in Case 1, while having a strong
disagreement with Expert 2.

The landmarks identified by Expert 1 and 2 for Case 1 are
illustrated in Fig. 2 for further analysis. Notice the significant
difference between the spatial distribution of each set and the
difference between the apparent transformation for each set.
In particular, the points identified by Expert 1 (shown in blue
and white) are already quite close in distance, while the ones
identified by Expert 2 (shown in green and yellow) are sig-
nificantly farther apart. For reference purposes, in Fig. 3, we
illustrate the landmarks identified by Expert 1 and 2 for Case
13, which exposes a less prominent disagreement between
experts. In such case, the distributions of the two landmark
sets are relatively similar when compared to the ones found
in Case 1.

The relevance of the analysis on the experts’ landmarks
lies in highlighting the challenges involved in the valida-
tion of a registration method in real clinical cases with
no gold standard. In particular, we feel it is important to
underline that though the use of manually identified points
allows for a quantitative evaluation of performance, there
is still a significant degree of subjectivity behind such val-
idation strategy and the numerical results should not be
accepted blindly. In particular, based on the exposed variabil-
ity between experts and corresponding landmarks, we state
that the validation of a non-rigid registration based on this
particular dataset is rather compromised. Hence, we choose
to evaluate registration performance restricted to a rigid trans-
formation.

Results

Our proposed approach was evaluated with three config-
urations. The first configuration, referred to as GOA Full
Mask, involves the maximization of gradient orientation
alignment of the top 20 % locations with the highest gradient
magnitudes in the reconstructed 3D US volume. The second
configuration, referred to as GOA Subset, provides reduced
processing times and involves the maximization of gradient
orientation alignment of 8,000 locations randomly selected
from the previously defined top 20 % mask. It is important to
note that 8,000 locations correspond to approximately 2 % of
the voxel locations found in the US volume (the exact ratio
varies from case to case). The first two configurations were
implemented in C++ and run on a computer with an Intel Core
2 Quad Q6700 CPU. The third configuration, GOA Subset on
GPU, is implemented to run on a NVIDIA GTX 670 video
card and was developed to provide highly reduced process-
ing times. It involves the maximization of gradient orienta-
tion alignment of 16,000 locations randomly selected from
the top 20 % mask. Figure 4 illustrates the images from Case
3 before and after registration with GOA Subset on GPU.
Notice how key structures like the falx and the lateral ventri-
cles are closely aligned after registration.
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Table 1 Analysis of
homologous landmarks
identified by each expert

Reported numbers include the
initial mTRE (Initial) and the
minimal mTRE found with the
analytical rigid transformation
obtained from each expert’s
landmarks. Minimal mTRE
values larger than 2 mm are
highlighted in bold and expose a
potential need for a non-rigid
registration. Values of mTRE
larger than 3 mm are shown in
italic and indicate a notable
difference between experts

mTRE based on Expert 1 landmarks Expert 1 solution Expert 2 solution Expert 3 solution

Case Initial (Minimal)

(a)

1 3.62 1.23 11.55 2.11

2 6.29 1.38 1.86 1.47

3 8.79 1.63 1.98 2.25

4 4.07 1.10 1.58 1.48

5 3.20 2.37 2.51 2.47

6 2.89 0.96 2.11 1.93

7 3.70 1.71 2.52 –

8 4.70 0.89 2.86 –

9 4.82 1.89 2.71 –

10 3.83 1.26 2.15 –

11 1.90 1.39 1.72 –

12 4.89 1.67 3.84 –

13 7.30 1.45 4.79 –

14 4.23 1.09 2.58 –

Average 4.59 1.43 3.20 1.95

Median 4.15 1.38 2.52 2.02

mTRE based on Expert 2 landmarks Expert 1 solution Expert 2 solution Expert 3 solution

Case Initial (Minimal)

(b)

1 7.20 10.28 1.23 8.11

2 5.93 2.29 1.91 2.27

3 9.02 3.10 2.86 3.92

4 3.68 2.23 1.61 1.88

5 1.96 2.12 1.67 2.21

6 1.86 2.45 1.04 2.16

7 2.31 3.10 1.74 –

8 3.02 3.83 2.49 –

9 5.33 3.36 2.39 –

10 2.43 2.48 1.71 –

11 1.26 1.53 1.22 –

12 2.61 3.66 2.04 –

13 3.49 5.40 2.56 –

14 3.45 3.62 2.57 –

Average 3.82 3.53 1.93 3.42

Median 3.23 3.10 1.83 2.24

mTRE based on Expert 3 landmarks Expert 1 solution Expert 2 solution Expert 3 solution

Case Initial (Minimal)

(c)

1 2.39 2.66 10.69 1.35

2 6.87 1.10 1.47 0.88

3 10.69 2.49 3.06 1.50

4 4.10 2.11 1.87 1.70

5 2.76 1.79 1.86 1.30

6 2.45 2.16 1.95 1.10

Average 4.88 2.05 3.48 1.31

Median 3.43 2.13 1.91 1.33
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Fig. 2 Homologous landmarks identified by Expert 1 and 2 for Case 1.
Points identified by Expert 1 are colored in blue (MR) and white (US).
Points identified by Expert 2 are colored in green (MR) and yellow (US).
A coronal and transverse slice of the MR are also shown for reference,
as well as a translucent rendering of the skin’s surface

Fig. 3 Homologous landmarks identified by Expert 1 and 2 for Case
13. Points identified by Expert 1 are colored in blue (MR) and white
(US). Points identified by Expert 2 are colored in green (MR) and yellow
(US). A coronal and transverse slice of the MR are also shown for
reference, as well as a translucent rendering of the skin’s surface

The registration results for the three configurations and
each of the fourteen cases are shown in Figs. 5 and 6. In Fig. 5,
we illustrate the performance of each configuration with rela-

Fig. 4 Overlapped pMR and iUS slices from Case 3 before and after
registration. The first row shows the slices at their initial location (coro-
nal, sagittal, and transverse). The second row shows the slices after
registration with the proposed approach

tion to a superset of landmarks that includes all experts’
landmarks. It is important to note that all configurations con-
sistently improve the registration accuracy with relation to
their corresponding initial location. Additionally, we can also
observe that the resulting mTRE is very close to the minimal
mean distance under a rigid transformation (depicted as a red
dashed line). The same set of results are enlisted in Table 2,
where we also report the processing times for each configu-
ration. The first configuration, (GOA Full Mask), involves a
processing time that ranges from 36 to 76 s, which is compa-
rable to the processing time of conventional intensity-based
methods. Alternatively, the second configuration, (GOA Sub-
set), obtains a similar registration accuracy with signifi-
cantly reduced processing times that range from 7 to 14 s.
Finally, the third configuration, (GOA Subset on GPU),
also obtains a similar registration accuracy but with highly
reduced processing times that range from 0.61 to 0.93 s.

In Fig. 6, we illustrate the performance of all configura-
tions with relation to the set of landmarks identified by each
expert. It is immediately clear that our proposed method is in
very close agreement with the landmarks selected by Expert 1
and Expert 3, since the resulting mTRE is quite close to their
minimal mTRE. On the other hand, when evaluating with
relation to Expert 2 landmarks, we tend to encounter a slightly
larger value than the minimal mTRE. However, this comes as
no surprise, since in the previous section we already demon-
strated that Expert 2 had significant disagreements with
Expert 1 and 3. Thus, any method that tends to align more
with landmarks from Expert 1 and 3 will inevitably show a
degradation with relation to the landmarks from Expert 2.

We also present a statistical summary of the registration
performance of our proposed approaches as well as of com-
peting techniques in Table 3. The evaluated methods are char-
acterized by a choice of similarity metric: mutual informa-
tion (MI), normalized cross-correlation (NCC), normalized
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Fig. 5 Rigid registration results with proposed method evaluated with
the set of all landmarks independently identified by three different
experts. The x axis corresponds to the clinical case, while the y axis
corresponds to the mTRE between manually identified corresponding
anatomical points. Also shown are the initial mTRE (Initial) in blue, as

well as the minimal mTRE (Minimal) possible under a rigid transfor-
mation, shown as a red dashed line. Notice that the three configurations
yield a mTRE just slightly larger than the minimal mTRE. Table 2 also
lists the resulting mTRE values for each configuration as well as the
corresponding processing times

Fig. 6 Rigid registration results with proposed method evaluated with
each of three sets of landmarks identified by a particular expert. The x
axis corresponds to the clinical case, while the y axis corresponds to the
mTRE between manually identified corresponding anatomical points.
Also shown are the initial mTRE, (Initial), in blue, as well as the mini-
mal mTRE (Minimal) possible under a rigid transformation, shown as a

red dashed line. Notice that for Expert 1 and 3, both configurations yield
a mTRE just slightly larger than the minimal mTRE and significantly
decreased with relation to the initial mTRE. However, evaluation with
relation to Expert 2 yields various cases with poor performance (e.g.,
Case 1, 7, 8, 12, 13 and 14)
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Table 2 Rigid registration results with proposed method evaluated as the mean distance (i.e., mTRE in mm) and range (i.e., minimal and maximal
value) between all the landmarks independently identified by all experts combined

GOA Full mask Subset Subset on GPU

Case mTRE (min, max) Time mTRE (min, max) Time mTRE (min, max) Time
in mm in s in mm in s in mm in s

1 4.89 (0.72, 11.0) 53 4.86 (1.06, 10.51) 12 4.86 (0.81, 10.55) 0.71

2 1.79 (0.16, 5.08) 50 1.78 (0.32, 5.13) 9 1.71 (0.25, 5.11) 0.71

3 2.73 (0.37, 6.70) 76 2.65 (0.60, 6.89) 16 2.83 (0.67, 6.91) 0.93

4 1.68 (0.41, 3.91) 37 1.72 (0.46, 3.97) 7 1.76 (0.51, 3.95) 0.61

5 2.12 (0.33, 6.80) 36 2.13 (0.21, 6.40) 9 2.00 (0.22, 6.15) 0.88

6 1.81 (0.36, 3.22) 48 1.71 (0.45, 3.22) 9 1.81 (0.41, 3.21) 0.68

7 2.51 (0.76, 5.38) 48 2.64 (0.87, 5.67) 14 2.75 (0.89, 5.71) 0.79

8 2.63 (0.64, 5.22) 56 2.65 (0.55, 5.22) 10 2.51 (0.51, 5.11) 0.82

9 2.70 (0.88, 6.83) 40 2.79 (0.73, 6.98) 7 2.67 (0.78, 6.74) 0.86

10 1.95 (0.25, 4.62) 73 1.94 (0.36, 4.94) 9 2.05 (0.37, 4.97) 0.67

11 1.56 (0.21, 3.45) 52 1.82 (0.34, 3.89) 9 1.78 (0.31, 3.79) 0.73

12 2.64 (1.01, 5.35) 41 2.47 (0.96, 5.52) 8 2.58 (1.00, 5.41) 0.72

13 3.47 (0.89, 7.30) 43 3.42 (0.47, 7.05) 12 3.57 (0.63, 7.15) 0.89

14 2.94 (0.84, 5.31) 62 2.92 (0.71, 5.74) 9 3.04 (0.86, 5.42) 0.69

Average 2.53 (0.56, 5.73) 51 2.54 (0.58, 5.80) 10 2.57 (0.59, 5.73) 0.76

Median 2.57 (0.53, 5.33) 49 2.55 (0.51, 5.60) 9 2.54 (0.57, 5.42) 0.73

The results are also illustrated in Fig. 5. Also shown is the processing time for each case. Notice that the GPU implementation of our proposed
approach (whose average and median performance values are highlighted in bold) yields an average processing time of 0.76 s

Table 3 Statistical summary of rigid registration results with all evaluated techniques

Method mTRE in mm mTRE minus minimal mTRE in mm Number of successes

Average Median Average Median <1mm <2mm

MI+ORI+CAE 22.62 9.20 20.42 7.51 3 3

NMI+ORI+CAE 21.58 8.63 19.39 6.89 3 4

NCC+ORI+CAE 70.58 76.30 68.38 74.11 0 0

MI+ORI+GD 11.83 6.84 9.64 4.44 3 5

NMI+ORI+GD 11.68 6.88 9.64 4.44 3 5

NCC+ORI+GD 37.83 29.73 35.63 28.21 0 0

MI+GM+CAE 3.00 2.90 0.81 0.64 9 12

NMI+GM+CAE 3.01 2.78 0.82 0.59 10 12

NCC+GM+CAE 6.59 3.09 4.39 0.79 8 11

MI+GM+GD 2.90 2.67 0.71 0.61 11 14

NMI+GM+GD 2.87 2.66 0.67 0.60 12 13

NCC+GM+GD 3.77 2.91 1.57 0.69 9 12

NMI+PRE+CAE 13.47 9.22 11.28 6.83 0 1

NMI+PRE+GD 10.78 8.67 8.59 5.83 0 0

GOA full mask 2.53 2.57 0.33 0.27 14 14

GOA Subset 2.54 2.55 0.34 0.22 14 14

GOA Subset on GPU 2.57 2.54 0.37 0.33 14 14

The first column identifies the method used which are characterized by a similarity metric (e.g., mutual information (MI), normalized cross-
correlation (NCC), normalized mutual information (NMI), and gradient orientation alignment (GOA)), input images (e.g., original images (ORI),
gradient magnitude images (GM), and median filtered MR in conjunction with a Gaussian blurred US (PRE)). and optimization strategy (e.g.,
covariance matrix adaptation evolution strategy (CAE) and a gradient descent (GD) optimizer with adaptive gain). The first two columns of
registration results show the average and median value of the mTRE between manually identified corresponding points. Also shown are the average
and median value of the mean distance minus the minimal mTRE. The last columns indicate the number of cases in which the resulting mTRE is
larger than the minimal mTRE by no more than 1 or 2 mm, respectively
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mutual information (NMI), and gradient orientation align-
ment (GOA); input images: original images (ORI), gradient
magnitude images (GM), and median filtered MR in con-
junction with a Gaussian blurred US (PRE); and optimiza-
tion strategy: covariance matrix adaptation evolution strategy
(CAE) and a gradient descent (GD) optimizer with adaptive
gain. We report the mean and median value of two registration
accuracy measures: the mTRE of the homologous landmarks
from all experts combined, and the difference between such
mTRE and the minimal mTRE. Additionally, we demonstrate
the number of cases that had a successful registration, where
we define success as an instance when the mTRE is larger
than the minimal mTRE by no more than 1 or 2 mm.

The results obtained clearly indicate that conventional
multi-modal intensity-based metrics, like MI, NCC, and
NMI, generally show very poor performance in this particular
context. Nonetheless, if we make use of gradient magnitudes
images and employ the same multi-modal similarity metrics,
we obtain slightly improved results. A particularly good-
performing configuration involves the maximization of NMI
between gradient magnitude images with a gradient descent
strategy, which successfully registers 12 of the 14 cases with
an mTRE less than 1 mm larger than the minimal mTRE.

In comparison with other competing techniques evaluated,
our proposed approach is the only one where all cases have a
mTRE less than 1 mm larger than the minimal mTRE. In par-
ticular, the median value of the difference between the mTRE
and the minimal mTRE is of 0.27 mm for the first configura-
tion, (GOA Full Mask); 0.22 mm for the second configura-
tion, (GOA Subset); and 0.33 mm for the third configuration,
(GOA Subset on GPU).

Discussion

We have presented a rigid registration method for MR to iUS
and evaluated it with fourteen clinical cases obtained from
the MNI BITE dataset. Registration accuracy was evaluated
with the use of homologous landmarks identified by two or
three experts, which provide a reliable indication of the posi-
tive performance of the algorithm with relation to competing
methods. It is important to note that, while our validation with
real clinical cases is much more preferable than a synthetic
setup which relies on brain phantoms, there are still some
serious limitations with such a validation strategy. In particu-
lar, we have pointed out that there is inherently an uncertainty
in the points identified by the experts. We have exposed some
of the limits of such validation strategy by reporting the min-
imal mTRE obtainable with a rigid transformation (with all
available landmarks or with the landmarks associated with
a particular expert), as well as the mTRE with relation to
another expert’s solution. Such analysis shows that there is

a significant variability in the performance metric dependent
on the particular expert used for landmark identification.

While for some cases a rigid body registration might be
sufficient for a successful alignment of all regions of interest,
there are also cases that might require correction of non-rigid
deformations. It is important to note that the evaluation of a
non-rigid registration approach magnifies the challenge of
adopting a proper validation scheme. Future work in this
direction should not only propose a suitable non-rigid reg-
istration scheme, but also present a principled approach for
evaluating its accuracy.

In is important to note that we evaluated our proposed
approach on real clinical cases prior to resection. Future
work will directly address the task of registration given the
presence of resection cavities and evaluate its performance.
Note that such context involves the additional challenge of
uncorresponded tissue across modalities.

We have also specified that our current setup suffers a sig-
nificant processing delay related to the reconstruction of a 3D
US volume with the set of acquired 2D US slices. It is likely
that a reduced processing time can be obtained by software
optimization or by adopting a GPU-based solution [4]. Alter-
natively, we can adopt a slice-to-volume registration strategy
which effectively bypasses the need of a reconstruction algo-
rithm and provides almost immediate visual feedback. Future
work will evaluate the performance of such techniques.

Conclusion

We have presented a new and robust approach for the rigid
registration of pMR to iUS which provides fast and robust
performance evaluated over fourteen clinical cases. Our pro-
posed approach registered all cases with a median differ-
ence between the mTRE and the minimal mTRE (i.e., lower
bound) of 0.22, 0.27, or 0.33 mm (depending on the configu-
ration). Furthermore, we have shown the computational effi-
ciency of our technique which allows for registration times
as low as 0.61 s by using a reduced set of locations and adopt-
ing a GPU-based implementation. Finally, in order to expose
some of the limitations of our validation strategy, we have
also reported an analysis on the manually identified land-
marks used for measuring registration accuracy, where we
have shown that there is a significant variability between
experts.
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