
Int J CARS (2013) 8:867–875
DOI 10.1007/s11548-013-0824-8

REVIEW ARTICLE

The impact of missing sensor information on surgical workflow
management

Philipp Liebmann · Jürgen Meixensberger ·
Peter Wiedemann · Thomas Neumuth

Received: 9 November 2012 / Accepted: 20 February 2013 / Published online: 7 March 2013
© CARS 2013

Abstract
Objective Sensor systems in the operating room may
encounter intermittent data losses that reduce the perfor-
mance of surgical workflow management systems (SWFMS).
Sensor data loss could impact SWFMS-based decision sup-
port, device parameterization, and information presentation.
The purpose of this study was to understand the robustness
of surgical process models when sensor information is par-
tially missing. SWFMS changes caused by wrong or no data
from the sensor system which tracks the progress of a surgi-
cal intervention were tested.
Materials and methods The individual surgical process
models (iSPMs) from 100 different cataract procedures of
3 ophthalmologic surgeons were used to select a random-
ized subset and create a generalized surgical process model
(gSPM). A disjoint subset was selected from the iSPMs and
used to simulate the surgical process against the gSPM. The
loss of sensor data was simulated by removing some informa-
tion from one task in the iSPM. The effect of missing sensor
data was measured using several metrics: (a) successful relo-
cation of the path in the gSPM, (b) the number of steps to
find the converging point, and (c) the perspective with the
highest occurrence of unsuccessful path findings.
Results A gSPM built using 30 % of the iSPMs successfully
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found the correct path in 90 % of the cases. The most critical
sensor data were the information regarding the instrument
used by the surgeon.
Conclusion We found that use of a gSPM to provide input
data for a SWFMS is robust and can be accurate despite miss-
ing sensor data. A surgical workflow management system can
provide the surgeon with workflow guidance in the OR for
most cases. Sensor systems for surgical process tracking can
be evaluated based on the stability and accuracy of functional
and spatial operative results.
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Introduction

In modern operating theaters, the surgeon is surrounded by a
large variety of technical devices, all with the purpose of giv-
ing him assistance during the operation. Because of the lack
of interoperability between those devices, some functionality
cannot be used or could only be used with additional prelim-
inary effort [1]. The lack of interoperability not only affects
data integration but also causes context integration issues.
Context integration describes the possibility of sharing com-
mon knowledge of the surgical process. By using surgical
process models described in [2], comprehensive knowledge
of the surgical process can be provided during the operation
by a workflow management engine (WFMS).

To provide surgical assistance system with the current step
of the operation, the WFMS has to know the actual step of
the surgery. To detect this process information, the WFMS
must rely on the interpretation of various sensor information
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gathered in the OR. Based on this sensor information, the cur-
rent step can be derived and aligned with the process model
loaded by the WFMS. From the knowledge of the actual step
and the preloaded model of the overall intervention, the sys-
tem is able to derive the next step. Therefore, services can be
activated and devices can be parameterized accordingly. The
two most important requirements for successful implemen-
tation of the aforementioned approach are the availability of
a valid process model and accurate sensor information.

However, in practice, the accuracy of the sensor informa-
tion cannot be guaranteed. The data can be inaccurate due
to various disorders or nonexistent due to sensor failure. In
addition to this, the interpretation of different sensor data can
produce the wrong result. Since the WFMS receives an inter-
pretation of the sensor data as input information, an incor-
rect interpretation can cause the WFMS to be completely
unsynchronized or to arrive at the wrong step completely.
Therefore, a high quality of sensor information is needed.
This can be achieved by fusing information of many sensor
systems [3]. To reduce the overall complexity of the system
and the computational operating cost, it is of interest to not
make every sensor system redundant, but to evaluate which
information and which sensors are error prone. From this, a
system can be developed which takes the quality of informa-
tion into account.

In other words, having high-quality sensor information
is just as important as the generation of a sufficiently accu-
rate and valid process model. In business information sys-
tems, process models can be created due to their relatively
high linearity using a top–down analysis of the process. In
surgery, this approach is limited due to the high variability
of the process [4]. The high variability is due to the diver-
sity of patients, their diagnosis, and the skill of the surgeons.
A top–down modeling approach leads to relatively coarse
descriptions of the procedure. In [4], the authors describe
an inductive method for the generation of a surgical process
model. This method is based on the fusion of process models
from many observations.

The aim of this work is to assess an inductively created
process model with respect to the problems that can arise
from incomplete or erroneous sensor information. Incom-
plete sensor information can lead to a break in the path obser-
vation of the process model and thus lead to an undefined state
in the process. In the case of such an event, the system must be
set to an exception state until the path in the model has been
found again. As a prerequisite, we use the 6-layer approach
published in [3]. Here, the sensor information is transformed
through 6 abstraction layers from a very basic representation
(hardware abstraction layer) to a generic, human readable
representation (application layer). The application layer of
this approach is, with a few adaptations, readably for every
WFMS. In this study, we clarify the question of how many
steps are required to reconverge upon the correct track in the

process model after the system has lost its way. Furthermore,
we investigated how the model responds to the absence of
entire categories of sensor information. We also investigated
sensitive input parameters in order to derive a prioritization
of compensatory strategies.

In the literature, there are different approaches to deal-
ing with surgical workflows. In [5], all processes in and
around the operating room were recorded by using a struc-
tured time recording sheet in order to investigate potential
weaknesses of the process. The analysis revealed a signifi-
cant inefficiency of unused surgical capacity caused by delays
in the perioperative environment. The documentation of the
surgical process is also the subject of the question in [6].
The process was recorded from multiple significant points
using four video sources in the operating room. By com-
bining the video recordings with text-based recordings of
events during the intervention, some evaluation questions
could be answered in a subsequent analysis which could not
be answered prior to the study. By analyzing the size of the
compression of video data, the group in [7] investigates the
movement in the OR. Their work aims to detect higher move-
ment of the OR personnel during critical situations in the
process. An overview of various sensor systems for moni-
toring in the operating room is presented in [8]. The authors
identify knowledge of the surgical procedure as a prerequi-
site for the development of error-prevention systems in the
OR. None of the above-mentioned works use process mod-
els of the intervention to predict the next step and therefore
none determine their models with respect to robustness of the
process model. In automotive systems, the handling of sen-
sor data is a routinely done task. In [9], the authors present a
detail overview of commonly used fault tolerant design tech-
niques in this domain. The authors of [10] introduced a new
multistep ahead predictive filter scheme with a predominant
performance in compensation of missing data compensation.
Nevertheless, in this domain, the underlining process model
is very basic compared to the surgical process in itself.

In this work, we show, based on 100 clinical recordings
of cataract eye surgery, how a generalized and inductively
generated surgical process model reacts to the failure of sen-
sor information. In the methodology section, we will first
address the clinical records and the creation of a general sur-
gical process model. In addition, the construction of the test
system and the study design for the validation of the model
are described.

Methodology

Surgical process modeling

From a modeling perspective, the term surgical process
model (SPM) refers to an actual surgical intervention. This

123



Int J CARS (2013) 8:867–875 869

Fig. 1 A simplified iSPM is
shown on the left. The XML
representation of a single task
with the corresponding
perspectives is depicted on the
right

Table 1 Explanation of the terms used in this paper

Generic term Surgery-specific term Abbreviation in figures

Organizational Actuator (e.g., surgeons right hand) –

Functional Action (e.g., cut) a

Operational Instrument (e.g., scalpel) i

Spatial Structure (e.g., anterior capsule) s

Behavior Time –

definition is based on the definition of the Workflow Manage-
ment Coalition[11] where a process model is described as:
“…a set of one or more linked procedures or activities that
collectively realize a surgical objective within the context
of an organizational structure defining functional roles and
relationships .” A surgical process model is defined as: “…a
simplified pattern of a Surgical Process that reflects a prede-
fined subset of interest of the Surgical Process in a formal or
semi-formal representation” [12]. In this model, every activ-
ity corresponds to one specific action of the surgeon during
the intervention. A process model based on the procedure of
one single patient is referred to in this paper as an individual
surgical process model (iSPM).

Each activity consists of a tuple of five elements that give
different perspectives on the particular surgical step (Fig. 1).
These perspectives are defined as follows:

• Organizational: The entity under consideration
• Functional: The action undertaken by the entity under

consideration

• Operational: The instrument which is used for this
activity

• Spatial: The anatomical structure currently being worked
on

• Behavior: The duration of the activity

Since these are generic definitions from the field of process
management, in this paper, we refer to them as following
(Table 1).

To produce a generalized surgical process model (gSPM),
several iSPMs are combined. The iSPMs are first divided into
their surgical phases. Subsequently, for each surgical phase,
the corresponding activities of the iSPMs are determined and
combined into one activity in the gSPM. Similarly, the pre-
decessor and successor activities are determined and con-
nected by transitions between the activities. The probability
of a transition from one activity to the next is determined
based on the frequency of occurrence in the iSPMs. By sta-
tistical averaging based on the merging of multiple iSPMs,
the gSPM represents an averaged model of a type of surgical
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Fig. 2 Schematic
representation of a gSPM with
six activities and three
perspectives (a, i, s) per activity

Fig. 3 Design of the test
system consisting of the
workflow management systems,
the process simulation unit with
the iSPM database, the gSPM
generator, and the stastical
analysis unit

intervention. A schematic example of a gSPM is given in
Fig. 2.

The aforementioned problem of the high variability of the
surgical procedure and hence the resulting problems of mod-
eling can be taken into account in this model. By mapping
the variability through probabilistic transitions, all possible
process variations in the model are considered.

The gSPM was implemented as a XML data structure. For
further processing, this data structure must be converted into
a format which is able to be processed by the workflow man-
agement system. For this research, the Yet Another Workflow
Language (YAWL) [13] and the matching YAWL workflow
management system were used. YAWL implements, based
on the formal logic of Petri nets, all of the workflow patterns
proposed by the workflow patterns initiative [14] and extends
them to the patterns of concurrency and cancelation.

Test system

To conduct this study, a test system was developed. This
system consisted of four interconnected standalone software
components (Fig. 3).

In the process simulation unit, the gSPM was created from
the iSPMs in the SPM database. The simulation set, consist-
ing of iSPMs, was then provided to the process simulator.
The process simulator passed each activity from each iSPM
in the test set to the uncertainty generator. Perspectives were
randomly deleted from each activity to simulate uncertainties
in the sensor data. The process monitor then sent the activity
one by one to the workflow management system. To store
the iSPMs, a postgres 8.2 [15] database was used. All other
components were proprietary developments in Java.

To generate a gSPM from the test set, the set was sent to the
gSPM generator. The resulting workflow schema was sent to
the workflow management system. The workflow manage-
ment system executed the process model within the workflow
engine. In the workflow log, the success of the execution
was logged for later analysis. The analysis was done with the
statistical tools R [16] and SPSS [17].

Since the goal of the study was to investigate the model
regarding the problems that could arise from incomplete
or erroneous sensor information, the uncertainties genera-
tor simulated sensor defects. For this purpose, perspectives
were hidden from subsequent activities. This could lead to
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Fig. 4 Left no sensor information is missing, so the path can be uniquely found. Right because of the missing sensor data, more than one path must
be followed

the problem that the path of the gSPM was not clearly iden-
tifiable, and thus the unambiguous tracking of the path could
not be guaranteed. This situation can occur in reality when
a sensor system, like the instrument tracking system, can-
not produce any output, for example, the system detects the
action “cut” and the anatomical structure but not whether the
instrument is a scalpel or the scissors. In this situation, mul-
tiple paths must be followed until a unique path is found. An
example is given in Fig. 4. On the left side, a fully defined
iSPM and the corresponding gSPM are depicted. During the
course of the intervention, simulated by the iSPM, the WFMS
was able to find a corresponding activity in the gSPM for each
activity of the intervention. On the right side of Fig. 4, on task
two of the iSPM, the perspective b is corrupted (marked with
the underscore). From that, two possible process states in the
corresponding gSPM can be found. The WFMS must follow
the two possible paths until a unique entry point can be found.

System evaluation study design

Cataract operations for the surgical treatment for glaucoma
[18] were used as the data for the study, as they are one of
the most frequently performed eye surgeries in Germany. For
the study, 100 cataract operations were recorded as described
below. The operations consisted mainly of four different
phases. First, the anterior capsule is opened and then the
opacified lens is removed, after that the artificial intraocular
lens is implanted, and finally, viscoelastic material used to

support the operation is removed. All the operations were
performed by three different surgeons at the University Hos-
pital Leipzig, Germany.

The recordings of the iSPMs were made by means of a
method developed at the ICCAS institute for the genera-
tion of surgical process models. This method is based on
the recordings of trained medical students. The recordings
were used to simulate the interpreted sensor data. In [12],
this method is described in detail and explains the assurance
of a valid and accurate process model. The students used the
ICCAS surgical workflow editor to record the operation step
by step. The ICCAS Surgical Workflow Editor is a piece of
software developed specifically for this task and operates on
a tablet PC with pen input. After recording and analyzing
the iSPMs, a total of 120 individual surgical tasks could be
defined. Thus, a gSPM consists of a maximum of 120 tasks.

In order to test the reliability of the workflow schema
that was generated from iSPMs, two criteria were selected as
dependent variables. The first criterion was the identification
of a successful entry point. This variable tests the model
with respect to the existence of a point at which the system
can converge back to the correct path. The second criterion
was the number of activities sent by the process monitor
that was needed to successfully track the path again. With
the combination of these variables, a statement can be made
about how long it takes to locate a unique path in the model.

The study was guided by the following procedure: first,
iSPMs were randomly chosen from the SPM database to
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Fig. 5 Test performance design
for the validation study

create a gSPM as a test set, first from 10 %, then from 20,
30, up to 100 % of the available iSPMs. The gSPM was
then tested against 10 disjoint iSPMs from the database. To
guarantee the highest possible randomization of the study,
the aforementioned steps were repeated 250 times (Fig. 5).
Based on 250 runs, 10 different test-set sizes, six interven-
tion phases, 10 tested iSPMs, and the gradual deletion of
three different perspectives, 450,000 records were produced.

Results

In this validation study, we investigated how many iSPMs
were needed to build up a generalized model of the process
to successfully relocate the path in the model after it was lost.
This was to gain knowledge of the variation of the model. In
order to do that, the number of iSPMs to build the gSPM was
varied. The number of steps required to converge was also
recorded. We also investigated the influence of the perspec-
tives on successful path location. Our dependent variables
were the rate of locating a path, the steps needed to locate it,
and the deleted perspective.

In Table 2, the “Test-set size” column indicates the varia-
tion of the test set used to generate the gSPM. Columns “Suc-
cess rate of path location” and “Number of step to find the
converging point” are subdivided according to the observed
perspective of the process. The columns inside of the “Suc-
cess rate of path location” section display the mean success
rate as a percentage, the standard deviation, and the maxi-
mum and minimum. Correlating to this, the column “Num-
ber of step to find the converging point” in Table 2 shows the
number of steps required to locate the path dependent on the

number of iSPMs used to build the gSPM and the deleted
perspectives.

In Fig. 6, the average success rate is shown dependent
to the deleted perspective and size of the learning set. For
example, with the deleted perspective “instrument,” the suc-
cess rate drops from 95 % ± 6.78 % to 92.88 % ± 8.15 %
when the learning-set size is reduced from 80 to 50 %.

Figure 7 shows the decline in the number of the steps
needed to locate the paths with respect to the learning-set
size. For instance, when using 70 % of the iSPMs to create the
gSPM and deleting the perspective instrument, 1.81 ± 0.36
steps are needed to locate the path in the model again. The
decline of these values results from the lower success rate of
locating a path in the model.

Discussion

In this work, we tested a process model created from patients’
individual models with respect to the relevance of the com-
pleteness of sensor information to monitor the process. It was
possible to determine how many steps were needed to resume
the process flow after losing track of the path.

The inductive model, i.e., the fusion of many patient-
specific process models, already takes into account the fact
of the high variability of surgical procedures during its cre-
ation. In the resulting model, all possible process variations
can be shown.

Exactly 100 models of individual cataract surgery oper-
ations were used for the study. These interventions were
recorded by trained medical students using the ICCAS work-
flow editor. The cataract surgery offered a good basis for
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Table 2 Success rates of locating the right path (in percent) and the number of steps to find the converging point with different learning-set sizes
in the surgical phase “Removal of Healon®”

Test-set size (no. of iSPMs) Success rate of path location Number of step to find the converging point

Action Instrument Structure Action Instrument Structure

100 100.0 100.0 100.0 1.90 2.10 1.96

0.0 0.0 0.0 0.28 0.26 0.31

– – – [1.84;1.95] [2.05;2.15] [1.90;2.02]

90 93.04 94.52 93.28 1.73 1.92 1.80

7.63 7.60 7.79 0.29 0.32 0.33

[92.09;93.99] [93.58;95.46] [92.31;94.25] [1.69;1.77] [1.88;1.96] [1.76;1.85]

80 92.20 95.00 93.56 1.69 1.90 1.77

9.16 6.78 7.90 0.28 0.37 0.31

[91.06;93.34] [94.16;95.84] [92.58;94.54] [1.65;1.72] [1.85;1.94] [1.73;1.81]

70 92.24 94.84 94.72 1.67 1.81 1.76

7.90 7.07 7.56 0.30 0.36 0.34

[91.26;93.22] [93.96;95.72] [93.78;95.66] [1.63;1.70] [1.77;1.86] [1.72;1.80]

60 91.72 94.60 92.52 1.66 1.76 1.69

8.77 6.77 8.62 0.28 0.36 0.30

[90.63;92.81] [93.76;95.44] [91.45;93.59] [1.62;1.69] [1.71;1.80] [1.65;1.73]

50 91.72 92.88 92.68 1.61 1.67 1.63

9.26 8.15 8.29 0.30 0.36 0.31

[90.57;92.87] [91.87;93.89] [91.65;93.71] [1.57;1.65] [1.63;1.72] [1.59;1.67]

40 90.92 93.84 92.08 1.54 1.61 1.59

9.50 7.89 8.62 0.33 0.33 0.32

[89.74;92.10] [92.86;94.82] [91.01;93.15] [1.50;1.58] [1.57;1.65] [1.55;1.63]

30 91.36 91.88 92.20 1.46 1.52 1.49

8.58 9.61 8.57 0.30 0.30 0.31

[90.30;92.42] [90.69;93.07] [91.14;93.26] [1.42;1.50] [1.48;1.56] [1.45;1.53]

20 90.80 90.08 89.68 1.31 1.45 1.35

9.02 10.26 10.13 0.32 0.31 0.32

[89.68;91.92] [88.81;91.35] [88.42;90.94] [1.27;1.35] [1.41;1.49] [1.31;1.39]

10 86.92 84.52 87.20 1.07 1.30 1.16

11.98 14.14 11.24 0.26 0.30 0.29

[85.44;88.40] [82.77;86.27] [85.81;88.59] [1.04;1.10] [1.26;1.34] [1.12;1.19]

the study through its frequency and high degree of linearity.
Because of the high degree of formalization and automation
in conducting this study, any other operations available as
individual process models could be tested equally.

In our validation study, we investigated how many indi-
vidual iSPMs were needed to create a robust gSPM as a
basis for a workflow schema that can relocate the path in
the model after it was lost due to a variation in the actual
process. Furthermore, we investigated how long it would take
to locate the path again. We showed that even with a small set
of only 30 % of iSPMs, a workflow schema could be gener-
ated that finds the path more than 90 % of the time. Since the
model built from the iSPM should reflect the cataract surgery
at the University Hospital in Leipzig, we did not created a

surgeon-specific model. In the future, this model could be
approved by being more specific in choosing iSPM for its
creation, for example, all selected iSPMs are from one sur-
geon, from patients with similar preconditions, and similar
age.

We showed that correct information of all three perspec-
tives is crucial for successful process tracking. The data also
show that the functional and spatial perspectives are more
sensitive with respect to missing information. Missing infor-
mation in these perspectives leads to more interruption of
process tracking and poorer detection of convergence points.
We did not investigate to which extend a specific action or
a specific anatomical structure influences this. The opera-
tional perspective in comparison is less sensitive to missing
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Fig. 6 Decline of mean success rate of path location for the surgical
phases Removal of Healon®, depending on the number of iSPMs in the
test-set size

Fig. 7 Decline of mean number of step to find the converging point
for the surgical phases Removal of Healon®, depending on the number
of iSPMs in the test-set size

information. This could be because a certain action can be
performed with more than one instrument but not vice versa
(e.g., cutting can be executed with a scalpel or the scissors but
you can only cut with the scalpel or the scissors). This leads

to more unique actions in the gSPM even if the operation
perspective is missing.

There are a variety of potential uses for a surgical work-
flow management system in the operating room of the future.
For example, the correct information could be displayed at
the right place at the right time, the relevant devices can
be automatically parameterized, and the remaining duration
of the operation can be estimated and thus the next patient
can be prepared at the right moment. Prerequisites for all of
these potential applications however are the presence of high-
quality models of the operation and correctly interpreted
sensor information.

Through this study, it was shown that an inductively cre-
ated process model can serve as a valid basis for a surgical
WFMS. Even after losing track of the path, in most cases, a
convergence point could be found.

Conclusion

The creation of a process model that represents a surgical pro-
cedure accurately but is also robust to variance is a challeng-
ing task. Inductive creation of a process model has proven
itself to be a method which takes in account the different
needs.

The aim of this study was to validate generalized process
models that were generated by using many patient-specific
process models. This validation took place by finding the
number of required steps to return to the valid path after
diverging. In addition, which perspectives of the process
model are particularly important during the process observa-
tion were determined. About 100 models of cataract surgery
were used to create a generalized process model. In addition,
a system was developed that supports the processing of the
above questions. We showed that the functional and the spa-
tial perspectives were almost equally important with respect
to successfully reconverging on the path in case the process
tracking was interrupted.

We showed that such models can be a valid solution to the
problems of high variability in tracking surgical procedures.
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