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Abstract
Purpose Differentiation of glioblastomas from metastases
is clinical important, but may be difficult even for expert
observers. To investigate the contribution of machine learn-
ing algorithms in the differentiation of glioblastomas mul-
tiforme (GB) from metastases, we developed and tested a
pattern recognition system based on 3T magnetic resonance
(MR) data.
Materials and Methods Single and multi-voxel proton mag-
netic resonance spectroscopy (1H-MRS) and dynamic sus-
ceptibility contrast (DSC) MRI scans were performed on 49
patients with solitary brain tumors (35 glioblastoma mul-
tiforme and 14 metastases). Metabolic (NAA/Cr, Cho/Cr,
(Lip+Lac)/Cr) and perfusion (rCBV) parameters were mea-
sured in both intratumoral and peritumoral regions. The sta-
tistical significance of these parameters was evaluated. For
the classification procedure, three datasets were created to
find the optimum combination of parameters that provides
maximum differentiation. Three machine learning methods
were utilized: Naïve-Bayes, Support Vector Machine (SVM)
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and k-nearest neighbor (KNN). The discrimination ability of
each classifier was evaluated with quantitative performance
metrics.
Results Glioblastoma and metastases were differentiable
only in the peritumoral region of these lesions (p < 0.05).
SVM achieved the highest overall performance (accuracy
98 %) for both the intratumoral and peritumoral areas. Naïve-
Bayes and KNN presented greater variations in performance.
The proper selection of datasets plays a very significant role
as they are closely correlated to the underlying pathophysi-
ology.
Conclusion The application of pattern recognition tech-
niques using 3T MR-based perfusion and metabolic features
may provide incremental diagnostic value in the differentia-
tion of common intraaxial brain tumors, such as glioblastoma
versus metastasis.

Keywords Classification · DSC-MRI · Glioblastoma ·
1H-MRS · KNN · Metastasis · Naïve Bayes ·
Pattern recognition · SVM

Introduction

Primary glioblastomas multiforme (GB) and intracranial
metastases are the most commonly identified brain tumors in
the adult population. Conventional MR imaging of glioblas-
tomas and solitary intracranial metastatic lesions may be
indistinguishable, often displaying lack of differentiation
between these two entities, as their imaging characteristics
and contrast-enhancement patterns may be similar in many
cases. Preoperative differentiation between these lesions
may contribute to a more efficient treatment planning and
follow-up, especially in the cases when brain metastases are
detected before the primary cancer. In these cases, if glioblas-
toma has been withdrawn from the differential diagnosis,
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accurate identification of metastases would be important
for early search of the primary tumor, a safer location to
biopsy for histo-pathological diagnosis and the possible fur-
ther treatment with neoadjuvant therapy [1].

Advanced MR imaging techniques, such as proton
magnetic resonance spectroscopy (1HMRS) and Dynamic
Susceptibility Contrast Enhanced (DSC) MR imaging, pro-
vide information regarding the physiological and metabolic
characterization of brain tissue. In vivo 1HMRS provides
a metabolic profile of brain tumors, measuring specific
aminoacids-as N-acetylaspartate (NAA), Choline (Cho),
Creatine (Cr), lipids (Lip) and lactate (Lac) and their relative
ratios [1], whereas DSC-MRI enables non-invasive qualita-
tive and quantitative measurements of tumor vascularity via
the relative cerebral blood volume (rCBV) parameter [1,2].

The previous studies have sought to distinguish glioblas-
tomas from intracranial metastatic brain tumors using the
aforementioned MRI methods [1–8]. Regarding the intra-
tumoral region, the majority of previous researchers have
reported that both 1HMRS and DSC MRI do not con-
tribute significantly in the differentiation of these tumor
groups, due to the similarities of the metabolite ratios and
the increased vascularity between these tumors [1,2,5–7].
Consequently, the interest of investigators included the per-
itumoral regions due to the different patho-physiological
mechanisms involved, regarding the infiltrating or non-
infiltrating nature of the lesions [1,2,5–7,9–12].

However, all the previous reports did not investigate the
nonlinear relationships between the various MR parameters
extracted from these techniques. The analysis of these large
amounts of data with extremely significant diagnostic value
may be a time-consuming process, requires specific expertise
and may not be feasible during the clinical routine, especially
because these data are mainly numeric.

At this point, pattern recognition techniques can be applied
in order to investigate the complex intra-variable relation-
ships and potentially aid the differential diagnosis of common
intraaxial brain tumors, such as GBs and metastatic lesions.
The Machine Learning discipline provides the mathemati-
cal and computational mechanisms to take advance of the
available biological knowledge and data gathered from the
problem domain [13].

Recently, a great effort has been made to develop
intelligent systems for brain tumor diagnosis, automatic
processing, classification, evaluation and representation of
spectroscopic data [14–18]. Nevertheless, the previous stud-
ies used only a single MR sequence and did not investigate
the simultaneous contribution of multiple MR imaging para-
meters. Only a few researchers achieved to combine multi-
parametric data provided by conventional MRI and either
1H-MRS or perfusion MRI [19–25].

Li et al. [19] trained SVM classifier using signal inten-
sity on the T1-weighted and T2-weighted images or blood

supply for glioma grading, achieving accuracies between
83.21 and 88.33 %. Zacharaki et al. [21] applied nonlinear
SVMs for the discrimination of glioblastomas from metas-
tases scoring 81 % accuracy and concluded that the parame-
ters extracted from the rCBV maps proved to be particularly
important, since they were top-ranked in most classification
pairs investigated. Devos et al. [22] compared three clas-
sification techniques for automated brain tumor diagnosis.
The authors observed that nonlinear LS-SVMs reached a
significantly better performance than the linear techniques,
proving that several diagnostic problems have a nonlinear
behavior. A multi-project and multicenter evaluation of auto-
matic brain tumor classification has been also reported [23].
The authors applied several classifiers using as features short
TE 1HMRS signals. The accuracy scored for the differenti-
ation of glioblastomas and intracranial metastases was not
higher than 78 %.

However, to the best of our knowledge, none of the afore-
mentioned studies have used a combination of quantitative
features extracted from 1HMRS and DSC-MR imaging in
a classification scheme. Therefore, our study was concen-
trated on the utilization of parameters which may be easily
extracted by the user in every clinical center and may not
require further post-processing before being used as input in
a pattern recognition procedure.

Hence, the purpose of this study was to evaluate the con-
tribution of pattern recognition techniques using 1HMRS and
DSC-MRI data as classification features in the differentiation
of glioblastomas from cerebral metastases and to detect the
optimum set of metabolic and perfusion parameters in terms
of potential diagnostic value. The overall workflow of our
study is presented in Fig. 1.

Methods and materials

Patients

Our prospective clinical study was approved by the Hospi-
tal Institutional Review Board committee. Patients with a
solitary brain tumor with conventional MR imaging char-
acteristics compatible with a glioblastoma or a metastatic
lesion participated in our study. Our inclusion criteria were
adult, cooperative patients with a solitary, inhomogeneous,
contrast-enhancing brain lesion. Exclusion criteria were chil-
dren, multiple lesions, prior surgery, and chemotherapy or
radiation therapy. Written informed consent was obtained
from all patients included in our study, after being approved
by the hospital’s ethics committee, according to the Decla-
ration of Helsinki.

1HMRS and DSC-MRI were performed on 49 patients
(aged 32–73 years) with a solitary brain tumor (35 glioblas-
tomas multiforme and 14 metastases). Particularly the 14
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Fig. 1 A schematic diagram of
the workflow of the present
study. Additional to
conventional MR imaging,
proton MR spectroscopy,
dynamic susceptibility contrast
MRI and biopsy was performed
in all clinical cases. The biopsy
outcome determined the
supervised classification task,
while the metabolic and
perfusion data (NAA/Cr,
Cho/Cr, (Lip + Lac)/Cr and
rCBV) were used as features in
the pattern recognition
techniques

metastatic lesions consisted of 12 lung, and 2 breast
primary tumors. The occurrence of a single brain metastasis
is relatively rare compared to multiple metastatic lesions and
glioblastomas. This fact determined the number of metastatic
tumors in this study. This may be considered as a potential
limitation of such studies. Hence, it follows that the inclu-
sion of a larger cohort of patients is expected to improve
our preliminary results. All clinical cases were evaluated
by two radiologists, and the diagnosis was suggested before
surgery. It has to be mentioned that the differential diagnosis
of gliomas may include other lesions such as abscesses or
lymphomas; however, these lesions may be easily differen-
tiated from GBs as they characteristically present restricted
diffusion, while gliomas and metastatic lesions do not. All
patients underwent gross total or partial surgical resection
of their lesions, and the surgical procedures were performed
within a month from the neuroimaging analysis. A histo-
pathological diagnosis (biopsy) was obtained in all cases and
was considered as the gold standard.

Conventional MR imaging, 1HMRS and DSC-MRI
examination protocols

The study was performed on a 3-Tesla MRI whole-body scan-
ner (GE, Healthcare, Signa�HDx) applying a standardized
MRI, 1HMRS and DSC-MRI examination patient protocol,
using a 4-channel birdcage phased-array head coil.

1HMRS data acquisitions were performed using PROton
Brain Exam (PROBE) Single-Voxel (SV) spectroscopy and
two-dimensional-MRSI (2D-MRSI) before contrast admin-
istration in order to avoid signal disturbance. Data were
acquired using Point-RESolved Spectroscopy (PRESS) pulse
sequence with automatic shimming and Gaussian water

suppression. Measurement parameters used in SV scans were
1,500/35 msec (TR/TE), 128 signal acquisitions (Nacq), and
voxel size was chosen not to be less than 3.375 cm3 for
adequate SNR. Measurement parameters used in 2D-MRSI
were 1,000/144 msec (TR/TE), 16×16 phase encoding steps,
10 mm section thickness, and the field of view (FOV) size
was adjusted to each patient’s brain anatomy. In every region
of interest, 1 to 4 voxels (depending on the phase/frequency
encoding used and tumor size) were used during the study
from the 2D-MRSI technique, in order to produce the
final spectrum, as illustrated in Fig. 2. The positioning of
the acquisition voxel was carefully done on one of the most
central slices of the tumor in order to ensure accurate place-
ment. In cases of small or odd shaped tumors, we acquired a
quick axial T2 image of a few very thin slices (3 mm) posi-
tioned over the tumor to guide the placement of the voxel.

The DSC-MR images were acquired with a single shot
gradient-echo echo planar imaging sequence (TR/TE =
2,000/20.7 msec, flip angle = 60, FOV = 24, thickness =
5 mm with gap = 0 mm, NEX = 1) during the first pass of
bolus of contrast material at a dose of >0.4 mmol/kg body
weight. The section thickness and location of the perfusion-
weighted MR data set were determined by using axial
T1-weighted images after contrast injection to locate the
lesion and axial T2-weighted images to locate the peritu-
moral T2 signal abnormality.

Data post-processing

1H MR Spectroscopy: DSC-MR imaging

The delineation of the tumors was conducted by two sepa-
rate radiologists in order to reduce inter-observer variability.
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Fig. 2 A 55-year-old man
presenting a glioblastoma
multiforme (first column) and a
60-year-old man presenting a
metastatic lung tumor (second
column). Upper row Axial
T1-weighted images after
contrast agent administration,
CBV maps and signal
intensity-time curves (a, b).
Lower row Single-Voxel
1H-MRS. Voxel-localization
and indicative spectra from the
intratumoral and the peritumoral
area respectively (c, d)

In cases where the delineated areas presented controversies
between the two radiologists, an average demarcation was
taken into account. The intratumoral region of the lesions
was defined as the area presenting a hyperintese signal on
T2-weighted images in combination with cystic and necrotic
portions, and a heterogenous or a ring-shaped contrast
enhancement in T1-post-contrast imaging. The peritumoral
area of both tumor types presented a hyperintese signal on
T2-FSE and T2-FLAIR images, and an iso/hypointense T1
signal after contrast administration. The area exactly outside
the margin of the solid part of the tumor and its surrounding
was defined as the peritumoral area. However, especially in
some glioblastoma cases, due to the peritumoral infiltration,
this delineation was not always directly feasible, therefore an
area extending 1 cm away from the presumed tumoral margin
was considered as the peritumoral region.

Spectra for each patient were acquired from the intratu-
moral and peritumoral regions (Fig. 2). Spectroscopic data
analysis and calculation of metabolite ratios were performed
on an Advantage Linux workstation using the Functool soft-
ware (General Electric Healthcare). The metabolic ratios
of NAA/Cr and Cho/Cr were calculated for two different
echo times (35 and 144 msec), while (Lip+Lac)/Cr ratio
was measured using a TE of 144 msec [26]. For both spec-
troscopic techniques, a rectangular ROI was localized by
using the transverse T2-weighted FLAIR or T2-weighted
FSE, sagittal T1-weighted FSE and coronal T2-weighted
FSE imaging sequences. Post-processing of the raw spec-
tral data included baseline correction, frequency inversion
and phase shift. Gaussian curves were fitted to NAA, Cho,
Cr, Lipid and Lactate peaks for peak area determination.

For DSC-MRI, the data were processed on the GE work-
station using the Functool software. T2*-weighted images
were firstly corrected for motion artifacts with BrainStat
software. The CBV map (approximated by using the nega-
tive enhancement integral) was then overlaid on T2-weighted
or T1 post-contrast images. In the intratumoral region, five
to ten ROIs, ranging in size from 25 to 62 mm2 each, were
placed in the areas presenting increased perfusion, as seen on
the CBV colored overlay maps (Fig. 2), and the maximum
of all values was recorded. This is the so-called “hot-spot”
analysis. However, it has to be mentioned that this analysis
might be susceptible to user-dependent errors and may lead
to a slight under- or overestimation of the rCBV measure-
ments. Emblem et al. [27] suggested “Histogram analysis”
as an alternative method for perfusion quantification since
it reduces the user-dependency and allows the reproducibil-
ity of the results. The ROI placement within the tumor was
carefully performed. For this purpose, combined informa-
tion from post-contrast T1-weighted images, T2-weighted
FSE images, and T2*-weighted images was used. The per-
itumoral region was defined to be within 1 cm outside the
enhancing tumor margin presenting the highest CBV value,
where three to six ROIs were placed along the peritumoral
area to measure CBV. The CBV value of the contralateral
normal side was measured as well. Finally, the rCBV ratio
was calculated by dividing the CBV value either from the
intratumoral or peritumoral area defined above, with the CBV
value from the contralateral normal side.

ROI placement was performed without knowledge of
the histological information. The CBV measurements were
performed by two separate readers.
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It should be noted that in the intratumoral measurements,
obvious necrosis, cysts, hemorrhage, edema, calcification
and normal appearing brain tissue were excluded from the
ROI whenever possible, in order to avoid false lesion esti-
mation. Regarding the peritumoral area, for lesions that
were located close to major vascular structures, the sig-
nal intensity-time curve was carefully inspected, as it may
clearly indicate vessels that produce very large signal inten-
sity changes [28]. Furthermore, we applied a gamma-variate
function to the first pass bolus curve in order to correct for
contrast agent extravasation. However, it has to be men-
tioned that this method generates lower CBV map SNR than
numerical integration [29,30].

Statistical analysis

We grouped the patients according to tumor type (glioblas-
toma/metastasis). Statistical analysis was performed using
the SPSS (v17) statistical software package. Parameter val-
ues were expressed as mean ± SD. The Mann–Whitney test
was employed to compare metabolic and perfusion values
between glioblastomas and metastases, and logistic regres-
sion analysis was applied in order to investigate the multi-
parametric relations. Nevertheless, these relationships may
often be nonlinear and complex; hence, classical statistical
analysis may not be sufficient to reveal these limitations.

Classification methods

In this present study, the classification procedure was based
on three classification algorithms: support vector machine
(SVM), Naïve Bayes and KNN.

The SVMs first map the attribute vectors into a feature
space either linearly or nonlinearly, according to the selected
kernel function. Then, within this feature space, an optimal
hyperplane is constructed, which separates all the data points
of two classes. The best hyperplane for an SVM is the one
with the largest margin between classes [31,32]. The Naïve
Bayesian Classifier is a probabilistic classifier which assumes
that features are independent.

If the observed feature values of an instance and the prior
probabilities of classes are given, then the probability that
an instance belongs to a specific class can be estimated.
The class with the highest estimated probability is the class
prediction [33,34].

The KNN algorithm compares the test sample with the
available training samples and finds the ones that are more
similar (“nearest”) to it. When the k-nearest training samples
are found, the class label in majority is assigned to the new
sample [20,35,36].

Datasets Specification

By applying supervised classification methods, machine
learning classifiers can be used to provide binary outcomes in
order to distinguish metastases from GBs. Thus, we sought
to identify the optimum combination of parameters for tumor
classification which might accent the underlying pathophys-
iology. We started by evaluating the two basic parameters
(NAA/Cr as a marker of neuronal viability, and rCBV as
an index of tumor neovascularization) which have been val-
idated as significant indices in GB versus Metastasis dif-
ferentiation according to the literature [1,10–12]. Then, we
continued by successively including the additional para-
meters (Cho/Cr as a marker of tumor aggressiveness and
(Lip+Lac)/Cr as a marker of necrosis) in order to inves-
tigate the potential improvement of the classification results.

Therefore, three datasets were created and evaluated. The
first dataset (DS1) consisted of the NAA/ Cr ratio and rCBV.
The second dataset (DS2) consisted of DS1+Cho/Cr ratio,
and the third dataset (DS3) consisted of DS2+ (Lip+Lac)/Cr
ratio. The aforementioned datasets were applied for each
region of interest in order to train and test each classifier.
All the created datasets are summarized in Table 1.

Classification procedure

In our study, the classes of GB and metastasis overlapped
so we had to deal with a nonlinear classification task, where
the patterns could not linearly separate. Regarding the SVM
method in order to solve the binary classification problem,
we trained the classifier utilizing the most commonly used
kernel functions (linear, polynomial, radial basis function).
The classification results showed that the highest classifica-
tion performance was achieved when the RBF kernel function
was applied. Critical parameters were the parameter σ of the
kernel function and the regularization parameter C , which
determines the trade-off between minimizing the training
errors, as well as the model complexity [37]. The optimiza-
tion was accomplished by a grid search execution in order to
identify a good pair of (C , σ ), so that the classifier can accu-
rately predict unknown data. Various pairs of (C , σ ) values
were tested and the one with the best cross-validation accu-
racy was chosen. We tested growing sequences of C and σ

(C =0.01, 0.05, 0.1, 0.5, 1, 2, 10, 11, 100, 1,000, σ =1000,
100, 11, 10, 2, 1, 0.5, 0.1, 0.05, 0.01).

In k-nearest algorithm, one of the most important key
issues which affect the performance of a classifier is the
choice of k. According to Qi [38], the values of the k parame-
ter should normally be odd numbers and less than the square
root of the number of samples in the data set. Li et al. [39]
2011 set k to the square root of the total number of variables
of the input dataset. It must be noted that if k is too small,
then the result can be sensitive to noise points. On the other
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Table 1 Classification results in the intratumoral and peritumoral region

Datasets Classifier Intratumoral area Peritumoral area

Acc. Sen. Spec Prec F1 GMOR BER ERR Acc. Sen. Spec Prec F1 GMOR BER ERR

NAA/Cr SVM 0.95 ± 0.04 0.94 0.95 0.89 0.91 0.91 0.05 0.05 0.98 ± 0.02 0.98 0.99 0.97 0.98 0.98 0.02 0.01

rCBV Naïve Bayes 0.81 ± 0.10 0.72 0.84 0.65 0.65 0.69 0.22 0.19 0.97 ± 0.03 0.95 1 1 0.98 0.98 0.02 0.01

KNN 0.76 ± 0.12 0.76 0.76 0.56 0.64 0.65 0.24 0.24 0.89 ± 0.05 0.83 0.92 0.80 0.81 0.81 0.13 0.11

Cho/Cr SVM 0.92 ± 0.06 0.77 0.98 0.93 0.84 0.85 0.13 0.08 0.96 ± 0.03 0.93 1 1 0.96 0.96 0.04 0.02

NAA/Cr Naïve Bayes 0.92 ± 0.06 0.79 0.97 0.91 0.84 0.84 0.12 0.08 0.95 ± 0.03 0.86 1 1 0.92 0.93 0.07 0.04

rCBV KNN 0.80 ± 0.08 0.29 1 1 0.46 0.54 0.35 0.20 0.75 ± 0.10 0.86 0.92 0.81 0.83 0.83 0.11 0.10

Lips+Lac/Cr SVM 0.97 ± 0.02 0.94 1 1 0.97 0.97 0.03 0.02 0.95 ± 0.04 0.86 1 1 0.92 0.93 0.07 0.04

Cho/Cr Naïve Bayes 0.96 ± 0.02 0.97 0.98 0.96 0.96 0.96 0.02 0.02 0.95 ± 0.04 0.86 1 1 0.92 0.93 0.07 0.04

NAA/Cr KNN 0.81 ± 0.09 0.31 1 0.97 0.47 0.55 0.35 0.20 0.86 ± 0.12 0.71 0.70 0.49 0.58 0.59 0.29 0.30

rCBV

Accuracy and confidence interval with the corresponding sensitivity, specificity, F1, GMOR, BER and ERR were computed for each classification method
(SVM, Naïve Bayes, KNN)

hand, if k is too large, then the neighborhood may include
too many points from other classes [40]. In our study, the
number of elements was 49, so we tried the odd numbers
which were less and equal to the square root of 49 (k =1, 3,
5, 7) per cross-validation fold. Finally, the Euclidean distance
function was used in the KNN classifier.

Eighteen binary classifiers were created in total, six
(3 intratumoral, 3 peritumoral) for each of the three classifi-
cation methods applied. During the classification procedure,
we performed the 10-fold cross-validation method in order
to evaluate each classifier. This procedure was repeated 200
times, each time splitting randomly every dataset, in order
to avoid bias possibly introduced by the selection of a spe-
cific training and test set. The performance of each classifier
was measured in terms of: test accuracy (percentage of cor-
rectly classified cases), sensitivity (proportion of actual pos-
itives which are correctly identified), specificity (proportion
of negatives which are correctly identified), and F1 (provides
a more balanced evaluation of a classifier’s performance by
averaging precision and recall:

F1 = 2 ∗
(

Precision ∗ Recall

Precision + Recall

)

Precision is the number of correct results divided by the
number of all returned results and Recall is the number of
correct results divided by the number of results that should
have been returned.

Furthermore, in order to test the performance of the clas-
sifiers even further, we calculated the Geometric Mean of
Recalls:

GMOR = √
Recall ∗ Precision,

as well as Balance Error Rate (BER) and Error Rate (ERR):

BER =
(

1

2

)
∗

(
eA

n A
+ eB

nB

)
, EER =

(
eA + eB

n A + nB

)
,

where n A is the number of cases of class A, eA the number
of misclassified cases, nB the number of cases of class B and
eB is the number of misclassified cases. BER is useful when
one class is underrepresented compared to the other class as
observed in our study [23].

This large number of performance metrics was calculated
in order to have the most accurate overall evaluation as pos-
sible. Lastly confusion matrices were computed for over 200
runs of stratified random sampling (Table 3).

Finally, in order to validate the performance of the trained
classifiers, we used an independent test set from our center,
processed in the same conditions as described in the imaging
protocols previously. The test set consisted of 20 patients
with a histopathological diagnosis (14 glioblastoma and 6
lung metastases).

Results

Statistical analysis

The initial preoperative radiologists’ diagnosis of these
tumors resulted in 73.4 % accuracy (36 out of 49 cases cor-
rectly diagnosed) for the first radiologist (R1), and 79.6 %
accuracy (39 out of 49 cases correctly diagnosed) for the
second radiologist (R2). It has to be stressed here that we
excluded the cases where the radiologists included both
lesion types in their differential diagnosis. Hence, the sensi-
tivity and specificity for the two blind evaluators were respec-
tively R1: 0.78 and 0.71 and R2: 0.71 and 0.82.
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Table 2 The mean ± SD value of metabolic and perfusion parameters and the comparative results in the intratumoral and peritumoral area

Mann–Whitney

Metrics Intratumoral Peritumoral

35 msec GB Metastasis p GB Metastasis p

NAA/Cr 1.09 ± 0.46 1.13 ± 0.18 0.64 1.36 ± 0.43 1.60 ± 0.11 0.04*

Cho/Cr 2.27 ± 0.89 4.05 ± 2.23 0.08 1.07 ± 0.47 1.06 ± 0.23 0.22

144 msec

NAA/Cr 1.19 ± 0.48 1.67 ± 0.83 0.17 1.46 ± 0.50 1.91 ± 0.34 0.01*

Cho/Cr 3.13 ± 1.28 4.56 ± 2.34 0.17 1.66 ± 0.56 1.29 ± 0.27 0.05*

(Lip+Lac)/Cr 3.39 ± 3.76 7.18 ± 11.09 0.12 0.68 ± 0.47 0.62 ± 0.31 0.97

rCBV 7.13 ± 3.17 7.73 ± 4.36 0.82 2.81 ± 1.44 1.29 ± 0.61 <0.01*

Logistic regression analysis

Accuracy (%) p Accuracy (%) p

NAA/Cr, rCBV 68.5 0.265 88.4 0.032*

Cho/Cr, NAA/Cr, rCBV 78.6 0.128 90.4 0.02*

Lips+Lac/Cr, Cho/Cr, NAA/Cr, rCBV 78.6 0.116 87.2 0.04*

p Values represent Mann–Whitney U test for NAA/Cr, Cho/Cr, (Lip+Lac)/Cr and rCBV ratios, for both the intratumoral and peritumoral areas of
Glioblastomas and Metastases
* Denotes the parameter significant difference between glioblastoma and intracranial metastases (p < 0.05)

Regarding statistical analysis, the results of the Mann–
Whitney test for the metabolic and perfusion parameter val-
ues (mean ± SD) and the results of the logistic regression
analysis for each dataset for both regions of interest are
summarized in Table 2.

The differences in the metabolic ratios between glioblas-
tomas and metastases did not reach statistical significance in
the intratumoral region, revealing the lack of classical statisti-
cal tests to differentiate between these lesions using spectro-
scopic data. Nevertheless, a trend of intratumoral Cho/Cr and
(Lip+Lac)/Cr ratios toward higher values for metastases was
observed, when compared to that of glioblastomas. However,
due to the wide corresponding standard deviations, these ten-
dencies were not statistically confirmed. Similar results were
observed in the comparison of mean rCBV ratios between the
two tumor groups, as their difference did not reach statistical
significance.

Comparing the metabolic and perfusion parameters in
the peritumoral area between the two tumor groups, rCBV,
NAA/Cr, and long TE Cho/Cr ratios were significantly dif-
ferent (p < 0.05), reflecting the difference in the patho-
physiological properties in the periphery of the two lesions
(Table 2). The findings of Logistic Regression analysis
showed that the two tumor groups could not be differentiated
by any of the three datasets in the intratumoral region. On the
contrary, regarding the peritumoral region, all three datasets
significantly differentiated glioblastomas from metastases,
and it was observed that the additional inclusion of para-
meters in the datasets does not always lead to an improved
statistical outcome.

Classification

The performance of SVM, Naïve Bayes and KNN classifiers
for both regions of interest is shown in Table 1. For the intra-
tumoral area, the classifier that reached the highest overall
performance was the SVM for DS3 (Acc. 0.97), although it
also showed very high performance for the other two datasets
(Acc. 0.95 and 0.92 respectively). Naïve Bayes and KNN
classifiers presented lower performances compared to SVM;
however, their highest performance was also observed for
DS3.

In the peritumoral region, SVM presented again the high-
est discrimination ability (Acc. 0.98) between the two tumor
groups, but this time using the first data set (DS1), fol-
lowed by Naïve Bayes also using DS1. The KNN classi-
fier presented the lowest differentiation ability for all feature
combinations.

The confusion matrices per classifier are presented in
Table 3, where the superiority of SVM is verified. The Metas-
tasis class was considered as the true-positive class and the
GB class as the true negative. In the intratumoral area, SVM
presented the highest performance using DS3 where all GB
cases were correctly classified, whereas only one metasta-
tic case was misclassified for the same dataset. Similarly,
in the peritumoral area, the highest performance in GB and
metastasis classification was achieved by SVM using DS1,
with all clinical cases being correctly classified. Naïve-Bayes
proved to be second best in both regions of interest, whereas
KNN presented the highest percentage of misclassified
clinical cases for all datasets.

123



758 Int J CARS (2013) 8:751–761

Ta
bl

e
3

C
on

fu
si

on
m

at
ri

ce
s

co
m

pu
te

d
af

te
r

20
0

ru
ns

of
ra

nd
om

sa
m

pl
in

g
fo

r
th

e
in

tr
at

um
or

al
an

d
pe

ri
tu

m
or

al
ar

ea

D
at

as
et

s
Pr

ed
ic

te
d

cl
as

se
s

In
tr

at
um

or
al

ar
ea

Pe
ri

tu
m

or
al

ar
ea

SV
M

N
aï

ve
B

ay
es

K
N

N
SV

M
N

aï
ve

B
ay

es
K

N
N

N
A

A
/C

r
rC

B
V

A
ct

ua
lc

la
ss

es
M

et
a

G
B

M
et

a
G

B
M

et
a

G
B

M
et

a
G

B
M

et
a

G
B

M
et

a
G

B

M
et

a
13

1
M

et
a

10
4

M
et

a
2

12
M

et
a

14
0

M
et

a
13

1
M

et
a

12
2

G
B

2
33

G
B

5
30

G
B

7
28

G
B

0
35

G
B

0
35

G
B

3
32

C
ho

/C
r

N
A

A
/C

r
rC

B
V

M
et

a
G

B
M

et
a

G
B

M
et

a
G

B
M

et
a

G
B

M
et

a
G

B
M

et
a

G
B

M
et

a
11

3
M

et
a

11
3

M
et

a
4

10
M

et
a

13
1

M
et

a
12

2
M

et
a

12
2

G
B

1
34

G
B

1
34

G
B

0
35

G
B

0
35

G
B

0
35

G
B

3
32

L
ip

s+
L

ac
/C

r
C

ho
/C

r
M

et
a

G
B

M
et

a
G

B
M

et
a

G
B

M
et

a
G

B
M

et
a

G
B

M
et

a
G

B

N
A

A
/C

r
rC

B
V

M
et

a
13

1
M

et
a

14
0

M
et

a
4

10
M

et
a

12
2

M
et

a
12

2
M

et
a

12
2

G
B

0
35

G
B

1
34

G
B

0
35

G
B

0
35

G
B

0
35

G
B

2
33

T
he

to
ta

ln
um

be
r

of
cl

in
ic

al
ca

se
s

w
as

49
(3

5
G

B
s

an
d

14
M

et
as

ta
se

s)
.T

he
M

et
as

ta
si

s
cl

as
s

w
as

th
e

tr
ue

-p
os

iti
ve

cl
as

s,
an

d
th

e
G

B
cl

as
s

w
as

th
e

tr
ue

ne
ga

tiv
e

Regarding the validation procedure, the prediction results
of the independent test set were in accordance with the results
derived from the evaluation procedure of the classifiers’
performance.

Discussion

In the present study, we sought to investigate the contribu-
tion of pattern recognition techniques in the differentiation
of a common differential diagnostic problem in the clinical
routine, that of glioblastomas versus intracranial metastases.
We evaluated the performance of different classifiers in the
discrimination of the two types of tumors using combinations
of metabolic and perfusion parameters. Moreover, we sought
to identify the optimum set of features in terms of potential
diagnostic value.

Intratumoral area

All classifiers differentiated significantly GBs from metas-
tases (Table 1), in contrast to statistical analysis which
despite the observed tendency of Cho/Cr and (Lip+Lac)/Cr
for higher values in metastatic lesions, could not reach
significant values, most probably due to the large standard
deviations observed (Table 2). Regarding the overall classifi-
cation performance, SVM reached the highest value among
all classifiers for all three datasets as this is shown in Table 1.
Naïve-Bayes and KNN presented greater variations in their
performance depending on the dataset used, hence proved to
be more sensitive to feature selection. Moreover, the analysis
of the different datasets revealed the significant role that the
underlying pathophysiology may play in the classification
outcome, since all classifiers presented the highest perfor-
mance when the features of DS3 were used. This might be
attributed to the fact that the destruction of neurons as well
as the increased vasculature (features of DS1) are common
characteristics of the two tumor entities, while the inclusion
of additional tumor features such as aggressiveness (as rep-
resented by Cho in DS2) and necrosis (as represented by
Lip+Lac in DS3) optimize further the classification out-
come. Although glioblastomas and metastases share com-
mon lipid and Choline profiles intratumorally, it must be
noted that their lipid signal arises from different origins, such
as pure tumor necrosis for infiltrative tumor and less necro-
sis combined with lipid membrane structure for migratory
tumor cells [41].

Peritumoral area

For the peritumoral area, all classifiers differentiated signifi-
cantly GBs from metastases (Table 1). In this case, statistical
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analysis also revealed significant differences between the
two tumor entities (Table 2). This fact obviously posits the
hypothesis that there should be a distinct differentiation
between infiltrative and non-infiltrative nature outside the
tumor. Indeed, the NAA/Cr and the rCBV ratios proved sig-
nificantly different (p = 0.01 and <0.01 respectively) veri-
fying the destruction of neurons and increased angiogenesis
in the peritumoral area of an infiltrating lesion such as a
GB, while around a metastasis, one should expect a normal
metabolic profile.

Evaluating the overall classification performance, again
SVM reached the highest value among all classifiers for
all three datasets as this is shown in Table 1, followed by
Naïve-Bayes, which presented equally strong discrimina-
tion ability. KNN presented an overall low performance for
all datasets. A very interesting finding of this study is that
the highest performance was reached using the features of
DS1, contrary to the observations of the intratumoral case.
One would expect that the inclusion of additional features
would obviously lead to a better classification outcome. Nev-
ertheless, this is strongly correlated again to the underlying
pathophysiology. Indeed, we established that the successive
inclusion of the Cho/Cr and (Lip+Lac)/Cr ratio as addi-
tional features degraded the performance of all classifiers
in the peritumoral area. As it has been previously reported,
peritumoral lipids and lactate do not aid in tumor charac-
terization, due to the absence of necrosis in this area [10].
Moreover, the presence of Cho signal although helpful has
not been reported to be an exclusive characteristic regarding
infiltration. Nevertheless, it has been reported that the Cho
signal may significantly contribute in the differentiation of
these lesions [1,3]. This means that infiltration of GBs may be
present in the peritumoral region although not detectable yet
in terms of increased Cho signal [12]. More importantly, the
previous finding emphasizes the ability of the classifiers to
identify nonlinear intra-variable relationships, which accent
the underlying pathophysiology irrespective of the number
of features used.

Classifier performance

Evaluating the overall classification performance which is
depicted in Table 1, it is clear that the SVM classifier has
the best discrimination ability for both regions of interest,
followed by Naive Bayes especially in the case of the per-
itumoral region. KNN presented the lowest performance in
both tumor regions.

SVMs superiority may be attributed to the concept of
margin. Under this concept, SVM realize the principle of
data-dependent structure risk minimization, using the rela-
tion between the target function and the data set, without
depending on the of data set’s dimension. At the same time,

SVM minimize the structure risk of both complexity and min-
imizing loss and can tolerate the noise and the fuzzy value
in the data set [19]. Furthermore, SVM superiority may be
due to the fact that they belong to the general category of
kernel methods. This has the advantage of generating non-
linear decision boundaries, despite the small data size, using
methods designed for linear classifiers and allow the user
to apply a classifier to data that have no obvious fixed-
dimensional vector space representation [37,42].

Naïve Bayes owes its good performance to the zero-one
loss function used in classification. This function defines the
error as the number of incorrect predictions. Unlike other loss
functions, such as the squared error, it has the key property
that it does not penalize inaccurate probability estimates-as
long as the greatest probability is assigned to the correct
class [43–45]. Furthermore, Naive Bayes computes adistinct
kernel estimation for each feature of every class, creating
multiple (Gaussian) distributions which is generally more
effective than using a single distribution [46]. A potential
limitation of Naïve Bayes classifier is the assumption of inde-
pendence between attributes, which is difficult to accomplish
in datasets that consist of medical data. Although in practice
this assumption is not fully satisfied, studies have shown that
Naïve Bayes is effective in medical applications [34].

On the contrary, the KNN technique is a conceptually
and computationally quite simple method, as it calculates
distances between nearest neighbors in the feature space.
Therefore, due to the methods simplicity on very difficult
classification tasks, such as the differentiation of ambigu-
ous brain lesions (GB and Metastasis), KNN may be out-
performed by more complex techniques, such as SVM and
Naïve-Bayes algorithms, as observed in this study. Addi-
tionally, KNN is sensitive to irrelevant or redundant features
degrading the overall classification performance [47].

Our initial results in the case of this particular differential
diagnostic problem of GB versus Metastasis are encouraging
and indicate that pattern recognition techniques may provide
incremental diagnostic value over the radiologists’ analysis,
as well as over simple statistical analysis of the imaging data.

On the other hand, the analysis of these large amounts
of data with extremely significant diagnostic value may be
a time-consuming process; it requires specific expertise and
may not be feasible during the clinical routine especially
because these data are mainly numeric. Hence, classifica-
tion algorithms such as SVM can be applied in the clinical
environment to the benefit of patient treatment.

Lastly, it has to be mentioned that in our classification
procedure, we used quantitative features extracted from 1H-
MRS and DSC-MRI. Nonetheless, the combination of these
features with additional features such as texture analysis and
genotypic information of the tumor may improve the overall
accuracy of the classification procedure which can then be
extended to other differential diagnostic problems.
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Conclusion

The simultaneous analysis and evaluation of multiple
numerical parameters provided by advanced MR imag-
ing techniques, such as 1H-MR spectroscopy and dynamic
susceptibility contrast enhanced MR Imaging, may be chal-
lenging in a clinical environment. In the present study, we
investigated the contribution of pattern recognition tech-
niques in the differentiation of glioblastomas and metasta-
tic tumors, when metabolic and perfusion data are used as
classification features. Our results indicate that these tech-
niques may provide incremental diagnostic value in the
differentiation of these common intraaxial brain tumors. The
SVM algorithm demonstrated the highest classification per-
formance for both intra and peritumoral regions.

Hence, the complex and nonlinear relationships between
many MR variables can be simplified by multivariate clas-
sification methods, and differences related to intra-variable
correlations may be further accented between tumor types.
Consequently, pattern recognition techniques may constitute
an important supplementary tool and substantially aid in the
differential diagnosis.

Conflict of interest The authors declare that they have no conflict of
interest.
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