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Abstract Objective A practical method for patient-specific
modeling of the aortic arch and the entire carotid vasculature
from computed tomography angiography (CTA) scans for
morphologic analysis and for interventional procedure sim-
ulation.

Materials and methods The method starts with the automatic
watershed-based segmentation of the aorta and the construc-
tion of an a-priori intensity probability distribution function
for arteries. The carotid arteries are then segmented with a
graph min-cut method based on a new edge weighting func-
tion that adaptively couples voxel intensity, intensity prior,
and local vesselness shape prior. Finally, the same graph-
cut optimization framework is used to interactively remove
a few unwanted veins segments and to fill in minor vessel
discontinuities caused by intensity variations.

Results We validate our modeling method with two exper-
imental studies on 71 multicenter clinical CTA datasets,
including carotid bifurcation lumen segmentation on 56
CTAs from the MICCAI’2009 3D Segmentation Challenge.
Segmentation results show that our method is comparable to
the best existing methods and was successful in modeling the
entire carotid vasculature with a Dice similarity measure of
84.5% (SD = 3.3%) and MSSD 0.48 mm (SD = 0.12 mm.)
Simulation study shows that patient-specific simulations with
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four patient-specific models generated by our segmentation
method on the ANGIO Mentor™ simulator platform are
robust, realistic, and greatly improve the simulation.

Conclusion This constitutes a proof-of-concept that patient-
specific CTA-based modeling and simulation of carotid inter-
ventional procedures are practical in a clinical environment.

Keywords Carotid arteries - CTA - Segmentation -
Model-based graph-cut

Introduction

Minimally invasive endovascular surgeries, involving the
carotid vasculature, coronary arteries, and the heart are per-
formed frequently. Even when performed by physicians with
broad experience and expertise, they involve time-consuming
trial and error with repeated contrast agent injection and angi-
ography, leading to significant X-ray exposure for patients
and health care professionals and to subsequent complica-
tions rates that are not negligible [1-3]. Training simulators
such the ANGIO Mentor™ [4] have the potential to signifi-
cantly reduce physicians learning curves, improve their per-
formance, reduce exposure to ionizing radiation, and improve
outcomes. Academic prototypes and commercial products
provide hardware for haptic feedback and software enabling
realistic simulations for a variety of interventional angio-
graphic procedures, including catheterization and stenting
[2,5-7]. To date, simulator libraries include only a limited,
hand-crafted repertoire of models developed from patient
scans or anatomical atlases. This limits their usefulness to
skills training and learning assessment for residents and
junior physicians.

Recent studies show that preoperative patient-specific
simulation of complex endovascular procedures has a strong
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influence on tool selection, angiographic imaging, and con-
trast agent injection for expert physicians [8—13]. The stud-
ies also show that preoperative rehearsal has the potential
to reduce the radiation dose, to reduce the number of endo-
vascular devices that are used, and to reduce complications,
by allowing physicians to gain valuable insights into patient
anatomy before the intervention.

Routine usage of presurgical patient-specific simulation
requires automatic, fast, and accurate vasculature model-
ing from computed tomography angiography (CTA) images.
Currently, alaborious process by a computer modeling expert
isrequired to generate patient-specific models with the detail,
accuracy, and quality required for simulation. For example,
[8] reports a user interaction time of 60—100 min to generate
patient-specific vascular models for simulation. Patient-spe-
cific model generation is the major bottleneck preventing
introduction of these rehearsal systems into routine clinical
practice [8].

Endovascular patient-specific simulation requires the
accurate segmentation of the entire lumen of the vascular
anatomy. For example, the relevant anatomy for carotid bifur-
cation stent implantation includes the common carotid artery
(CCA), extracranial internal carotid artery (ICA), external
carotid artery (ECA) and its branches, the carotid bifurca-
tion (CB), subclavian arteries (SA), and aortic arch (AA). The
vertebral arteries are helpful but not required for simulation.
These vascular structures are characterized by wide intra-
and inter-patient intensity and architecture variations, and
are proximal to bone structures with similar intensity values.
Imaging artifacts caused by metallic objects such as dental
implants are common. In addition, in many patients, severe
stenosis around the carotid bifurcation may cause segmenta-
tion failure [14]. Common modeling flaws include inaccurate
vessel diameters, missing vessel segments and entire small
vessels, inclusion of nonvascular anatomical structures, and
incorrect modeling of bifurcations and pathology.

In this paper, we present a complete framework for pre-
operative CTA scan-based patient-specific carotid artery
modeling. Our method enables the generation of patient-
specific simulations in a clinically acceptable time frame
without the need of dedicated technician. It includes a
model-based graph-cut segmentation method that couples
a patient-specific vessel intensity model and local vessel-
ness shape priors in a graph-based segmentation approach.
To correct the inevitable inaccuracies, we have developed a
semi-automatic graph-based editing tool to remove unneeded
veins and fill in minor discontinuities around the bifurcation
of the common carotid from the aortic arch caused by contrast
agent injection artifacts.

The main contributions of this paper are: (1) a model-
based graph-cut approach to vessel segmentation based on
an automatically generated patient-specific vessel intensity
model and local vesselness tubular shape priors; (2) a new
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patient-specific carotid vasculature modeling framework for
preoperative simulation; and (3) an extensive, multicenter,
multiobserver evaluation using clinical CTA datasets. To the
best of our knowledge, ours is the first work that addresses the
segmentation of the entire carotid vasculature that is required
for carotid bifurcation stent implantation simulation from
CTA images. Our study includes both a quantitative and
a qualitative evaluation of segmentation accuracy and the
simulation process on a publicly available database. Thus,
our work provides a proof-of-concept of clinically practical
patient-specific carotid vascular system modeling for pre-
operative patient-specific interventional endovascular proce-
dure simulations.

The rest of this paper is organized as follows. In “Previ-
ous work,” we review the state of the art in carotid artery seg-
mentation. In “Method,” we describe our methods in detail. In
“Experimental results,” we describe three experimental stud-
ies that validate the proposed approach. “Conclusion” con-
cludes the paper with a discussion and description of future
work.

Previous work

Carotid artery segmentation from CTA scans is a challenging
task. The main difficulties are significant intra- and inter-
patient carotid intensity and geometry variability [15], inten-
sity value overlap of carotid arteries and neck vertebrae, and
dental implant streaking artifacts. Numerous automatic and
semi-automatic segmentation methods for various anatomi-
cal structures and imaging modalities have been developed
during the past decade. For a general review of these methods
see [16,17].

The main approaches for carotid artery segmentation
rely on intensity values [18], geometrical shape informa-
tion [19,20], edge-based active contours [21-25], statistical
active shape models [26], and contour tracking [14,27-29].
Some of these methods were developed for magnetic reso-
nance angiography (MRA) and for digital subtraction angi-
ography (DSA) scans [18-22,24]. They produce good results
on specific vascular regions of radiological interest in which
vessel intensity is clearly distinct from the intensity of nearby
organs. However, these methods were not validated for the
segmentation of the entire extra-cranial carotid system.

Hybrid approaches, such as [30] use an automatic par-
titioning formulation that selects a different segmentation
algorithm for each part of the carotid vasculature. This parti-
tion algorithm was validated; however, no quantitative anal-
ysis of segmentation accuracy throughout the entire carotid
vasculature and its fidelity for simulation was conducted.

The automatic active surface segmentation algorithm
described in [31] requires accurate automatic registration to
an atlas to identify the vascular system start and end points
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for centerline computation. Its main drawbacks are that it
is highly sensitive to precise identification of start and end
points. The evaluation of this method on the publicly avail-
able CLS2009 database [32] shows that it failed to process
5 out of the 15 cases in the training datasets and 8 out of the
31 testing cases due to registration errors. The high depen-
dency of this method on the success of the initial registration
is undesirable in routine clinical usage.

A recently published technique [9] describes a method for
the segmentation of the entire carotid system from CTA and
MRA images for use in simulation. This method consists of
(1) enhancement and cleaning the patient data with aniso-
tropic diffusion and morphological operators; (2) segmenta-
tion of the vessels through a level set evolution, initialized
from a manually selected threshold; (3) skeletonization to
obtain the centerlines of the vessels; (4) estimation of the ves-
sel surface through circle or ellipse fitting; and (5) cross sec-
tion post-processing. The preprocessing step (i.e., 1) heavily
depends on multiple parameters whose adjustment in wide
clinical practice is undesirable. It is important to note that
this method evaluated only on 2 CTA datasets that are not
representing wide variety of patients and pathologies.

The graph min-cut segmentation method [33,34] classifies
voxel nodes that separate objects of interest and background
based on both weighted voxel adjacencies and prior intensity
models of the object and the background. The advantages of
graph min-cut segmentation are that it provides a globally
optimal solution in polynomial time, that it is generic, and
that it relies on a few parameters that do not require frequent
adjustments. However, it has been recently reported that
graph min-cut segmentation suffers from a “shrinking bias”
[35,36]. It is thus less suitable for vasculature segmentation
without user interaction or prior shape information [37].

Previous methods utilizing the graph min-cut segmenta-
tion method for vascular structures segmentation [29,38—41]
were developed and tested for tasks other than segmentation
of the entire carotid vasculature.

Recently, a Grand Challenge workshop devoted to the seg-
mentation of a single carotid artery bifurcation was organized
by the Medical Image Computing and Computer Aided Inter-
ventions (MICCAI) Society. (For details on the participating
algorithms, datasets, evaluation methodology and results, see
[42].) In our contribution to this workshop [43], we presented
a semi-automatic tool for the segmentation of the carotid
bifurcation.

However, the focus of the workshop was the segmenta-
tion of the carotid bifurcation. Therefore, the performance of
the algorithms presented in the workshop, including ours,
in segmenting the entire extracranial carotid vasculature
remains unclear, especially because of intensity value over-
lap between these vessels and nearby organs [8,9]. It is the
goal of this work to present a comprehensive method for the

segmentation and modeling of the entire carotid vasculature
system for simulation.

Method

The input to our method is a routine clinical CTA scan of the
head and the neck of the patient including the entire carotid
vasculature from the aortic arch to the skull. Segmentation
proceeds in four main steps (Fig. 1): (1) automatic aortic arch
segmentation; (2) intensity and shape model generation; (3)
automatic carotid, vertebral, and subclavian arteries segmen-
tation; and (4) semi-automatic graph-based vessel connection
and cleaning. The output is an accurate 3D geometric model
of the carotids for morphological analysis and robust real-
time simulation. We will now describe each of these steps in
detail.

Aortic arch segmentation

Aortic arch segmentation relies on prior anatomical knowl-
edge of the aortic arch structure, the aorta location, and its
relative brightness. Our aortic arch segmentation algorithm
starts with automatic identification of the region of inter-
est (ROI) followed by watershed-based segmentation. We
describe these steps in detail.

The aorta is the dominant arch-like vessel above the pul-
monary artery located in the lower fourth region of a head and
neck CTA scan acquired with an inferior to superior orienta-

Input: CTA Scan

1. Automatic aortic

arch segmentation

2a. Intensity model estimation
2b. Vesselness computation

!

3. Automatic graph min-cut
carotids segmentation

!

4. Semi-automatic graph-based
refinement

!

Output: 3D model

Fig. 1 Flowchart of the proposed segmentation method

@ Springer



802

Int J CARS (2012) 7:799-812

(b) Fixed thresh-
olding

(a) Aorta region
sagittal view

(c) Watershed seg-

mentation

(d) Arch-like (e) Arch-like seg-
segments in lower ment in upper slice model

slice

(f) 3D surface

Fig. 2 Automatic aorta segmentation: a aortic arch region (sagittal
view); b thresholded CTA scan axial slice; ¢ watershed segmentation
result; d, e arch-like structure as it appears in the lower (d) and upper
(e) slices of the component; and f 3D surface model

tion. When the scan is acquired in a different patient position,
we re-orient the scan to the inferior to superior orientation
based on the position information stored in the DICOM for-
mat where available or by rigid registration.

First, the aorta ROI is defined as the lower quarter of the
CTA scan (Fig. 2a). Background voxels, whose values are
outside the expected vessel intensity range (0-600 Houns-
field Units) are eliminated (Fig. 2b). The watershed trans-
form [44] is then applied to the gradient magnitude image to
obtain an initial segmentation.

The resulting segmentation includes several connected
components (Fig. 2c), with the aortic arch among them. To
identify which one is the aortic arch, each component is
examined individually as follows. For each CTA slice, the
2D segments that belong to each 3D component are identi-
fied by connected components analysis [45]. The aortic arch
segments appear as two nearby circular segments in the lower
slices (Fig. 2d), and as an single ellipsoid segment on the
upper slices (Fig. 2e). A component is classified as arch-
like when lower slices contain only two segments and the
slices above contain only one segment. 2D segments with a
small number of pixels (less than 800) in the upper slices
correspond to vascular bifurcations from the aortic arch are
ignored. Finally, the intensity variance of each arch-like com-
ponent is computed. The arch-like component with the lowest
intensity variance corresponds to the aortic arch (Fig. 2f).

Intensity model estimation

Intensity probability distribution function (IPDF) of the vas-
cular and nearby anatomical structures is automatically esti-
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Fig. 3 Representative examples of the background (black), aorta (red),
and carotids (green) histograms normalized by the overall number of
voxels in the CTA scan and our implicit four-class background model
(blue). Note that the carotid and the aorta histogrms have very similar
shapes, while the four-class background model covers the background
intensities close to the carotid intensities. Note also that the intensity
information alone is not sufficient to discriminate between the aorta,
carotids, and the background

mated from the resulting aortic arch segmentation. Figure 3
shows representative normalized histogram of the aorta,
carotid vasculature, and the rest of the CTA image. Both the
aorta and carotid intensity values usually exhibit Gaussian
distributions with similar parameters; thus, we use the aorta
IPDF as an a priori intensity model for the carotid.

To model the background distribution, we observe that
modeling it as the complement of the foreground will not rep-
resent accurately the presence of overlapping intensity values
between the foreground and background classes. In addi-
tion, modeling background intensity values with a unimodal
normal distribution [27], or with a bimodal distribution, in
which one peak represents pixels darker than the carotid and
the other represents pixels brighter than the carotid, will also
yield a large variance in each background class, and thus may
reduce the segmentation accuracy.

To overcome this problem, we model the background
intensity implicitly with a four-class model [46] where each
class is modeled as a normal distribution. The vascular sys-
tem (object) class parameters are computed using the mean
and the variance of the aortic arch. The background organs
whose gray values are near/far and above/below the vascular
system gray values are then modeled according to four back-
ground classes. The mean value of each class is computed
with respect to the vascular system class mean value. Voxels
with intensity values out of the four-class background model
range are discarded.

Formally, the vascular system class Xy is defined as:

Xy~ N (MVS7 U\%S) (1
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where [y is the mean intensity value of the vascular system
class and o, is its variance. The remaining four classes X;
are modeled as:

Xi ~ N (,M, 0,2) @)

for each i € {near-low, near-high, far-low, far-high}. The
means of these classes are defined as:

Mnearhigh = Mvs + (Knear X Ovs)

Mnear-low = Hvs — (Knear X Ovs)

Mfar-high = Mys + (Kfar X Oys)

Mfar-low = Hys — (kfar X Oys)

3

where the constants kpe,r and kg, values are determined once
by comparing the segmentation results obtained with various
parameter values on the training datasets to their ground truth
segmentation obtained by expert manual segmentation, and
choosing the best ones. In this model, each voxel from the
ambiguous vascular system boundaries has a high probability
of being in both the vascular system and in the “near” clas-
ses. Its final classification will be determined by the intensity
values of its neighboring voxels.

Carotid arteries segmentation

The next task is to separate the carotid lumen (object) from
the surrounding structures (background) in the CTA vol-
ume /. We define the carotid artery segmentation problem
as a binary labeling problem in which a label M(x) €
{Movj, Mg} is assigned to each voxel x.

Following the Bayesian approach, the segmentation cor-
responds to the labeling map M that maximizes the posterior
probability of the Markov random field (MRF) associated
with the label map:

M = argmax p(M|1) o< p(I|M) p(M) @
where:
pUIM)p(M)
o [JeumM@) [] vM&), M(y) (5)
x yER(x)

and £2(x) is the neighborhood around the voxel x.

This maximum a posterior MRF (MAP-MRF) inference
problem is equivalent to the minimization of the energy func-
tional [47]:

E(M) = —log(p(I|1M)p(M))
= > (~log(@ ()M (x)))

+ D —logW (M), M())) (©)

YE2(x)

where ¢ (I (x)|M (x)) is the likelihood of voxel x to have label
M(x) and ¥ (M(x), M(y)) is the prior MRF smoothness
term. Both ¢ (I (x)|M(x)) and (M (x), M(y)) are com-
puted as follows [33]:

@) - uMm)z)

2
2UM(X)

b1 (x)|M(x)) = exp(
%
(I(x) — 1<y>)2)

2
ZO’M(X)

V(M(x), M(y)) = CXP(—

where 1 s(x) and op(y) are the mean and standard deviation
of the class that assigned to voxel x.

As illustrated in Fig. 4a, b, the intensity model by itself is
not sufficient to accurately differentiate between the carotid
lumen and its surrounding tissue. Therefore, we use a hybrid
model that integrates the intensity model with a local vessel-
ness shape constraint. The new energy functional is defined
as:

EM)= Z(—(log(¢i(1(X)IM(X)) —log(¢™ (O (x)|M (x)))

+ > —log(y/(M(x), M) @®)

yefR(x)

where ¢i (I(x)|M(x)) is the intensity-based term computed
from the prior intensity model as follows:

P (X)|fhys, Ovs) Mo

9)
max p( (x)|p;, 0;) Mgy

o' (I1(x)|M(x)) = {

where i € ({near-low, near-high, far-low, far-high}, and
©®(x) is the local vesselness information computed with
Frangi’s multiscale Hessian based vesselness filter [19]:

0 A, A3>0
V(o) = _R _ R} s 10
@) (l—e @a)? )(e @n? (l—e (25)2) otherwise (10)
where
[A2] |21 [,2 424 42
Ry=— Rp= S=A +A5+ A (11)
23] VIansl e

and o is the scale at which the measure is computed. The con-
stant R4 is used to differentiate between plate and line-like
structures. The constant Rp is used to measure the deviation
from blob-like structures. The constant S is used to differenti-
ate between vessels (foreground) and other structures (back-
ground). The constants a, b and ¢ are predefined weights that
determine the relative influence of R4, Rp and S. The vess-
elness measure value is close to 1 for voxels with tube-like
structures, and close to 0 otherwise, and is computed for each
voxel and for each scale. Finally, for each voxel, the maximal
value among the different scales is set to the voxel vesselness
measure. The shape term ¢V$(® (x)|M (x)) is equal to ® (x)
for Mopj and to 1 — @ (x) for Mpg.
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(b) Intensity weighting

(a) CTA

»

(d) Combined weighting

-

(¢) Vesselness weighting

Fig. 4 Tllustration of the need for a hybrid model for graph-cut segmen-
tation (red): a original CTA slice of the carotid bifurcation; b intensity
weighting; ¢ vesselness weighting; d combined intensity and vesselness
weighting

The penalty for two adjacent voxels x, y with different
labels ¥/ (M (x), M (y)) is based on their intensity difference
and depends on the local shape information of the edge origin

(x):
¥'(M(x), M(y))

(I(x) — 1(y))? 1
on (S5 (e )

12)

Note that multiplication of the contrast and shape terms
reduces the sensitivity to intensity differences in regions
with high shape information and increases the sensitivity to
intensity differences in regions with low vesselness response,
which are more related to background. This cause our method
to reduce the “shrinking bias” associated with the graph min-
cut segmentation [35,36].

The weighting constant & € [0, 1] controls the degree of
smoothness with respect to the shape information; € is a small
constant to prevent dividing by zero.

This asymmetric formulation encourages the minimal cut
solution to include voxels that are nearby voxels with high
vesselness response (e.g., centerline voxels) inside the object
class, ignoring minor intensity differences between them,
while eliminating voxels with similar intensity values that are
not near to voxels with high vesselness response, resulting
in a segmentation boundary that coincides with the physical
boundary of the vessel and.

@ Springer

Since ¥'(-, -) > 0, the energy functional in Eq. 8 satisfies
the modularity condition:

¥, Y () S Y0+ Y x) 13)

where x, y are two adjacent voxels. Therefore, the globally
optimal solution can be computed in polynomial time using
the graph min-cut technique [47] as follows.

LetG = (V, E) adirected graph, where V ={vy,, ... vy,,
vs, vy} are the graph nodes such that node v, corresponds
to voxel x and terminal nodes vy and v, correspond to
the object and background classes. The graph edges E =
{(vx, vs), (Vx, V1), (Vx, vy)} consist of three groups:

1. edges (vy, vs) from voxels to the object terminal node;

2. edges (vy, vy) from voxels to the background terminal
node, and;

3. directed edges (vy, vy) between adjacent voxels (6 or
26 neighbors for 3D images).

The cost of the cut C that divides the graph into the object
class (source vertex) and the background class (terminal ver-
tex) is defined as the sum of the weights of the cut edges
eeC.

Edge weights w, are assigned as follows. Edge weights
w(vy, vs) represent the likelihood that voxel v; is related to
the vessels (object) class:

w(vy, v5) =—log(¢’ (1 (x)| Mowj) —log(¢"* (@ (x)| Mon;]))
(14)

Edge weights w(vy, v;) represent the likelihood that voxel
x belongs to the background class:

w(vy, vy) =—log(¢' (I (x)|Mpkg)) —log(¢"* (O (x)| Mpie))
(15)

where ¢’ (I (x)| Mop;) and ¢’ (I (x)| Mpyg) are the likelihoods
that voxel x belongs to the object/background classes, based
on the voxels intensity information and the background IPDF
implicit model (Eqgs. 2, 3), ¢"*(® (x)| Mop,;) is the local vess-
elness response (Eq. 10), and ¢**(® (x)| M) is the back-
ground shape information defined as 1 — ¢"5(® (x)|Moy;).

Edge weights w(vy, vy) penalize for adjacent voxels that
have different labels. The penalty depends on both the inten-
sity contrast between the two voxels and the shape informa-
tion.

w(vx, vy) = ¥ (M(x), M(y)) (16)

where ¥/ (M (x), M(y)) is defined in Eq. 12.
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(a) Case 1: Auto-
matic segmenta-
tion result

(b) Case 2: Auto-
matic segmenta-
tion result

(e) Case 2: (f) Case 3:

After interactive  After interactive
connection and connection and
cleaning cleaning

(¢) Case 3: Auto-
matic segmenta-
tion result

(d) Case 1:
After interactive
connection and
cleaning

Fig. 5 3D visualizations of automatic vessel segmentation from 3 CTA
studies. a—c Three representative vessel surface meshes constructed
from automatic segmentation of CTA studies. Blue and green vessels
are disconnected. d—f Vessel models after interactive connection and
cleaning

Interactive semi-automatic graph-based vessels connection
and cleaning

The automatic artery segmentation step may produce dis-
connected vessel segments, may miss small vessels, or may
include the internal jugular veins. Figure Sa—c shows repre-
sentative results on three examples. Note that the automatic
method correctly segments the main parts of the carotid artery
system, including the carotid bifurcation, the CCA, ICA, and
ECA, with some of their secondary vasculature. In Fig. Sa,
both connection of the CCA to the aortic arch and removal
of the jugular veins are required. In Fig. Sb—c, connection
of the right CCA to the entire carotid vasculature model is
required.

We have developed an interactive, semi-automatic edit-
ing tool to allow the user to easily fix these flaws, remove
unwanted blood vessels, and produce a 3D model of the
entire carotid vasculature based on the automatic segmen-
tation. Figure 5d—f shows the vasculature models after cor-
rection with the interactive tool.

The interactive tool requires the user to identify two points
for each disconnected artery or undesired vein. It then com-
putes the segmentation of the vessel in two steps: (1) vessel
centerline estimation using a weighted shortest path algo-
rithm; and (2) optimal vessel boundary segmentation using a
spatially constrained graph min-cut. Once the vessel has been
reconstructed, it is added to the vessels model generated by
the previous automatic step, or removed from the automatic

(¢) final segmenta-
tion

(a) original image

(b) vessel ROI

Fig. 6 Illustration of the segmentation process on a coronal CTA image
depicting the left vertebral artery in a clinical study. Note strong imag-
ing artifacts. a Original image with seed points; b weights map showing
the shortest path (red) and the region of interest (blue); and c final seg-
mentation

segmentation according to the user decision. Figure 6 illus-
trates the method. We will now describe each step in detail.

Vessel shortest path computation

The vessel shortest path is computed by finding the weighted
shortest path between the graph nodes s and ¢ corresponding
to the user-defined vessel seed points. The shortest path is
the sequence of edges connecting s to ¢ for which the sum
of edge weights is minimized. To achieve real-time perfor-
mance, only intensity and image gradient information is used,
as vesselness information [19] requires time-consuming ei-
gen analysis of the second order derivatives.

The edge weighting function is defined as the weighted
sum of (1) the local intensity difference; (2) the seed devia-
tion intensity difference; (3) the image gradient smoothness
along the path; and (4) the path length:

w.y) =a- (@)= 1)
+b- (1) = 16+ U G) = 1))
+c-|cos N (VIx) - VI(y)| +k (17)

The first term is the squared difference between voxel x, y
intensity values. This term penalizes for intensity differences
along the path and prevents the path from leaving the vessel
region.

The second term is the sum of the relative squared differ-
ences of the seeds and edge-end voxel (y) intensity values.
This term prevents the edges in the path from diverging from
the intensity values of the user-defined seed points, and pre-
vents the path from moving along locally smooth tissues with
low edge weights instead of inside the noisy vessel.

The third term is the angle between the intensity gradi-
ents along the path. This term ensures the smoothness of the
image gradients along the path. The constant k is used to
penalize long paths.
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The weighting constants a, b, ¢ are used to normalize the
terms and to control the effect of each term on the overall
path weight. Their values were determined experimentally
and set once for all datasets.

The shortest path is then computed using Dijkstra’s algo-
rithm [48].

Optimal vessel boundary segmentation

The vessel boundary segmentation is computed by spatially
constrained graph min-cut optimization around the computed
vessel path. A distance map that describes the path obtained
in the previous step is used to spatially constrain the min-
cut problem over the corresponding graph, as described in
“Carotid arteries segmentation.” Edge weights are assigned
as follows.

Edge weights w(x, s) penalize voxels whose intensity
value is far from the mean intensity value along the com-
puted vessel path:

(18)

_ 2
(. 5) — oxp (_(1(x> ) ) d(x)

201% k

where 1), is the intensity mean value along the vessel path,
o) is the intensity standard deviation along vessel path, d (x)
is the distance between the current voxel x and the vessel
path, and & is a normalization factor. This weight represents
our belief that voxel x belongs to the object class based on
voxels intensity /(x) and the objects mean intensity value
combined with spatial information that favors voxels that are
closer to the vessel path.

Edge weights w(x, t) represent the likelihood that each
voxel belongs to the background:

wx,t) =1—w(x,s) (19)

In this case, we use the complement of the object weight
w(x, s) instead of an explicit background intensity model
(“Intensity model estimation”), because the ROI is small and
consists primarily of desired vessel voxels, with fewer darker
background voxels.

Edge weights w (x, y) represent the magnitude of the local
intensity difference between the adjacent voxels:

2
w(Vy, Vy) = €xp (—W) (20)
%p

The minimal cut is computed as before, with Boykov’s algo-
rithm [33]. The solution represents the optimal surface that
separates the image into the vessel object and the background.
Figure 7 shows the segmentation results of three challenging
examples after interactive correction.
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(b) (c)

Fig. 7 Semi-automatic segmentation results: 2D views of segmenta-
tion results on representative datasets. The resulting segmentation con-
tour (red) is overlaid on the ground truth contour (green). a Steno-
sis—axial view, b aortic arch and carotid bifurcation—sagittal view, ¢
CCA—axial view

Experimental results

We validate our method with three experimental studies on
multicenter clinical CTA datasets. The first study addresses
the accuracy of the automatic and semi-automatic segmenta-
tion tool for the carotid bifurcation lumen on 56 CTAs from
the MICCAI’2009 3D Segmentation Challenge for Clinical
Applications Workshop (CLS2009) [42]. The second study
addresses automatic segmentation followed by semi-auto-
matic refinement of the entire carotid vascular system on a
separate set of 15 CTAs from two medical centers, which
were not included in the CLS2009 database. The third study
addresses the simulation of interventional radiology proce-
dures on patient-specific models generated by our segmen-
tation method on the ANGIO Mentor™ simulator platform.
We describe parameter optimization and validation studies
in detail below.

Parameter optimization

We have implemented our method in C++ using the ITK
software library [49]. Segmentation parameters were opti-
mized experimentally with three head and neck CTA scans
acquired with acquisition parameters similar to those of the
Hadassah-Hebrew University Medical Center datasets in the
CLS2009 database [42]. For each dataset, the vascular sys-
tem was segmented by a 3D segmentation expert and vali-
dated by an expert radiologist. The resulting parameter values
were set once and for all in the following test datasets. The
watershed transform parameters for the aortic arch segmen-
tation depth and lower-threshold were optimized visually
and set to depth = 0.25 and lower-threshold = 0.001.

The intensity model parameters kpear and kgyr (Eq. 3)
were set by observing the effect of their values on the over-
all segmentation accuracy on the three training datasets.
The Dice measure was computed for the carotid bifurcation
region in intervals kpear € [1.5, 3.5] and kg, € [4, 6] using
equally spaced steps of 0.5. Figure 8 summarizes segmen-
tation results with varying parameter values. Based on these
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(b) oversegmenta- (¢) accurate seg-
tion mentation

(a) undersegmen-
tation

Fig. 8 Illustration of the intensity model parameters on a carotid bifur-
cation axial slice: a the values kpear = 1.5, kfar = 4 yield suboptimal
segmentation that excludes parts of the lumen; b the values kpear =
3.5, kfar = 6 yield oversegmentation that includes parts of the bifur-
cation stenosis; ¢ the values knear = 2.5, kfar = 5 yield accurate seg-
mentation that includes the entire lumen while excluding the stenosis

results, we set parameter values to kpear = 2.5 and kg = 5.
In addition, we set o; = oy for all classes.

The parameters for Frangi’s vesselness measure were set
toa = 0.5, =0.5,y =7, as recommended in [19]. Five
equally spaced scales in the 0.5-5.0 mm interval were used
to capture the vascular system, which contains a wide range
of vessel diameters. The value of « in Eq. 12) was set to
a =0.25.

Parameters for the semi-automatic segmentation tool
were optimized using 15 training datasets provided by the
CLS2009 database [42], and set as follows. For the shortest
path computation (Eq. 17), a = 1, b = 1. The parameter ¢
was used to scale between radian units in the third term and
intensity differences, measured in Hounsfield units, with a
range of [—1500, 1500]. Its values were set to ¢ = 10,0007 .
The Euclidean distance was the actual distance in millimeters
multiplied by 10000. The distance factor was set to k = 2.
The optimization performed using exhaustive search over the
parameters ranges with the Dice similarity measure as the
optimized function. Note that these 15 training datasets were
excluded from the overall evaluation of the method both in
[42,43] and in this paper.

Carotid bifurcation lumen segmentation

We evaluated the performance of both the automatic (“‘Carotid
arteries segmentation”’) and semi-automatic methods (“Inter-
active semi-automatic graph-based vessels connection and
cleaning”’) with the CLS2009 [42] evaluation framework.
The evaluation framework consists of 56 CTA images of
the carotid arteries acquired in three medical centers: (1) the
Erasmus MC University Medical Center, Rotterdam, The
Netherlands (36 datasets); (2) the Hospital Louis Pradel,
Bron, France (10 datasets); and (3) the Hadassah-Hebrew
University Medical Center, Jerusalem, Israel (10 datasets).
For a detailed description of dataset acquisition protocols,
contrast agent injection, ground truth generation, and evalu-
ation protocol, see [42].

(a) Dental (b) Calcification - (¢) Calcification -
implants - axial axial view sagittal view
view

(e) ® (®

Fig. 9 Final segmentation results: a—c¢ 2D views of segmentation
results on representative datasets. The resulting segmentation contour
(red) is overlaid on the ground truth contour (green); d—g spatial visu-
alization of four surface vessel meshes constructed from the automatic
segmentation of the carotid bifurcations in the CTA scans

(d)

The Hadassah datasets included all the vasculature of
interest; the Erasmus and Louis Pradel datasets did not
include the aortic arch. The ROI for all datasets includes
the CCA, starting at least 20 mm caudal of the carotid bifur-
cation; the ICA, up to at least 40 mm superior to the carotid
bifurcation; and the ECA, up to between 10 and 20 mm supe-
rior to the carotid bifurcation. The ground truth for all data-
sets was generated by averaging the manual segmentations
of three expert radiologists. The secondary vasculature of the
CCA, ICA, and ECA was not included in the ground truth
definition.

The automatic method was evaluated on the 10 Hadassah
datasets as the test set; the other datasets were excluded, as
they do not include the aortic arch, which is required to con-
struct the IPDF prior. The semi-automatic tool was evaluated
on all 56 CTA scans following the workshop methodology.
For each scan, three seed points were provided by the work-
shop organizers as input to the algorithm. From the 56 data-
sets, 15 were used for training only and the remaining 41
were used for both off-site and on-site evaluations during the
workshop [42].

Segmentation accuracy was evaluated by comparing the
results to ground truth segmentations generated from three
manual annotations with four metrics: (1) mean symmetric
absolute surface distance (MSSD); (2) Hausdorff distance
(HD); and (3) Dice similarity measure. All of the evaluation
measures were performed using the software provided by the
CLS2009 workshop organizers [42].

Figure 9 shows the segmentation results of three rep-
resentative carotid bifurcation cases. Table 1a summarizes
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Table 1 Comparison metrics for the first two studies: (a) results for the CLS2009 database and (b) results for the entire carotid system segmentation

Number of test cases MSSD (mm) HD (mm) Dice (%) Time (s)
Mean SD Mean SD Mean SD Mean SD
(a)
Automatic 10 0.24 0.07 1.55 1.03 90.64 2.5 452 218
Semi-automatic 41 0.75 0.45 9.2 3.26 82.92 3.42 122 41
Number of cases MSSD (mm) HD (mm) Dice (%) Time (s) User time (s)
Mean SD Mean SD Mean SD Mean SD Mean SD
(b)
Hadassah 10 0.54 0.16 15.82 4.94 83.67 4.42 470 212 66 12
Rochester 5 0.37 0.04 7.89 2.01 86.16 1.06 154 12 64 17

The first column indicates the method or the origin of the datasets; the second column is the number of datasets; the third column is the mean
symmetric surface distance (MSSD) in mm; the fourth column is the Housdorft distance (HD) in mm; The fifth column is the Dice similarity
measure in %; The sixth column is the processing time; The seventh column [(b) only] is the user interaction time required for post-processing

the results of both the automatic and the semi-automatic
method. For the automatic method, the mean Dice similar-
ity measure was 90.64% (SD = 2.5%). The MSSD was
0.24mm (SD = 0.07mm). The vessel diameter range for
the carotid bifurcation region for these datasets was 4—8 mm.
For these datasets, the MSSD was 3-6% from the vessel
diameter.

For the semi-automatic vessel completion method, the
mean Dice similarity measure was 82.92% (SD = 3.42%).
The MSSD was 0.75mm (SD = 0.45mm), that is, 5—
10% from the vessel diameter. The mean computation time
for each bifurcation was 122s (SD = 41s) using a stan-
dard 3GHz PC with 4GB of memory. The semi-auto-
matic method ranked 4th among all CLS2009 workshop
methods that successfully segmented all 56 datasets, Sth
when methods that failed to segment the entire 56 data-
sets were included, and 3rd for all measures, with the
exception of the average HD [42]. We refer the reader
to the CLS2009 workshop website (http://cls2009.bigr.nl/)
for further analysis and comparison with other groups
results.

Entire carotid vasculature segmentation

In the second study, we evaluated our segmentation meth-
odology, consisting of automatic segmentation followed by
interactive connection and cleaning of the entire carotid vas-
culature, on 15 CTA scans—10 from the Hadassah-Hebrew
University Medical Center, Jerusalem, Israel, and 5 from
the Mayo Clinic, Rochester, MN, USA. These datasets were
obtained retrospectively and separately, and were not part of
the CLS2009 database. In contrast to previously published
works [9,14,26,42], our segmentation evaluation included
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the entire carotid vasculature, consisting of the aortic arch, the
subclavians, and the left and right CCA, ICA, ECA with their
secondary vessels. For acquisition of the Hadassah datasets,
10 patients were administered 100cc of noniodinated con-
trast material with a rapid injection aid at 34 ccs~!. The CTA
scans, acquired on a Sensation 16 Siemens Medical Solu-
tions scanner (Forchheim, Germany), have in-plane pixel size
0.5 x 0.5 mm?, matrix size 512 x 512, 0.55 mm slice thick-
ness, and 750 slices. For acquisition of the Mayo Clinic data-
sets, five patients were administered 125 cc of noniodinated
contrast material with a rapid injection aid at 5cc s~!. The
CTA scans, acquired on a General Electric Scanner (GE, Mil-
waukee, USA), have in-plane pixel size 0.35 x 0.35mm?,
matrix size 512 x 512, 1.25mm slice thickness, and 120
slices. Studies from both centers included varying degrees
of stenosis and dental implant-related streaking image arti-
facts. Reference standard segmentation of the arteries were
obtained manually by a 3D segmentation expert using the
existing ANGIO Mentor™ simulation platform [4] and val-
idated by an expertradiologist. For the Rochester datasets, the
vertebral arteries were also segmented and used in the eval-
uation. Both volumetric- and surface-based measures were
computed as described in “Carotid bifurcation lumen seg-
mentation.”

Figure 7 shows the segmentation results of three represen-
tative cases after automatic segmentation and semi-automatic
refinement. Video clips of the 3D models are available in:
http://www.cs.huji.ac.il/~freiman/vessels-cut.

Table 1b summarizes the results. Our method success-
fully segmented all datasets and identified all vessels and
bifurcations without any failure. The mean Dice similarity
measure is 84.5% (SD = 3.3%) and MSSD is 0.48 mm
(SD = 0.12 mm). The overall accuracy represents improve-


http://cls2009.bigr.nl/
http://www.cs.huji.ac.il/~freiman/vessels-cut

Int J CARS (2012) 7:799-812

809

ment upon our previously published conference paper results
[50], in which a different, less effective edge weighting func-
tion was used.

The relatively large HD stems from the ground truth aortic
arch and subclavian segmentations (Fig. 10). In most cases,
the aortic arch and subclavian lumen were conservatively
segmented (Fig. 10a, b), yielding a relatively large discrep-
ancy in the surface distance. In addition, aortic arch calcifi-
cations were considered as part of the lumen in the manual
segmentation, but were not included by our method because
of their high intensity values (Fig. 10c).

Figure 11 shows the MSSD box plots of the different
vessels diameters in the carotid system for the 15 cases as
identified by an expert radiologist. Vessel diameter ranges
from 4-8 mm in the region of the carotid bifurcation in the
datasets of our study. Segmentation is very accurate on the
common carotid and its bifurcation (MSSD is 2.5-5% of
the vessel diameter), which are the most important regions
for both diagnostic and simulation purposes.

(b)

Fig. 10 Illustration of three segmentation discrepancies: the segmen-
tation contour (red) and the ground truth contour (green) are overlaid on
the original CTA slice. a Aortic arch lumen, b subclavian artery lumen
¢ aortic arch calcification
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Fig. 11 Box-plot segmentation results of various vessel segments and
diameters (the vessel diameter ranges are shown in parenthesis). The
red crosses indicate errors that were identified as outliers in the error
distribution

Automatic segmentation mean computation time on a
standard 3 GHz PC with 4 GB of memory was 470s (SD =
212s) for the Hadassah scans (high resolution) and 154s
(SD = 125s) for Rochester scans (lower resolution). The
high-resolution images were automatically subdivided into
several rectangular blocks to reduce the memory require-
ments of the graph min-cut algorithm in order to fit the
limited memory that was available in the machines partic-
ipated in this study. The results of the individual runs are
then combined into large volume to obtain the entire vascu-
lature system. Semi-automatic refinement required about 10
seed points, usually to connect the carotid arteries and the
aortic arch to the subclavians, which have strong artifacts
due to the intensity degradation near the shoulders and the
high concentration of contrast material close to the injection
point. Seed points can be selected on the 3D models directly,
or on 2D axial input slices. The overall user time for entire
model generation was about ~1 min per dataset.

Patient-specific simulation

In the third study, we performed a preliminary evaluation
of the resulting segmentation models for patient-specific
carotid interventional radiology simulations. For this pur-
pose, we used a Simbionix ANGIO Mentor™ [4] station, an
integrated software and hardware endovascular simulation
platform (Fig. 12a). The ANGIO Mentor™ simulates inter-
ventional vascular procedures based on diagnostic CTA and
a vasculature simulation model. It supports realistic haptic
catheter insertion and manipulation feedback (Fig. 12b) and
creates continuous fluoroscopic X-ray imaging, fluoroscopic
C-arm positioning, and simulated contrast agent injection
(Fig. 12¢).

Simulation models for four Hadassah CTA datasets
(“Entire carotid vasculature segmentation”) were generated
from segmented CTA images using VMTK software library
Marching-cubes automatic meshing and centerline genera-
tion modules [51]. Generating the simulation model from
the segmentation required a mean computation time of 120s
on a standard PC and 30 s of user time for initialization. Gen-
erated meshes were consisted of 150,000 points and 300,000
triangles. Simulation models were then directly transferred
to the Simbionix ANGIO Mentor™ simulator platform.
We then performed common interventional radiology proce-
dures, such as catheter insertion and manipulation, balloon
positioning and dilation, and stent placement on the patient-
specific models. Fig. 12c—e shows sample snapshots of the
simulation with patient-specific models. A video clip show-
ing the simulation with our 3D models is available in http://
www.cs.huji.ac.il/~freiman/vessels-cut.

Simulations ran flawlessly and successfully in real time
for over an hour. Users reported great realism and an excel-
lent overall experience, which was significantly better than
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i

(e) Bifurcation
with stent

(d) AP view

(c) Lateral view

Fig. 12 Patient-specific simulation experiment: a the ANGIO Men-
tor™ gimulation station; b haptic catheter manipulation; ¢ simulated
lateral angiogram; d simulated anterior—posterior angiogram; e detailed
view of a bifurcation with stent

similar experiences with the previous manually generated
models. While this simulation experiment is qualitative and
preliminary, it constitutes a proof-of-concept of practical
patient-specific carotid interventional radiology simulations
from clinical CTA scans.

Conclusion

We have presented a semi-automatic graph-based method
for patient-specific modeling of the aorta and the carotid,
vertebral, and subclavian arteries for patient-specific simula-
tions from CTA scans. The method automatically generates a
segmentation of the aorta and the entire carotid vasculature,
which is then refined with an easy-to-use interactive tool to
produce an accurate segmentation from which a simulation
model is created. The patient-specific segmentation and sim-
ulation model generation from clinical CTA scans takes less
than 10 mins of computation time on a standard PC and only
about 1 min of end-user interaction. This constitutes a proof-
of-concept of practical patient-specific carotid interventional
radiology simulations from CTA in a clinical environment.
The novelties of our method include (1) coupling between
an automatically computed vessel intensity model and local
vesselness shape prior for object modeling and adaptive edge
weighting; (2) a spatially constrained graph min-cut formula-
tion for automatic vessel segmentation; (3) a semi-automatic
graph-based segmentation method for carotid endovascular
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patient-specific modeling in a clinical environment; and (4)
generation of accurate and robust models for patient-spe-
cific simulation. Our extensive, multicenter, multiobserver
evaluation results using 71 clinical CTA scans show that the
proposed method is accurate, robust, and easy to use, and
can be integrated into existing simulators for preoperative
patient-specific simulations. The proposed method provides
the user with high-quality automatic segmentation of most of
the carotid vasculature system with the option to interactively
correct segmentation flaws with a few mouse clicks.

We are currently testing and extending our segmentation
method to other vascular structures and procedures, such as
the liver vasculature and abdominal and thoracic aortic aneu-
rysms. We are also exploring other clinical diagnostic and
intraoperative uses of the 3D vascular models, including their
possible use for intraoperative navigation support. An exten-
sive evaluation of the patient-specific endovascular simula-
tion is also planned.
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