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Abstract
Purpose Statistical shape models have shown improved reli-
ability and consistency in cardiac image segmentation. They
incorporate a sufficient amount of a priori knowledge from
the training datasets and solve some major problems such
as noise and image artifacts or partial volume effect. In this
paper, we construct a 4D statistical model of the left ventricle
using human cardiac short-axis MR images.
Methods Kernel PCA is utilized to explore the nonlinear
variation of a population. The distribution of the landmarks
is divided into the inter- and intra-subject subspaces. We com-
pare the result of Kernel PCA with linear PCA and ICA for
each of these subspaces. The initial atlas in natural coordi-
nate system is built for the end-diastolic frame. The land-
marks extracted from it are propagated to all frames of all
datasets. We apply the 4D KPCA-based ASM for segmenta-
tion of all phases of a cardiac cycle and compare it with the
conventional ASM.
Results The proposed statistical model is evaluated by cal-
culating the compactness capacity, specificity and general-
ization ability measures. We investigate the behavior of the
nonlinear model for different values of the kernel parame-
ter. The results show that the model built by KPCA is less
compact than PCA but more compact than ICA. Although
for a constant number of modes the reconstruction error is
a little higher for the KPCA-based statistical model, it pro-
duces a statistical model with substantially better specificity
than PCA- and ICA-based models.
Conclusion Quantitative analysis of the results demonstrates
that our method improves the segmentation accuracy.
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Introduction

Cardiovascular diseases (CVD) are the leading cause of
death in the developed world in 2010 [1]. In order to reduce
increased rate of mortality and morbidity, early diagnosis and
treatment will be inevitable. To accomplish this, currently
modern imaging modalities such as MRI allows extracting
invaluable information about the anatomy and the function
of the heart. Physicians exploit the 4D images of the heart to
diagnose the diseases by extracting some clinically precious
indices such as ejection fraction (EF), left ventricle volume
and mass [2]. These parameters are obtained by segmenting
the left ventricle at specific phases of a cardiac cycle. The
manual segmentation of the 4D cardiac dataset is a tedious
task, so various fully and semi-automated methods were pro-
posed including image-based methods [3], pixel classifica-
tion [4], biomechanical model [5], deformable models [6],
atlas-guided segmentation [7] or statistical shape models.
In recent years, statistical shape models have been utilized
as strong priori knowledge for some segmentation methods
such as active shape model (ASM), active appearance model
(AAM) or their combination [8].

Heimann and Meinzer [9] described the various statisti-
cal models and their biomedical application. They focused
on the point distribution model (PDM) that is a landmark-
based method. There were also some alternatives to these
models that also enable 3D statistically constrained segmen-
tation such as statistical deformation models [10], probabilis-
tic atlases [11] and a multi-scale 3D shape modeling approach
called M-reps [12].
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The most popular approach for statistical modeling, which
was proposed by Cootes et al. [13], is point distribution
model. PDM yields a mean model and its variation modes
based on some training datasets. After exploring correspond-
ing landmarks in all datasets, they should be aligned into a
common reference coordinate system. The next step is to
reduce the dimensionality of the training set and find small
modes that describe the variation. Most typical method for
this purpose was principal component analysis (PCA).

Some authors applied PCA to build the statistical model
for various cardiac chambers of 3D datasets. These models
were utilized for various applications such as segmentation
or classification. Frangi et al. [14] planned a method for the
construction of a 3D statistical shape model of the heart. They
modeled the anatomy of the left and right ventricle from 3D
MRI datasets. Their work was chosen as a basic framework
in significant amount of research. Lotjonen et al. [15] con-
structed a 3D statistical shape model of atria and ventricles
using short- and long-axis cardiac MR images at the end-dia-
stolic phase of a cardiac cycle. Ordas et al. [16] presented a
statistical shape model of the whole heart from CT images.
The major drawback of use of PCA for dimension reduction
was that only the linear variation of landmarks was modeled.

There were not too many works on 4D datasets due to the
difference of the temporal and spatial dimensions and huge
amount of the data. The method by Perperidis et al. [17] used
a 4D transformation model that was separated into decoupled
spatial and temporal components. They applied PCA to find
the estimate of two subspaces of the overall distribution. They
could find what changes in the cardiac anatomy occurred due
to the cardiac cycle and what changes occurred due to inter-
subject variation. Stegmann and Pedersen [18] presented a
framework to estimate the ejection fraction parameter of the
left ventricle (LV) in 4D MRI. Zhang et al. [19] built a 4D sta-
tistical model to segment the left and right ventricles of nor-
mal and tetralogy of fallot (TOF) hearts using PCA. Zhu et al.
[20] developed a subject-specific dynamical model (SSDM)
that simultaneously handles temporal dynamics (intra-sub-
ject variability) and inter-subject variability. Obrien et al. [21]
used a PCA-based PDM for statistical shape modeling of the
LV. They divided shape, spatial and temporal variation into
separate models.

In general, PCA assumes a number of limitations on the
data that do not always hold [15,22,23]. Some of these
restrictions are as follows:

1. It shows the linear variation of training samples.
2. It finds the directions in which the variance of data is

high.
3. It presumes that the cloud of landmark vectors fol-

lows a multidimensional Gaussian distribution that is
not always true especially for 4D statistical shape mod-
eling.

4. PCA results in global modes that affect all variables
simultaneously.

Alternatively, the variation of the training samples was mod-
eled by some other methods such as independent component
analysis (ICA). Uzumcu et al. applied ICA to the left and
right ventricles in 2D cardiac images. They investigated four
methods for sorting the ICA modes [24]. Lotjonen et al. [15]
did not sort the ICA modes but selected the few modes of
variation that mainly describe the deformations of the atria.
Suinesiaputra et al. [22] constructed a classification algo-
rithm from the ICA components to automatically detect and
localize abnormally contracting regions of the myocardium.
In the other works, it was found that the combination of PCA
and ICA improves the segmentation accuracy [25]. ICA and
some other methods such as maximum autocorrelation factor
(MAF) [26] and minimum noise fraction (MNF) [27] affected
the landmarks locally. In these methods, the natural ordering
of the variation modes was not straightforward.

There were also some works on constructing statistical
models using non-linear PCA. Twining and Taylor [23] sug-
gested kernel PCA (KPCA) to find the variability of the train-
ing samples. Several authors applied KPCA for statistical
shape analysis of 2D images [28–30], but no one utilized
this method for building 3D statistical shape model (SSM)
in cardiac dataset.

KPCA does not require a Gaussian distribution of the input
data and is able to describe nonlinear shape variations and
sort the variation modes. Additionally, there is an increasing
interest in using KPCA for implicit shape analysis [9]. To
our knowledge, no one utilized this method for building 4D
SSM in cardiac dataset.

In this paper, we present a 4D non-linear statistical shape
model using KPCA. It models the inner and outer wall of
the left ventricle using 4D MR images. This paper makes the
following contributions:

1. A novel 4D statistical shape model of the heart LV is pro-
posed. The temporal and spatial variations of the land-
marks are separated into two distinct distributions, each
is modeled by KPCA.

2. An algorithm is proposed to extract the correspondent
landmarks of 4D datasets.

3. A new formula is suggested for the temporal distribution
of landmarks.

4. The 4D KPCA-based active shape model is constructed
and applied for the LV segmentation at all phases of a
cardiac cycle.

In the following, we present a detailed description of our
algorithms in the methods section. To investigate the statisti-
cal behavior of the proposed model, we compare it with the
PCA- and ICA-based models using specificity, compactness
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Fig. 1 The block diagram of proposed 4D statistical shape model. It consists of the preprocessing, landmark extraction and statistical shape
modeling steps

capacity and generalization ability measures. These custom-
ary measures are assessed in statistical shape modeling stud-
ies [9]. The LV segmentation result of 4D KPCA-based active
shape model is compared with the conventional ASM. In the
result and discussion section, we provide results demonstrat-
ing the validity of our approach and a critical assessment of
the method. In the last section, we conclude the paper.

Methods

This section describes our approach for model construction
of the cardiac left ventricle using KPCA. The whole model-
ing procedure is summarized in Fig. 1. In the following, each
step is described in detail.

I. Preprocessing

Due to breathing artifact, the spatial slices should be aligned.
We apply the method proposed by Andreopoulos et al. [31]

to correct the misalignment of spatial data. They employed
a simple registration algorithm to find the necessary transla-
tion of short-axis slices. The median slice is chosen as the
first reference slice and the rigid registration with 2 degrees
of freedom (translation in X and Y direction) is applied for
artifact correction. Once all the slices above the median slice
are shifted by the rigid transform, the next upper slice is cho-
sen as the reference and the process is repeated for all slices
above it. The whole procedure is repeated for the slices below
the median slice. Figure 2 shows the short-axis and the sim-
ulated long-axis views of a sample cardiac MR data before
and after the breath-hold correction.

As it is clear in Fig. 2, a significant staircase artifact in
the direction of the long axis of the heart is generated for
the manual segmentation. This occurs because of the large
voxel anisotropy in MR short-axis acquisitions of functional
cardiac data sets. To reduce those artifacts, shape-based inter-
polation is applied to all frames of a cardiac cycle to obtain
labeled images of isotropic voxel size [32]. The method used
segmented dataset was as an extension of Raya and Udupa’s
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Fig. 2 An example of the short-axis MR image and its simulated long axes views before (left) and after (right) the breath-hold correction. The
manual segmentation result for the blood pool (light green) and the myocardium (dark green) is superimposed on the original image

Fig. 3 Superposition of the shape-based interpolated LV walls (green contours) on the manually segmented ones (gray) (left), surface rendering
of manually segmented LV walls (right, up) and interpolated LV walls (right, down) for some phases of a cardiac cycle

shape-based interpolation [33]. It is applied for each 3D shape
in all phases of a cardiac cycle. In each 3D shape, a 2D
distance map is constructed for each slice. These maps are
interpolated and translated back to the binary image. The
superposition of shape-based interpolated data on the manu-
ally segmented images can be seen in Fig. 3. The 3D visuali-
zation of the segmented and resampled data is also shown in
this figure. Several authors utilized this method for isotropic
voxel generation of manually segmented data [14,16,17].

II. Landmark generation

To construct the SSM, a set of correspondent landmarks
should be found over all frames of all datasets. Two main
approaches for landmark extraction in 4D cardiac images
are arc-length resampling [18,22] and propagating pseudo-
landmarks from an initial atlas [17,19] or an arbitrary frame
[20] to all frames.

We adopted the method proposed by Frangi et al. [14] to
construct an initial atlas in a natural coordinate system (NCS)
for the end-diastolic phase. This makes the final landmarks
not be biased toward any training sample. The initial atlas
building procedure is composed of the following steps:

1. Choose one segmented training sample to be an initial
atlas.

2. Align all samples with the atlas by using an affine trans-
formation.

3. Make the average image by shape-based blending of all
aligned images.

4. The average image is the atlas in the reference coordinate
system (RCS). To reduce the bias toward the selected ini-
tial training sample, the process from step 2 is repeated
by altering the atlas with the obtained average image.
The process terminate when the difference between two
consecutive atlases is small.

5. Transform all aligned samples in step 2 to the RCS atlas
using a non-rigid deformation field. The average of all
deformations is calculated and applied to the RCS atlas.
The new image is the atlas in Natural Coordinate System
(NCS).

We modify the proposed method by Zhu et al. [20] by exploit-
ing the initial atlas. Let {xi j : i = 1, . . . , Np; j = 1, . . . , Nf }
denote N = Np × Nf shapes. There are Nf frames for each
of Np subjects. The landmark extraction procedure is shown
in Fig. 4. It is composed of the following steps:
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Fig. 4 The block diagram of proposed corresponding landmark extrac-
tion method. The initial atlas in natural coordinate system is built for the
end-diastolic phase. The landmarks extracted from it are propagated to

all frames of all datasets using the local and global transformation from
all phases of each dataset to its end-diastolic phase (T g

i j , T l
i j ) and from

each end-diastolic phase to the NCS atlas (T g
i,NCST l

i,NCS)

1. After aligning the end-diastolic frames of all sequences
using electrocardiogram (ECG) signal, shape-based or
registration-based interpolation is used to generate same
number of frames for all datasets. As all datasets utilized
in this paper consist of exactly 20 frames, this step is
ignored in our work.

2. The initial atlas in the natural coordinate system is built
for the end-diastolic phase.

3. By finding global (T g
i j ) and local (T l

i j ) transforma-
tions (i = 1, . . . , Np; j = 1, . . . , Nf), all frames of
each dataset are aligned to their correspondent end-
diastolic phase. An affine transformation is used for
global transformation while the local transformation is
presented by a non-rigid free-form deformation [10].

4. The end-diastolic phase of all datasets is aligned to the
initial atlas by a global (T g

i,NCS) and a local (T l
i,NCS)

transformation (i = 1, . . . , Np).
5. The marching cubes algorithm is utilized to generate a

dense triangulation of the boundary surface of the ini-
tial atlas [34]. The number of nodes of mesh is too high
after applying marching cubes algorithm to the initial
atlas. We utilize VTK’s decimation technique to reduce
the number of the landmarks [35]. It reduces the num-
ber of triangles in a mesh while preserving the shape
and topology as good as possible. Besides, to reduce the
effect of staircase artifact and avoid producing many
narrow and long triangles in the decimated surface, the
mesh is smoothed before the decimation.
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6. The obtained pseudo-landmarks in stage 5 are propa-
gated to the surface of all end-diastolic samples. This is
achieved by exploiting the inverse of local and global

transformations in stage 4 (T
−1l

i,NCS, T
−1g

i,NCS).
7. The landmarks of all frames are obtained by applying

the inverse of transformations (T
−1l

i j , T
−1g

i j ) in stage 3
to the landmarks of the end-diastolic phase. We do this
for each dataset.

8. All auto-landmarked shapes are aligned to a reference
coordinate system using Procrustes algorithm [36].

III. Statistical shape modeling

In the following, we describe linear PDM for 4D statistical
modeling. Then, we introduce the nonlinear SSM algorithm
using KPCA. As mentioned earlier, {xi j : i = 1, . . . , Np;
j = 1, . . . , Nf } denote N = Np × Nf shapes. There are
Nf frames for each of Np subjects. Each shape consists of
m 3Dlandmarks, {Pk = (P1k, P2k, P3k); k = 1, 2, . . . , m},
represented by the vector (P11, P21, P31, P12, P22, P32, . . . ,

P1m, P2m, P3m), a point in a 3m Dspace.

4D linear point distribution model

PCA-based PDM To construct a linear PCA-based PDM,
an 3m D ellipsoid is fitted to the landmarks by principal com-
ponent analysis. The principal axes of the ellipsoid show the
modes of variation. To accomplish this, the covariance matrix
of the data is computed. Then, the eigenvectors (φα) and
eigenvalues (ω

(PCA)
α ) of the covariance matrix are extracted.

φα and ω
(PCA)
α show the direction and the variance of the vari-

ation in the 3m Dspace. By sorting the eigenvalues (ω
(PCA)
α ≥

ω
(PCA)
α+1 ) and putting their corresponding eigenvectors in the

columns of the matrix �(PCA) = (φ1 |φ2 |· · · ), the linear
model is achieved:

x = x̄ + �(PCA)e(PCA) (1)

where x̄ is the average landmark vector, e(PCA) is the
shape parameter vector of the model, which is given by
e(PCA) = �(PCA)T

(x − x̄). Usually, the largest M (PCA)

eigenvalues are selected and the shapes are approximated

by them. By applying limits of ±3
√

ω
(PCA)
α to the parameter

eα(αth parameter of the vector e(PCA)), we are sure that the
shape generated is similar to those in the original training
set. The covariance matrix for the total shape distribution is
given by:

C (PCA)
total = 1

Np Nf

Np∑

i=1

Nf∑

j=1

(
xi j − x̄

) (
xi j − x̄

)T (2)

where x̄ = 1
Np Nf

∑Np
i=1

∑Nf
j=1 xi j is the total mean. Like in

the work of Perperidis et al. [17], we identify what changes
in the cardiac anatomy occur due to the cardiac cycle (intra-
subject distribution) and what changes occur due to shape
variation across the population (inter-subject distribution).
They utilized 2 different covariance matrices for the varia-
tions due to the cardiac cycle (Cold(PCA)

within ) and the differences

across the population (C (PCA)
between) as follows:

Cold(PCA)
within = 1

Np Nf

Np∑

i=1

Nf∑

j=1

(
xi j − x̄i

) (
xi j − x̄i

)T (3)

C (PCA)
between = 1

Np

Np∑

i=1

(x̄i − x̄) (x̄i − x̄)T (4)

where x̄i is the average of the frames for the subject i . We
change the equation for the covariance matrix of intra-subject
distribution as

Cnew(PCA)
within = 1

Nf

Nf∑

j=1

(
x̄ j − x̄

) (
x̄ j − x̄

)T (5)

where x̄ j is the average of the subjects for the frame j . The
major reason for proposing Eq. (5) instead of Eq. (3) is that its
structure is more similar to Eq. (4). As Eq. (4) shows the dis-
tribution of the frames’ mean across the population, it is obvi-
ous that Eq. (5) implies the variation of subjects’ mean due to
the cardiac cycle. Besides, the calculation of eigenvalues and
eigenvectors is quicker using Eq. (5). The covariance matrix
Cnew(PCA)

within is 3m × 3m, which is very large. However, we
can compute them from a smaller Nf × Nf matrix using the
method explained by Cootes et al. in the appendix A of [37].

ICA-based PDM The goal of ICA is to find the indepen-
dent non-Gaussian components from the mixed signals [24].
ICA does not assume a Gaussian distribution of the input
data. The linear ICA-based PDM can be expressed as fol-
lows:

x = x̄ + �(ICA)e(ICA) (6)

where �(ICA) is the mixing matrix with M (ICA) number of
components and e(ICA) is the source signal. ICA is applied
to estimate the mixing matrix and statistically independent
source signals. Different methods exist to calculate them such
as FastICA, InfoMax, and JADE. To sort the independent
components, several methods proposed by Uzumcu et al.
[24]. We calculate the alignment of shapes with indepen-
dent components. To accomplish this, they are considered as
vectors in shape space. The mean angle between each compo-
nent and the shape set is calculated, and the components are
sorted with increasing mean angle. The limits of ±3σ (ICA)

(σ (ICA) is the standard deviation of the independent compo-
nents) is applied to the parameter eα(αth parameter of the
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vector e(ICA)) to generate similar shapes to the training sam-
ples. The inter-subject and intra-subject distribution of the
4D datasets is modeled as follows:

xbetween = x̄ + �
(ICA)
betweene(ICA)

between

xwithin = x̄ + �
(ICA)
withine(ICA)

within (7)

where �
(ICA)
between and e(ICA)

between are the mixing matrix and the
source signal for the average of the frames in each subject
(x̄i ). �

(ICA)
within and e(ICA)

within are the mixing matrix and the source
signal for the average of the subjects in each frame.

4D Nonlinear Point Distribution Model KPCA is utilized
to model the variation of population for two reasons:

1. It does not need to assume a multidimensional Gaussian
distribution for the cloud of landmark vectors.

2. KPCA is a powerful technique for extracting the non-
linear variation of the training samples.

This is achieved by nonlinear mapping of shapes to a new
feature space that is supposed linear. We will describe this
space H , which is related to the input space by a nonlinear
map:

� : R3m → H

xi j → �
(
xi j

) (8)

Now, the covariance matrices for the inter-subject (C (KPCA)
between )

and intra-subject (C (KPCA)
within ) distributions can be calculated

in space H as follows:

C (KPCA)
between = 1

Np

Np∑

i=1

(
�̃ (x̄i )

) (
�̃ (x̄i )

)T

C (KPCA)
within = 1

Nf

Nf∑

j=1

(
�̃

(
x̄ j

)) (
�̃

(
x̄ j

))T
(9)

where �̃(x̄i ) = �(x̄i ) − 1
Np

∑Np
r=1 (�(x̄r )) and �̃(x̄ j ) =

�(x̄ j )− 1
Nf

∑Nf
s=1 (�(x̄s)). The major drawback is the high-

dimensionality of the feature space H that makes the calcula-
tion of principal axes very complicated and time-consuming.
It is important to note that applying PCA in H only needs the
dot products of the �(x̄i ) or �(x̄ j ). To solve the problem,
kernel functions for intra-subject and inter-subject distribu-
tion are defined as:

Kbetween(x̄i1 , x̄i2) = 〈
�

(
x̄i1

)
, �

(
x̄i2

)〉=�
(
x̄i1

)T
�

(
x̄i2

) ;
(i1, i2 = 1, . . . , Np)

Kwithin(x̄ j1 , x̄ j2)= 〈
�

(
x̄ j1

)
, �

(
x̄ j2

)〉=�
(
x̄ j1

)T
�

(
x̄ j2

) ;
( j1, j2 = 1, . . . , Nf) (10)

This allows us to compute the value of dot product in H
without performing the mapping to the feature space. In sum-
mary, the following steps are necessary to compute principal
components using KPCA:

1. Calculating the un-normalized kernel matrices that con-
sist of kernel functions as their elements

Kbetween
i1i2

= Kbetween
(
x̄i1 , x̄i2

) (
i1, i2 = 1, . . . , Np

)

Kwithin
j1 j2 = Kwithin

(
x̄ j1 , x̄ j2

)
( j1, j2 = 1, . . . , Nf)

(11)

2. Computing the normalized kernel matrices from the un-
normalized ones:

K̃between = HbetweenKbetweenHbetween,

Hbetween = INp − 1

Np
1Np 1t

Np
,

1Np = [1, . . . , 1]t
Np×1

K̃within = HwithinKwithinHwithin,

Hwithin = INf − 1

Nf
1Nf 1

t
Nf

,

1Nf = [1, . . . , 1]t
Nf×1 (12)

3. Finding the eigenvalues (λbetween and λwithin) and eigen-
vectors (bbetween and bwithin) of Kernel matrices and nor-
malizing the eigenvectors:

λbetween
α b (i)between

α = 1

Np

Np∑

r=1

K̃between
ri b (r)between

α

×α = 1, . . . , M (KPCA)
between

λwithin
β b ( j)within

β = 1

Nf

Nf∑

s=1

K̃within
s j b (s)within

β

×β = 1, . . . , M (KPCA)
within (13)

where b(i)between
α = bbetween

α •�̃(x̄i ) and b( j)within
β =

bwithin
β •�̃(x̄ j ). The most M (KPCA)

between and M (KPCA)
within eigen-

values are selected so that the model denotes some pro-
portion of the total variance.

4. Extracting the principal components of sample y by
computing projections onto the eigenvectors:

KPCAbetween
α (y)=

Np∑

i=1

b (i)between
α Kbetween (x̄i , y),

α = 1, . . . , M (KPCA)
between
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KPCAwithin
β (y)=

Nf∑

j=1

b ( j)within
β Kwithin

(
x̄ j , y

)
,

β = 1, . . . , M (KPCA)
within (14)

Some commonly used kernel functions are as follows:
polynomial, radial basis function (RBF) or Gaussian, sig-
moid. For more details, see [38]. The important thing in
applying KPCA for statistical modeling is how to constrain
the model parameters and define the proximity to data accord-
ing to the utilized kernel function [39]. Although the param-
eter constraints for polynomial kernel are similar to linear
PCA, but this is not valid or RBF and sigmoid kernels. For
instance, consider the RBF kernel as follows:

Kbetween(y, x̄i ) = exp

(
−‖y − x̄i‖2

2σ 2
between

)
(
i = 1, . . . , Np

)

Kwithin(y, x̄ j )= exp

(
−

∥∥y − x̄ j
∥∥2

2σ 2
within

)
( j = 1, . . . , Nf)

(15)

where σbetween and σwithin are the width of the Gaussian ker-
nels. Following from (13), it can be seen that the princi-
pal components for the sample (y) far from all training data
(x̄i or x̄ j ) are almost zero (this occurs for the average data in
linear PCA).

We exploit the pseudo-density function (ρ̂between(x) and
ρ̂within(x)), which was defined by Davies et al. [38] to attain
the acceptable shape for statistical modeling as follows:

ρ̂between (x)= 1

Abetween

Np∑

r1,r2=1

M(KPCA)
between∑

α=1

b (r1)
between
α b (r2)

between
α

×Kbetween
(
x, xr1

)
Kbetween

(
x, xr2

)

Abetween =σ
M(KPCA)

between
between π M(KPCA)

between /2trace
(√

KbetweenBbetween
)

,

Bbetween
r1r2

=
M(KPCA)

between∑

α=1

b (r1)
between
α b (r2)

between
α (16)

ρ̂within (x) = 1

Awithin

Nf∑

s1,s2=1

M(KPCA)
within∑

β=1

b (s1)
within
β b (s2)

within
β

×Kwithin
(
x, xs1

)
Kwithin

(
x, xs2

)

Awithin = σ
M(KPCA)

within
within π M(KPCA)

within /2trace
(√

KwithinBwithin
)

,

Bwithin
s1s2

=
M(KPCA)

within∑

β=1

b (s1)
within
β b (s2)

within
β (17)

They show the distance from the origin in KPCA space
and have a strict upper bound. To generate shapes similar to
those in the original training set, the lower bound should be
located on it.

To evaluate the nonlinear statistical model and use it in
image segmentation, the pre-image should be reconstructed
by the reverse mapping from the feature space H back to
the input space. Mika et al. [40] proposed a fixed-point iter-
ative method that was dependent to the initial guess and was
numerically unstable. To solve these problems, a different
approach was presented by Kwok et al. [41] based on dis-
tance constraints in the space H . Rathi et al. [42] adopted
the latter method and modified it by suggesting a simple
algebraic formulation. We utilize their method for calcula-
tion of generalization ability and specificity measures. The
pre-image for inter-subject (x̂between) and intra-subject dis-
tribution (x̂within) is obtained for the RBF kernel as follows:
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̂between ≈
∑Np

i=1 γ̃ between
i

(
1
2

(
2−d̃2(P�(xbetween),�(x̄i ))

))
x̄i

∑Np
i=1 γ̃ between

i

(
1
2

(
2−d̃2(P�(xbetween),�(x̄i ))

))

x̂within ≈
∑Nf

j=1 γ̃ within
j

(
1
2

(
2−d̃2(P�(xwithin),�(x̄ j))

))
x̄ j

∑Nf
j=1 γ̃ within

j

(
1
2

(
2−d̃2(P�(xwithin),�(x̄ j))

))

(18)

where the values of γ̃ between
i and γ̃ within

j are given by:
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γ̃ between
i = γ between

i + 1
Np

(
1Np − ∑Np

r=1 γ between
r

)
,

γ between
i = ∑M(KPCA)

between
α=1 KPCAbetween

α b (i)between
α

γ̃ within
j = γ within

j + 1
Nf

(
1Nf − ∑Nf

s=1 γ within
s

)
,

γ within
j = ∑M(KPCA)

within
β=1 KPCAwithin

β b ( j)within
β

(19)

P�(xbetween) and P�(xwithin) are the projection of �(·)
onto the subspace of the eigenvectors. Their squared dis-
tance from the training set (d̃2(P�(xbetween),�(x̄i )) and
d̃2(P�(xwithin),�(x̄ j ))) can be written only in terms of the
kernel function [42].

Model evaluation We compare the result of KPCA with
linear PCA for evaluation of the nonlinear statistical model.
To investigate the statistical behavior of the model, we eval-
uate its compactness capacity, specificity and generalization
ability. “A compact model is one that requires as few param-
eters as possible for the generation of a valid instance of the
modeled object” [16]. The compactness capacity of the shape
model, denoted C(τ ), is measured as the cumulated variance
(absolute or percentile with respect to the total shape vari-
ance) for the first τ = 1, . . . , M modes.

C (τ ) =
∑τ

t=1 λt∑M
t=1 λt

× 100; (τ = 1, . . . , M) (20)

“The property of generalization of a shape model mea-
sures its ability to represent unseen instances of the object
class modeled” [16]. To measure the generalization ability of
the model, we build a model from all but one samples of the
training dataset and calculate the error of fitting the excluded
sample to the constructed model. This process is repeated
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Table 1 The details of dataset used in the paper [41]

Number Pixel spacing
(mm per pixel)

Spacing between
slices (mm per slice)

Age Temporal
resolution

Short-axis
resolution (pixel)

33 0.93–1.64 8–15 2–17 20 256×256

It gives some information about the spacing, age and disease of the subjects. Only 2 datasets have the left ventricular related disease (subjects 22,
27)

for all training samples (leave-one-out test). The algorithm
to compute this measure is shown in [38]. It can be defined
as a function of the number of parameters (τ = 1, . . . , M)

as follows:

G (τ ) = 1

Ns

Ns∑

u=1

‖wu (τ ) − zu‖; (τ = 1, . . . , M) (21)

where zu is the training sample that is removed in each iter-
ation of the leave-one-out test and Ns is the number of train-
ing dataset. wu(τ ) is the reconstructed shape using first τ

parameters of the constructed model from the training sam-
ples with zu removed. The specificity of a model is defined
as how much “it can only represent valid instances of the
modeled class of object” [38]. This important measure rep-
resents the ability of model for image segmentation [38]. It
can be defined as a function of the number of parameters
(τ = 1, . . . , M) as follows:

S (τ ) = 1

Nr

Nr∑

u=1

min
u

∥∥vu (τ ) − z′
u

∥∥; (τ = 1, . . . , M) (22)

where vu(τ ) is an arbitrary sample generated by the first τ

parameters of the model, z′
u is the closest member of training

datasets to vu(τ ) and Nr is the number of samples.
To measure the accuracy of our approach, we used a dis-

tance error metric, namely mean absolute distance (MAD)
[20]. Let A and Bbe two surfaces to be compared, and
supposing they are represented as point sets, that is, A =
{a1, a2, . . . , an} and B = {b1, b2, . . . , bm}, we can define
MAD as follows:

MAD (A, B)= 1

2

⎧
⎨
⎩

1

n

n∑

i=1

d (ai , B)+ 1

m

m∑

j=1

d
(

A, b j
)
⎫
⎬
⎭

(23)

where d(ai , B) = min
j

∣∣b j − ai
∣∣.

Materials

To evaluate the approach, we utilized the cardiac MR data-
base of a previous work on statistical modeling [31], which
was available online with its manual segmentation [43]. It
consisted of short-axis cardiac MR image sequences obtained

from 33 subjects, all of whom were under the age of 18. The
images were scanned with a GE Genesis Signa MR scanner
using the FIESTA scan protocol. The detail of the data was
shown in the Table 1.

Each patient’s image sequence consisted of exactly 20
frames. The number of collected short-axis slices ranged
between 8 and 15 per frame. The database consisted of
256 × 256 pixels with a pixel spacing of 0.93–1.64 mm and
a slice distance of 6–13 mm. The epicardial and endocardial
contours in each dataset were manually segmented. The basal
end of each dataset was indicated by the last slice that showed
a complete peripheral endocardial contour. Thus, the mitral
valve plane was excluded. We interpolated all manually seg-
mented datasets to an isotropic voxel size with size equal to
1 × 1 × 1 mm3 per frame. In all 4D images, the LV endocar-
dium and epicardium were manually traced, to provide the
ground truth [42]. The papillary muscles were included in
the LV blood pool enclosed by the LV endocardial border.

Results

The rigid and non-rigid registrations for building the initial
atlas were obtained with the image registration toolkit (IRTK)
software [44]. The non-rigid deformation field was repre-
sented by a free-form deformation (FFD) based on B-splines
[10]. The Kappa statistics was used as a similarity measure
for labeled image registrations. This measure varies between
zero and one, and values above 0.9 are usually regarded as
very good agreements [14]. The standard deviation and mean
of the similarity measure for T g

i j and T l
i j is shown in Fig. 5

over a cardiac cycle. Figure 6 shows the high quality of non-
rigid registration for 3 different phases of a cardiac cycle. The
final transformed image for the endocardium and epicardium
is superimposed on the original image.

To extract the landmarks of the initial atlas, the marching
cubes algorithm was applied using VTK software [45]. Then,
the nodes of the generated mesh were decimated with the rate
equal to 0.98. The number of landmarks before and after dec-
imation is 21,662 and 2408 for epicardium and 14,194 for
1,504 endocardium. Figure 7 shows the shape of the initial
atlas before and after decimation.

Before applying KPCA, we calculated the statistical
model using PCA. The distribution of 2nd principal
component versus 1st principal component for inter-subject
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Fig. 5 The standard deviation and mean of the global and local
transformations similarity measure (T g

i j , T l
i j i = 1, . . . , Np; j =

1, . . . , Nf ) over a cardiac cycle in the initial atlas construction step.
The kappa statistics was used as the registration measure. The high

values of Kappa measure for the local transformations shows the high
quality of registration. As all phases of each dataset were registered to
its end-diastolic phase, the lowest value of Kappa measure for global
transformation is for the end-systolic phase (phase 9)

Fig. 6 The result of non-rigid registration for an arbitrary training data
over three different phases of a cardiac cycle. The final transformed
image for the endocardium and epicardium (Green edges) is superim-

posed on the original image. The results is shown in short-axis (top row)
and long-axis (bottom row) views

Fig. 7 The triangulation of the
initial atlas using marching
cubes algorithm (left) and the
extraction of landmarks after
decimating the nodes of the
mesh (right). the nodes of the
generated mesh were decimated
with the rate equal to 0.98. The
shape of the atlas was preserved
after the decimation
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Fig. 8 First and second principal components in the shape Cbetween
(left) and Cnew

within (right). Each point represents the value of first and
second principal component of a training dataset for PCA-based model.

The one standard deviation of the 1st and 2nd component is shown in
each figure

Fig. 9 Percentage of total shape variance versus the number of modes
for inter-subject (left) and intra-subject (right) statistical shape model-
ing using PCA, ICA and Kernel PCA. The KPCA curve is shown for
4 different value of kernel parameter σ . By the increase of the KPCA

curve approaches the PCA curve and by the decrease of it is more similar
to the straight line. Generally the KPCA-based model is more compact
than ICA-based model

(left) and intra-subject (right) variations is shown in Fig. 8.
The probability associated with interval one standard devia-
tion from the origin is equal to 0.68. The one standard devia-
tion of the 1st and 2nd component is shown in the Fig. 7, too.
As it is clear in the figure, none of the landmarks is in this
interval for intra-subject distribution. The figure shows that
the assumption of Gaussian distribution has some limitation
for inter-subject and intra-subject distribution.

The “stprtool” toolbox was utilized to compute the KPCA
components [46]. The RBF kernel is used in the KPCA
framework. “This kernel has been a popular choice in the
machine learning community and has proven to nicely extract
nonlinear structures from data sets” [28]. We investigate the
behavior of the nonlinear model for 4 different values of the
kernel parameter (σ = 0.1, 1, 10, 100). The percentage of
total inter-subject and intra-subject shape variance versus the
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Fig. 10 Reconstruction error versus number of modes in the leave-
one-out experiments for inter-subject (left) and intra-subject (right) sta-
tistical shape modeling using PCA, ICA and Kernel PCA. The KPCA

curve is shown for 4 different value of the kernel parameter σ . Higher
value of the kernel parameter σ decreases the reconstruction error made
by KPCA

Fig. 11 Specificity for inter-subject (left) and intra-subject (right) sta-
tistical shape modeling using PCA, ICA and Kernel PCA. The KPCA
curve is shown for 4 different value of kernel parameter σ . The specific-

ity error of KPCA-based model is lower than ICA-based and PCA-based
models for almost all values of parameter σ

number of modes used in statistical shape modeling for PCA,
ICA and KPCA is shown in Fig. 9. As we expected, by the
increase of σ , the KPCA curve approaches the PCA curve
and by the decrease of σ it is more similar to the straight line.

For the leave-one-out experiment, the landmarks of all but
one sample were utilized to build the statistical model. This
model was subsequently used to reconstruct the excluded
sample. This is repeated for all training samples. Finally, the
average reconstruction error over the leave-one-out exper-

iments was computed. Figure 10 shows the mean square
reconstruction error for KPCA, PCA and ICA as a func-
tion of the number of variation modes. For a constant num-
ber of modes, the reconstruction error is a little higher for
the KPCA-based statistical model. Higher value for kernel
parameter decreases the reconstruction error made by KPCA
for inter-subject and intra-subject distributions. The general-
ization ability of the models is nearly the same for the inter-
subject distribution.
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The specificity for intra-subject and inter-subject distribu-
tions is shown in Fig. 11. As it is evident from these figures,
the error made by specificity measure is lower for KPCA than
PCA and ICA for most values of σ .

To demonstrate the ability of the proposed nonlinear
model for cardiac image segmentation, the 4D KPCA-based
active shape model was constructed and applied for the LV
segmentation of all phases of a cardiac cycle. We utilized
the method proposed by Leiner et al. [47] to construct the
4D ASM Model. To build the nonlinear model, KPCA was
used instead of PCA. To investigate the effect of σ , segmen-
tation was done for 4 different values of the kernel parameter
(σ = 0.1, 1, 10, 100). The KPCA-based model was built for
20 datasets, and the KPCA-based ASM was applied to the
remaining 13 datasets. We used the ASM Toolbox written
by Kroon et al. [48] and utilized KPCA instead of PCA for
nonlinear model-based segmentation.

Figure 12 shows the regression graph of the proposed
method versus manual segmentation. The volume error is
measured in cm3 and shows the absolute difference error
of the volume of segmented epicardium and endocardium.
The figure shows the result of segmentation for differ-
ent values of σ(σ = 0.1, 1, 10, 100) and for conventional
ASM.

The segmentation result of KPCA-based ASM is com-
pared with the conventional ASM in Tables 2, 3, 4 and 5 for
5 phases of a cardiac cycle (phases 1, 5, 10, 15, 20). The
result of KPCA for 4 different values of σ versus conven-
tional ASM is shown for each phase. Tables 2 and 3 show the
volume error of epicardium and endocardium, respectively.
As it is clear from the tables, the volume error is almost lower
for our method than the conventional ASM.

Tables 4 and 5 show the mean and standard deviation of
the MAD distance of KPCA and PCA-based ASM for the
phases 1, 5, 10, 15 and 20. It can be seen from the tables
that overall, our proposed method obtains smaller MAD
than the conventional ASM. Besides, the MAD distance is
almost lower for endocardium. Increasing the value of σ will
increases the MAD distance for both endocardium and epi-
cardium.

Discussion

In this paper, a spatio-temporal statistical shape model of
the LV was proposed. Kernel PCA was used to model the
nonlinear inter-subject and intra-subject variation of land-
marks. The nonlinear model was compared with PCA- and
ICA-based 4D models using the standard measures com-
pactness capacity, generalization ability and specificity. The
KPCA-based 4D ASM was applied for LV segmentation and
evaluated for 5 phases of a cardiac cycle. The results were
compared with the conventional ASM.

The high values of the mean of kappa measure and its
low value of standard deviation for all local transformations
showed the accuracy of the non-rigid registration. As all
phases of each dataset were registered to its end-diastolic
phase, the lowest value of Kappa measure for global trans-
formation was for the end-systolic phase (phase 9). These
reported kappa scores were not the actual measures of reg-
istration accuracy. Using the kappa measure, the quality
of registration for different phases of a cardiac cycle can
be compared with each other. To evaluate the real accu-
racy of registration, independently placed landmarks are
needed.

The compactness of the nonlinear KPCA-based model
was controlled by the parameter σ . For high values of σ ,
the model will be similar to PCA-based model and for low
values the compactness curve will tend to the straight line.
The compactness capacity of KPCA-based model was gen-
erally better than ICA-based model.

For a constants number of modes, the reconstruction error
was a little higher for the KPCA-based model than PCA-
based and ICA-based model. This occurred due to the error of
KPCA-based pre-image reconstruction. Improving the algo-
rithm of reconstruction will decrease this error. The specific-
ity error of KPCA-based model was lower than ICA-based
and PCA-based models for almost all values of the param-
eterσ . In both inter-subject and intra-subject distributions,
decreasing the value of the parameterσ will reduce the spec-
ificity error.

As it was clear from the Fig. 12 and Tables 2 and 3, the
absolute volume error was lower for endocardium than epi-
cardium. As we expected, the average error increased as the
value of parameter σ increased. For higher value of σ , the
behavior of KPCA-based ASM will be the same as conven-
tional ASM. The volume error was lower for our method
than conventional ASM for most of the 5 cardiac phases.
Furthermore, the segmentation error for end-systolic phase
was more than end-diastolic phase for both methods. The
same results were achieved by calculating the MAD dis-
tance in Tables 4 and 5. These facts prove the privilege
of our proposed method compared with the conventional
ASM.

Conclusion

We have presented a 4D statistical model of the left ventricle
using cardiac short-axis MR images. This model describes
the variation of cardiac anatomy and motion over the car-
diac cycle. The extended registration method enables better
temporal and spatial alignment of the cardiac dataset. Due to
the nonlinear relationship between 3D pseudo-landmarks in
each frame, nonlinear PCA was found more appropriate to
approximate the LV 4D statistical model.
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Fig. 12 The regression graph of the KPCA-based ASM (vertical) and
PCA-based ASM (i, j) versus manual segmentation (horizontal) for the
volume inside epicardium (a, c, e, g, i) and endocardium (b, d, f, h, j).
The model was applied to the end-diastolic phase of a cardiac cycle.

The graph is plotted for different value of parameter σ (a, b, σ = 0.1;
c, d, σ = 1; e, f, σ = 10; g, h, σ = 100). The segmentation result is
more precise for endocardium

Nonlinear property of KPCA will strengthen the ability of
SSM in image segmentation. This fact was demonstrated in
this paper by applying 4D KPCA-based ASM to all phases of

a cardiac cycle. We are now continuing the research toward
segmenting the LV using 4D KPCA-based ASM or AAM.
Besides, the AAM models will be applied in patients that

123



Int J CARS (2013) 8:335–351 349

Fig. 12 continued

Table 2 Segmentation results of epicardium for the proposed method compared with the PCA-based ASM

KPCA-based
ASM (σ = 0.1)

KPCA-based
ASM (σ = 1)

KPCA-based
ASM (σ = 10)

KPCA-based
ASM (σ = 100)

PCA-based ASM

Phase 1 4.49 ± 3.65 5.76 ± 4.18 11.32 ± 6.42 15.57 ± 3.12 16.95 ± 6.28

Phase 5 7.91 ± 4.12 9.83 ± 4.96 15.81 ± 4.45 16.81 ± 7.74 17.64 ± 4.55

Phase 10 10.08 ± 5.93 12.19 ± 4.25 15.66 ± 5.76 20.76 ± 5.26 20.01 ± 4.30

Phase 15 5.67 ± 4.32 8.45 ± 3.35 13.43 ± 6.11 18.44 ± 4.83 18.37 ± 7.02

Phase 20 3.21 ± 3.74 6.91 ± 4.84 13.25 ± 6.27 21.76 ± 6.05 19.72 ± 6.21

All values are mean ± SD absolute volume errors in cm3. These methods were applied to 5 phases of a cardiac cycle. The KPCA-based method
was applied for 4 different values of parameter σ

have pathologies in myocardium. For LV segmentation and
quantification of the LV volumes, the position of the mitral
valve plane is needed. For a realistic 4D LV model, this infor-
mation should be integrated. In addition, the model can be
constructed for other chambers of the heart such as atria or
right ventricle.

A fully automated system as described in this paper
can potentially produce uniform data with minimum inter-

observer variability. Currently hand tracing of the ventricular
contour is the norm in most cardiac MRI studies. But that
approach is prone to inter-observer variability. For instance
whether or not to include the left ventricular trabeculations or
the papillary muscles may differ from one operator to another
or among different institutions. Similarly the problem of par-
tial inclusion of the left atrium, as the mitral valve plane
moves inward during systole, is interpreted differently by
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Table 3 Segmentation results of endocardium for the proposed method compared with the PCA-based ASM

KPCA-based
ASM (σ = 0.1)

KPCA-based
ASM (σ = 1)

KPCA-based
ASM (σ = 10)

KPCA-based
ASM (σ = 100)

PCA-based ASM

Phase 1 1.81 ± 1.64 3.31 ± 2.46 6.27 ± 4.53 6.02 ± 7.50 9.62 ± 11.37

Phase 5 3.45 ± 2.03 2.73 ± 1.69 4.82 ± 3.06 5.52 ± 9.04 14.36 ± 9.91

Phase 10 4.37 ± 1.75 4.95 ± 1.45 6.60 ± 5.44 7.39 ± 5.83 13.92 ± 9.04

Phase 15 1.54 ± 1.34 3.42 ± 2.75 4.16 ± 3.37 5.63 ± 10.25 10.48 ± 7.52

Phase 20 2.08 ± 2.15 2.26 ± 3.80 4.43 ± 5.54 6.87 ± 10.06 11.73 ± 11.98

All values are mean ± SD absolute volume errors in cm3. These methods were applied to the 5 phases of a cardiac cycle. The KPCA-based method
was applied for 4 different values of parameter σ

Table 4 Comparison of the MAD distance between the KPCA-based and conventional ASM for the epicardium

KPCA-based
ASM (σ = 0.1)

KPCA-based
ASM (σ = 1)

KPCA-based
ASM (σ = 10)

KPCA-based
ASM (σ = 100)

PCA-based ASM

Phase 1 2.53 ± 0.30 2.75 ± 0.85 2.96 ± 1.85 3.16 ± 1.93 4.25 ± 1.61

Phase 5 1.72 ± 0.93 3.18 ± 1.98 3.39 ± 1.56 5.15 ± 2.06 4.88 ± 1.52

Phase 10 3.69 ± 0.57 3.91 ± 1.91 4.72 ± 0.41 6.02 ± 1.84 5.40 ± 2.53

Phase 15 1.35 ± 0.41 2.16 ± 1.44 3.52 ± 1.41 4.59 ± 2.23 5.13 ± 2.21

Phase 20 2.16 ± 013 2.45 ± 1.16 2.80 ± 1.08 3.28 ± 1.99 3.14 ± 1.83

All values are mean ± SD. These methods were applied to 5 phases of a cardiac cycle. The KPCA-based method was applied for 4 different values
of parameter σ

Table 5 Comparison of the MAD distance between the KPCA-based and conventional ASM for the endocardium

KPCA-based
ASM (σ = 0.1)

KPCA-based
ASM (σ = 1)

KPCA-based
ASM (σ = 10)

KPCA-based
ASM (σ = 100)

PCA-based ASM

Phase 1 2.05 ± 1.28 2.53 ± 1.58 2.41 ± 1.26 2.70 ± 1.32 3.66 ± 1.46

Phase 5 1.34 ± 0.53 1.56 ± 1.13 2.74 ± 1.13 3.26 ± 1.95 3.58 ± 2.05

Phase 10 2.39 ± 0.64 2.65 ± 1.75 2.96 ± 0.97 3.48 ± 1.47 4.29 ± 1.84

Phase 15 1.20 ± 0.75 1.78 ± 1.51 2.02 ± 1.46 3.18 ± 1.86 3.85 ± 2.34

Phase 20 1.28 ± 0.43 1.35 ± 0.97 1.49 ± 0.67 2.40 ± 0.95 2.95 ± 1.46

All values are mean ± SD. These methods were applied to 5 phases of a cardiac cycle. The KPCA-based method was applied for 4 different values
of parameter σ

different human operators. Once validated, it could enhance
the clinical utility of MRI in the assessment of cardiac func-
tion in patient studies.
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