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Abstract
Purpose Lower back pain affects 80–90 % of all people at
some point during their life time, and it is considered as the
second most neurological ailment after headache. It is caused
by defects in the discs, vertebrae, or the soft tissues. Radi-
ologists perform diagnosis mainly from X-ray radiographs,
MRI, or CT depending on the target organ. Vertebra frac-
ture is usually diagnosed from X-ray radiographs or CT
depending on the available technology. In this paper, we pro-
pose a fully automated Computer-Aided Diagnosis System
(CAD) for the diagnosis of vertebra wedge compression
fracture from CT images that integrates within the clinical
routine.
Methods We perform vertebrae localization and labeling,
segment the vertebrae, and then diagnose each vertebra. We
perform labeling and segmentation via coordinated system
that consists of an Active Shape Model and a Gradient Vector
Flow Active Contours (GVF-Snake). We propose a set of
clinically motivated features that distinguish the fractured
vertebra. We provide two machine learning solutions that
utilize our features including a supervised learner (Neural
Networks (NN)) and an unsupervised learner (K-Means).
Results We validate our method on a set of fifty (thirty abnor-
mal) Computed Tomography (CT) cases obtained from our
collaborating radiology center. Our diagnosis detection accu-
racy using NN is 93.2 % on average while we obtained 98 %
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diagnosis accuracy using K-Means. Our K-Means resulted
in a specificity of 87.5 % and sensitivity over 99 %.
Conclusions We presented a fully automated CAD system
that seamlessly integrates within the clinical work flow of
the radiologist. Our clinically motivated features resulted in
a great performance of both the supervised and unsupervised
learners that we utilize to validate our CAD system. Our CAD
system results are promising to serve in clinical applications
after extensive validation.

Keywords Vertebrae fracture · Computed Tomography
(CT) · K-Means · Neural Network · Active Shape Model
(ASM)

Introduction

Computer-Aided Diagnosis (CAD) systems have been
attracting wide range of researchers. They aim at help-
ing radiologists before, during, and after the diagnosis of
diseases from various medical imaging modalities includ-
ing Computed Tomography (CT), X-ray radiographs, digital
mammography, Magnetic Resonance Imaging (MRI), etc.
Computer-Aided Detection and Computer-Aided Diagno-
sis are differentiated in the literature despite they are both
referred by CAD. The former refers to the system that iden-
tifies suspicious features in an image and brings them to the
attention of the radiologist, while the later refers to the system
that estimates the likelihood that the image is abnormal.

Many CAD systems exist and are approved for clinical
and (or) research use for various medical imaging modalities
and various organs for the human body. We work on the lower
back and, specifically, design a CAD system for lumbar verte-
brae. Lower back pain is a common condition that affects 80–
90 % of people at some point during their life. It is considered
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as one of the most common reasons people visit the doctor
or miss work. It comes in many forms, lower-, middle-, or
upper-back pain. However, most cases of back pain are asso-
ciated with pain and stiffness in the lower back “lumbar area”
because lumbar area is responsible for the major body load.

Disease in the lumbar area might occur either in the disc,
the vertebrae, or the soft tissues. Any of these diseases cause
high volume of pain that irritates to the knees and might
cause immobility of the patient. We work on lumbar verte-
bra fractures and, specifically, diagnosis of the most common
traumatic fracture and wedge compression fracture. Clinical
practice for lumbar vertebrae diagnosis utilizes X-ray radi-
ographs and/or CT depending on the available modality, the
severity of the disease, the target of the disease, and even the
allowed insurance expenses. X-ray radiographs are usually
the initial diagnostic modality because it is cheap, available,
and give an indication of the target abnormal organ. Usually,
the X-ray test recommends a CT when a bone fracture is sus-
pected. However, in some cases, X-ray might be enough to
diagnose simple and specific disease if neither of the other
modalities is available. In this paper, we utilized CT images to
diagnose wedge compression fracture because CT is the clin-
ical standard for such fracture condition in the lumbar area.

There are two main steps that the radiologist follow during
the work flow of diagnosis of lumbar area: (1) detection and
labeling of the vertebrae and (2) diagnosis of each vertebra
level by specifying all possible abnormalities in that vertebra.
In diagnosis, there are many pieces of information that the
radiologists utilize before making the decision such as age,
height, history, and type of pain. They also utilize the relative
context of the vertebrae.

In this paper, we propose a fully automated CAD system
for wedge compression fracture diagnosis from CT images.
We initially detect, label, and segment the five lumbar ver-
tebrae and then automatically detect the wedge fracture, if
exists, based on a set of clinically motivated features that we
extract based on our experience and consulting with our col-
laborating radiologist. We utilize our previous work in the
first two steps, namely: detection and labeling [2], and verte-
brae segmentation [1]. In this paper, we present the diagnosis
of the vertebra wedge fracture.

The rest of this paper is organized as follows: sec-
tion “Related work” reviews the literature; section “Avail-
able data” presents the available data. We then discuss the
materials and methods in section “Materials and methods”.
We present our results and comparative study in section
“Results” and conclude in section “Conclusion”.

Related work

Vertebrae fracture is one of the main disorders that affects
lumbar region of the spine. It is caused by many reasons such

as violent trauma, car accidents, frequent flexion of the lower
back, and jumps or falls from heights. However, other major
causes are due to disc abnormalities such as disc Herniation,
Desiccation, Budgling. We refer the reader for our major
previous efforts in CAD systems for abnormalities in discs
within the lumbar area [3].

Clinical classification for the fracture types is not yet of
agreement among all radiologists. However, many classifi-
cations exist such as Eastell et al. [7] who classify the verte-
bral fractures by two standards: Type of deformity (including
wedge, biconcavity, and compression) and degree of defor-
mity (grades 1 and 2).

Wedge fractures are the most common type of lumbar
fracture [8]. Figure 1 shows a model for the lumbar area with
wedge fracture to show the deformity of such vertebra. Many
other types of fracture exist and we refer the reader to [8] for
an exhaustive survey of various clinical conditions.

Most of the literature working on the detection of vertebrae
fracture works on X-rays due to many reasons including the
availability of such clinical data. Furthermore, most existing
literature detects and segments vertebrae for automating the
diagnosis of Osteoporosis which is diagnosed from X-ray
radiographs or dual X-ray radiographs as the clinical standard
and for bone mass estimation.

Smyth et al. [13] used lateral dual X-ray absorptiom-
etry scans to statistically model the shape and appear-
ance of the spine with an Active Shape Model (ASM) to
quantify the bone mass to diagnose Osteoporosis. The tech-
nique obtained entire shape information, and the segmenta-
tion they found was comparable to manual segmentation but
the lower lumbar and upper thoracic has more error than the
rest of vertebrae.

Fig. 1 Lumbar wedge compression fracture. Image used courtesy of
Medical Multimedia Group, LLC. More information is available at
eOrthopod.com [8]
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Roberts et al. [12] presented a method for helping in early
diagnosis of Osteoporosis and its clinical trials treatments.
They used an ASM to detect and quantify vertebral frac-
ture from X-ray radiographs for the lumbar and thoracic area
(L4 up to T7) using extracted shape and appearance features
for performing quantitative fracture classification. Because
of differences in vertebrae, they trained a shape model for
each of three classes: upper thoracic (T7–T9), lower thoracic
(T10–T12), and lumbar (L1–L4). They presented a compar-
ison study between appearance and shape effect on classifi-
cation in each vertebral group.

Mastmeyer et al. [11] developed a new hierarchical 3D
technique to segment the vertebral bodies in order to measure
bone mineral density (BMD) with high trueness and preci-
sion in volumetric CT datasets. The tests were analyzed using
phantom scans, and intra- and inter-operator precision errors
of the segmentation procedure were analyzed using exist-
ing clinical patient datasets. Results for segmented volume,
BMD, and coordinate system position were below 2.0 %,
0.6 %, and 0.7 %, respectively.

Tan et al. [15] developed an algorithm using high-
resolution CT images that provide quantitative measures
of the Syndesmophytes where this abnormal bone struc-
tures grow at intervertebral disc spaces. The algorithm first
segments the whole vertebral body using a 3D multi-scale
cascade of successive level sets, and then, it extracts the con-
tinuous ridge line of the vertebral body where Syndesmo-
phytes are located. The third part of the algorithm segments
the Syndesmophytes from the vertebral body using local cut-
ting planes and quantifies them. They tested the algorithm
with ten abnormal 3D CT scan images and compared the
results with a medical expert. Correlation between the two
evaluations was found to be 90 %.

Cherukuri et al. [5] presented an image processing tech-
nique using X-ray radiographs to study the bony growth
on vertebrae: Osteophytes. For individual vertebra analysis,
manual vertebral segmentation is performed. They used con-
vex hull-based features to highlight anterior Osteophytes.
They tested their work on 714 X-ray radiographs and
achieved an average accuracy of 86.6 %.

Kasai et al. [10] developed a computerized method for
detection of vertebral fractures on lateral chest X-ray radi-
ographs in order to assist radiologists’ image interpretation
and thus allow the early diagnosis of Osteoporosis. They
used 20 patients with severe vertebral fractures and 118
patients without fractures. The sensitivity of their computer-
ized method for detection of fracture cases was 95 % (19/20),
with 1.03 (139/135) false-positive fractures per image. The
accuracy of identifying vertebral end plates, marked by
radiologists in a morphometric study, was 76.6 % (400/522)
and 70.9 % (420/592) for cases used for training and those
for testing, respectively.

Most recently, our work in [9] presented a fully automated
method for robustly localizing and segmenting the vertebrae
for preparation of vertebral fracture diagnosis. However, the
amount of data and technique is different from our proposed
work in this paper. The main steps are as follows: (1) Local-
ization of the intervertebral discs, (2) Localization of the ver-
tebral skeleton, (3) Segmentation of the individual vertebra,
(4) Detection of the vertebrae center line, and (5) Detection
of the vertebrae major boundary points. We used five clas-
sifiers to detect the wedge fractures. Segmentation results
achieved an average error of 1.5 mm on 50 clinical CT and
their classification accuracy was 97.33 %. In this paper, we
perform segmentation using ASM and GVF-snake, and then,
we obtain new shape features incorporating inter-vertebrae
shape, intra-vertebra shape, and inter-vertebrae contextual
information.

Available data

Our data are obtained from our collaborating radiology cen-
ter. All data are in DICOM format and are anonymized
before we receive them. We also receive an anonymized
clinical report along with each case showing all abnormal-
ities at each vertebra level. Among fifty cases, there are
thirty abnormal cases and twenty normal ones. Each abnor-
mal case has at least one vertebra with an abnormality
including various types of fracture and, specifically, compres-
sion fracture, wedge compression fracture, and Spondolysis.

Each CT volume contains a set of sagittal images with
an average of 88 slices per case. However, the far lat-
eral slices from right and left have minimal to no infor-
mation about the vertebrae. Instead, they mainly consist of
the fat and soft tissues before reaching the vertebral col-
umn. Thus, we pre-process each volume by including only
25 slices. Upon examination of all the fifty cases, we find
that 25 slices are completely representative for the lumbar
vertebrae in each case. We compute the index for the mid-
dle slice (with floor operator for fractions) and obtain the 14
slices below and 11 slices up the middle slices. This brings
the total to 25 slices. In all these 25 slices, the vertebrae are
visible, clear, and distinguishable from soft tissues.

We point out that due to the many known legal limitations,
this dataset will not be available online. Moreover, a larger
dataset is desired to ensure the robustness of the system.

Materials and methods

Our proposed CAD system consists of three major steps:
vertebrae detection and labeling, vertebrae segmentation,
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and vertebrae diagnosis (wedge fracture detection). Figure 2
shows the work flow of our proposed CAD system.

In our previous work [2], we proposed a two-level prob-
abilistic model for automatically localizing and labeling the
lumbar discs. We utilize our model for localization of the ver-
tebra using the localized disc centers. Each vertebrae center
is computed by the mean location between the two enclos-
ing discs. Then, we perform automated vertebrae segmenta-
tion using an ASM and then refine the segmentation via the
Gradient Vector Flow Active Contour (GVF-Snake). Our
automated segmentation method and its experimental results
were presented in [1]. Figure 3 shows two sample cases after
vertebrae detection, labeling and segmentation resulting from
our previous work [1,2].

Active shape model (ASM) [6,16] has proven its
robustness to many segmentation problems in medical
imaging. However, its most success depends on clear bound-
ary of the target organ. In our clinical CT scans, vertebra
shows a decent level of vertebra boundary that is extremely
suitable for ASM. In our segmentation step, we have a
separate model for each vertebra level. To prepare the training
data, we ask the radiologist to manually mark 16 land-
mark points for each vertebra guided by the model shown
in Fig. 4. We name these landmark points from P1 to P16.
Upon the guidance of the ASM [6], we calculate the mean
shape P̄ = 1

N

∑N
n=1 Pn where N = 16. Then, each vertebra

shape Pn , where n ∈ {1, 2, . . . , N } is recursively aligned to
the mean shape P̄ using generalized Procrustes analysis to
remove translational, rotational, and isotropic scaling from
the shape. Then, we model the remaining variance around
the mean shape for each vertebra with principal components

Data from segmentation

Extracted features

Choose model

Train classifier

Evaluate classifier

Fig. 2 Work flow of our CAD system

Fig. 3 Segmentation results from the GVF-snake and ASM
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Fig. 4 Vertebra sample showing the training inputs and the selected
features

analysis (PCA) to extract the eigenvectors of the covariance
matrix associated with 98 % of the remaining point position
variance according to the standard method for deriving the
ASMs linear shape representation. For the testing step, we
apply the mean shape P̄ around the vertebra point produced
by our localization step. Then, we allow the ASM to con-
verge and obtain the boundary. We feed this boundary to the
GVF-snake in the next step.

Gradient Vector Flow (GVF) snake [17] has been proven
over the years to work robustly in refining an initial edge map
into a smooth final shape. GVF-snake is the parametric curve
that solves:

x(s, t) = αx′′(s, t) − βx′′′′(s, t) + v (1)

where α and β are weighting parameters that control the
contour’s tension and rigidity, respectively. x′′ and x′′′′ are
the second and fourth derivatives, respectively, of x. v(x, y)

is the gradient vector flow (GVF), s ∈ [0, 1], and t is the
time component to make a dynamic snake curve from x(s)
yielding x(s, t).

123



Int J CARS (2013) 8:461–469 465

Height of posterior (HP) 

Height of anterior (HA) 
L1

L5

L4

L3

L2

Height of center (HC) 

Variance over HA and HP 

Fig. 5 Sample middle slice CT from our dataset with segmentation
results from our previous work [1]

The smooth boundary outcome from the GVF-snake is
utilized to obtain more refined locations for the 16 landmarks
given by the ASM. We extract a set of features based on these
16 converged landmark points as shown in Fig. 4. In this
section, we discuss our selected features and our proposed
diagnosis scheme.

Features extraction

Features are characteristics of the objects of interest such
as shape, texture, and color. They provide us with the rele-
vant information we need if we select them carefully. Feature
extraction methods analyze objects and images to extract
the most prominent features that are representative of the
various classes of objects [14]. This crucial step is mainly
responsible for the discriminative power of the decision-
maker (classifier).

We base our feature extraction on the set of points result-
ing from applying the ASM during the segmentation step [1].
Figure 4 shows a model for the vertebra with the set of
points labeled. Our segmentation step results in two out-
comes: a refined contour for each vertebra and a set of 16
points surrounding each vertebra as shown in the model in
Fig. 4. We utilize these points to extract the set of relevant
features that distinguish wedge-fractured vertebrae from nor-
mal ones. Figure 5 shows one sample CT middle slice with
the converged contour for the five lumbar vertebrae. It also
shows the set of the 16 points for each vertebra.

To clarify our proposed features, we define the three
distances: H Pi , H Ai , and HCi where H Pi is the posterior

distance at vertebra (i), H Ai is the anterior distance at ver-
tebra (i), and HCi is the center distance at vertebra (i) as
shown in Fig. 4. We define:

H Pi =
√

(x1i − x13i )2 + (y1i − y13i )2 (2)

H Ai =
√

(x5i − x9i )2 + (y5i − y9i )2 (3)

HCi =
√

(x3i − x11i )2 + (y3i − y11i )2 (4)

where (x ji , y ji ) is the (x, y)-coordinates for point ( j) at
vertebra level (i). For each vertebra (i), we have the six-
teen ASM points P1, . . . , P16. There are five lumbar ver-
tebra (i = 1, . . . , 5). Using these distances, we extract the
following four features for each vertebra:

(a) F1: the ratio of posterior height to anterior height

F1 = H Pi

H Ai
(5)

(b) F2: The absolute difference between the anterior height
and the posterior height normalized with respect to the
central height

F2 =
∣
∣
∣
∣

H Ai − H Pi

HCi

∣
∣
∣
∣ (6)

(c) F3: Inter-vertebrae anterior heights variance

F3 = σ 2 (H Ai ) (7)

(d) F4: Inter-vertebrae posterior heights variance

F4 = σ 2 (H Pi ) (8)

Below we address each feature, its motivation, and the
individual effect.

F1: the ratio of posterior height to anterior height

Upon the clinical examination of all available cases, we find
that the anterior height (HA) and posterior height (HP) are
quite similar for normal vertebrae and thus the ratio F1 ≈ 1.
However, they tend to diverge for the wedge fracture verte-
brae. Thus, the ratio value is either F1 >> 1 or F1 << 1
for wedge fracture vertebrae. Table 1 shows sample cases
from our dataset with numeric values for each feature at each
vertebra level.
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Table 1 Three sample cases with feature numeric values and the ground
truth decision (1 is normal and 2 is wedge fracture)

Case ID Vertebra
label

F1 F2 F3 F4 Truth
decision

1 L1 1.055 0.061 1

L2 0.940 0.075 1

L3 0.859 0.168 0.46532 0.08892 1

L4 1.399 0.437 2

L5 1.424 0.496 2

2 L1 1.094 0.098 1

L2 1.094 0.108 1

L3 0.947 0.065 0.02287 0.08293 1

L4 0.932 0.083 1

L5 0.897 0.112 1

3 L1 1.162 0.154 1

L2 1.060 0.055 1

L3 0.952 0.048 0.0081 0.02693 1

L4 0.996 0.004 1

L5 1.126 0.113 1

F2: The absolute difference between the anterior height and
the posterior height normalized with respect to the central
height

This feature represents the intra-shape within the vertebra
taking the central height into consideration:

F2 =
∣
∣
∣
∣

H Ai

HCi
− H Pi

HCi

∣
∣
∣
∣ =

∣
∣
∣
∣

H Ai − H Pi

HCi

∣
∣
∣
∣ (9)

This feature’s value approaches zero (F2 ≈ 1) for normal
cases and goes higher (F1 >> 1) because of wedge fracture
existence. We consider the absolute value to have only pos-
itive resulting value because the negative value is irrelevant.
The purpose here is to see whether there is significant height
difference between anterior and posterior with respect to the
central height. Table 1 shows sample numeric results for this
feature.

F3 and F4: inter-vertebrae anterior and posterior heights
variance, respectively:

These two features represent the inter-vertebra context infor-
mation. It confirms a small value for highly similar vertebrae
and a higher value for higher variation within the respected
features (anterior and posterior heights). The five lumbar
vertebrae tend to have similar (low variance) anterior heights
and posterior heights in the normal case. They are not of
the same heights but their collective variance is small as
shown in Table 1 for the normal cases. However, when some
vertebrae have wedge fracture, the variance of the anterior
and posterior (or either of them depending on the location

of the wedge) heights across the five vertebrae level increases.
Table 1 shows sample data supporting our selected features.

Decision-making

Collecting these clinically motivated features together
requires automated machine intelligence for decision-
making which is to give the outcome of being normal versus
abnormal vertebra. To that end, we utilize two learners from
the two broad families in machine learning: K-Means and
Neural Networks (NN). K-Means is considered one of the
major classical unsupervised learning methods while Neural
Networks is among the robust and well-studied supervised
learners. To achieve concrete and reliable decision-making
learner, we utilize these two learners and validate them on
the whole dataset as shown in the following sections. We
present each learner with its results and then compare their
performance.

Unsupervised learning: K-Means

K-Means is an unsupervised learner, i.e., does not require
domain knowledge guidance. It starts with a set of
K cluster centers: μ

(0)
1 , μ

(0)
2 , . . . , μ

(0)
K . Each center μk is a

D-dimensional vector. The overall goal of K-Means is to
minimize J which is the sum of squares of distances for
each point from its assigned center μk :

J =
N∑

n=1

K∑

k=1

rnk ||xn − μk ||2 (10)

where rnk is a binary indicator describing which of the
k-clusters the data point xn corresponds to:

rnk =
{

1 if k = arg min
j

||xn − μ j ||2;
0 Otherwise.

(11)

The optimization step (minimization of J ) is performed
using the Expectation-Maximization (EM) algorithm by
initially choosing a set of initial cluster centers μk , then: (i)
minimize J with respect to the rnk with μk fixed, (ii) mini-
mize J with respect to μk keeping the rnk fixed. The first step
(E-step) is the assignment step of the data points for the cur-
rent cluster centers μk , while the second step (M-step) is the
re-computation of the cluster centers μk upon the new data
point’s assignment from the E-step. This proceeds iteratively
until some stopping criteria is met [4].

In our K-Means step, preparation of the feature vector
for each vertebra is automatically performed as illustrated
in the previous section. We performed K-Means clustering
based on a global consideration over all the vertebrae. Feature
vectors are fed to the K-Means regardless of the vertebra
level. The two later features F3 and F4 are repeated for each
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vertebra to make the full vectors. The data point vector is four-
dimensional and the initial means are randomly generated.
Moreover, we performed local K-Means for each vertebra
level separately but the results were not promising at all;
thus, we only report the global K-Means across all vertebrae
regardless of the vertebra level.

We run our global K-Means on the whole dataset that
consists of fifty cases. Considering that we have five lumbar
vertebrae in each case, we have 5 × 50 = 250 data points
with four dimensions (features F1, F2, F3, and F4). Because
K-Means is unsupervised, the truth value for each record is
not used. However, we use it for measuring accuracy in terms
of the number of misclassified vertebrae, false positives, and
false negatives.

Supervised learning: neural network

Neural network emerged as a robust and powerful supervised
learner. It has wide variability in its types and structure. A
two-layer (one hidden layer) neural network overall function
yk(x, w) is defined by:

yk(x, w) = σ

⎛

⎝
M∑

j=0

w
(2)
k j h

(
D∑

i=0

w
(1)
j i xi

)⎞

⎠ (12)

where yk is the output neuron k, x and w are the data
vector (feature input) and the learned weights of the func-
tion, respectively. σ and h are the transition functions of the
hidden layer and input layer, respectively. The superscript on
the weight variable w(.) corresponds to the layer order [4].

In our neural network, we use a two-layer neural network
(one hidden layer). The input layer has four neurons x that
correspond to the four dimensions of our feature vector for
each data point, i.e., x =< xi > where i = 1, 2, . . . , 4 and
D = 4. The hidden layer contains 10 neurons, i.e., M = 10.
Our network is a feed-forward-back propagation that uses
Levenberg-Marquardt optimization. We used sigmoid tran-
sition functions and set the rate as 0.05. We point out that
the selection of the number of hidden neurons (M = 10) is
empirical. We selected this amount after testing the results
with various amount of hidden neurons.

Results

Diagnostic test performance is usually expressed by the
terms: accuracy, sensitivity, and specificity. When a single
test is performed, the person may have the disease (posi-
tive) or may not (negative). An ideal test should have high
sensitivity, high specificity, and high accuracy. We define
these accuracy measures as follows:

(a) Accuracy: we measure the accuracy as the ratio of the
number of correctly classified vertebrae (Nc) to the total
number of vertebrae (N ):

Accuracy =
(

Nc

N

)

× 100 % (13)

(b) Sensitivity: It is defined as the probability that the test
says a person has the disease (positive) when in fact he
has it (true positive) and is defined by:

Sensi tivi t y =
(

T P

T P + F N

)

× 100 % (14)

(c) Specificity: It is defined as the probability that the test
says a person does not have the disease (negative) when
in fact he does not (true negative) and is defined by:

Speci f ici t y =
(

T N

T N + F P

)

× 100 % (15)

In our experiment diagnosis task, F P is the number of
false positives (normal vertebrae diagnosed as wedge frac-
tured), T P is the number of true positives (correctly diag-
nosed wedge-fractured vertebrae), F N is the number of false
negatives (misclassified wedge-fractured vertebrae), and T N
is the number of true negatives (correctly classified normal
vertebrae). Below, we show the evaluation for both learners
on our dataset.

Evaluation of K-Means

Upon the evaluation of the global K-Means described in
section “Unsupervised learning: K-Means”, we evaluate
K-Means on the whole dataset at once and then compare the
resulting automated outcome with our gold standard results
and obtained the detailed Table 2.

As per the results in Table 2, we obtained 98 % clas-
sification accuracy as the K-Means missed five vertebrae
(F P + F N ) out of the total of 250 vertebrae. Moreover, the
sensitivity of our solution equals 87.5 % while we obtained
very high specificity of 99.1 %.

Table 2 Global K-Means evaluation

Gold standard

Fracture Non-fracture

Automated Fracture 21 (TP) 2 (FP)

Results Non-fracture 3 (FN) 224 (TN)
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Table 3 Results of the cross-validation experiment with an average detection accuracy of 93.2 %

Round Testing cases Training cases IDs No. misclassified
training (out of 225)

Training accuracy (%) No. misclassified
testing (out of 25)

Testing accuracy (%)

1 1–5 6–50 3 98.67 1 96.00

2 6–10 1–5, 11–50 4 98.22 3 88.00

3 11–15 1–10, 16–50 2 99.11 2 92.00

4 16–20 1–15, 21–50 5 97.78 2 92.00

5 21–25 1–20, 26–50 5 97.78 2 92.00

6 26–30 1–25, 31–50 5 97.78 1 96.00

7 31–35 1–30, 36–50 2 99.11 1 96.00

8 36–40 1–35, 41–50 3 98.67 3 88.00

9 41–45 1–40, 46–50 5 97.78 2 92.00

10 46–50 1–45 1 99.56 0 100.00

Average 98.44 93.20

Evaluation of neural network

Because Neural Network is a supervised learner, it requires
training and thus the experiment is quite different from the
K-Means. Thus, we experiment with cross-validation which
is the standard way for such thorough experiments that
require concrete and convincing accuracy measures. Hence,
we perform five-cases-leave-out cross-validation experiment
on the fifty cases in hand. In each round, we leave five cases
out for testing and train the neural network on the remain-
ing 45 cases. We repeat this ten times to round over all the
cases in sequence as shown in Table 3. Our average train-
ing accuracy is 98.44 % while our testing accuracy average
is 93.2 %.

Comparison between K-Means and neural network

The two learners we used show high and robust measures in
terms of classification accuracy, sensitivity, and specificity.
The average results are also highly comparable between the
two learners. Our proposed features for inter-vertebrae shape
(F1), intra-vertebrae shape (F2), and inter-vertebrae contex-
tual information (F3 and F4) played the major role in the
high accuracy for the utilized learners. Despite that K-Means
showed higher classification accuracy, it, on the other hand,
showed lower sensitivity. Measuring specificity and sensitiv-
ity for neural network was not appropriate due to the nature
of the cross-validation experiment because of the repetition
of the vertebrae instances within the ten rounds unlike the
K-Means experiment.

Conclusion

In this paper, we proposed a set of features that showed
great potential for automating wedge fracture compression

diagnosis from clinical CT images. We presented our full sys-
tem starting from our previous efforts in vertebrae localiza-
tion and segmentation and our new work in the diagnosis of
wedge compression fracture. Our system is fully automated
and of great clinical use as per our experimental results.
We proposed four features representing inter-vertebrae shape
(F1), intra-vertebrae shape (F2), and inter-vertebrae contex-
tual information (F3 and F4) that collectively allowed both
K-Means and neural network to perform the decision-making
with high accuracy, sensitivity, and specificity. Our overall
accuracy was 98 % for K-Means and an average of 93.2 % for
neural network testing set. K-Means showed high specificity
of 99.1 % and acceptable sensitivity of 87.1 %.
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