
Int J CARS (2009) 4:181–188
DOI 10.1007/s11548-008-0281-y

REVIEW ARTICLE

Combining a deformable model and a probabilistic framework
for an automatic 3D segmentation of prostate on MRI

Nasr Makni · P. Puech · R. Lopes · A. S. Dewalle ·
O. Colot · N. Betrouni

Received: 10 January 2008 / Accepted: 29 October 2008 / Published online: 3 December 2008
© CARS 2008

Abstract
Purpose Accurate localization and contouring of
prostate are crucial issues in prostate cancer diagnosis and/or
therapies. Although several semi-automatic and automatic
segmentation methods have been proposed, manual expert
correction remains necessary. We introduce a new method
for automatic 3D segmentation of the prostate gland from
magnetic resonance imaging (MRI) scans.
Methods A statistical shape model was used as an a priori
knowledge, and gray levels distribution was modeled by fit-
ting histogram modes with a Gaussian mixture. Markov fields
were used to introduce contextual information regarding
voxels’ neighborhoods. Final labeling optimization is based
on Bayesian a posteriori classification, estimated with the
iterative conditional mode algorithm.
Results We compared the accuracy of this method, free from
any manual correction, with contours outlined by an expert
radiologist. In 12 cases, including prostates with cancer and
benign prostatic hypertrophy, the mean Hausdorff distance
and overlap ratio were 9.94 mm and 0.83, respectively.
Conclusion This new automatic prostate MRI segmentation
method produces satisfactory results, even at prostate’s base
and apex. The method is computationally feasible and effi-
cient.
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Introduction

In the last decade, magnetic resonance imaging (MRI)
examinations have been a reference in prostate cancer exten-
sion assessment, and were carried out when the tumor had
already been diagnosed by biopsy. On the other hand, ultra-
sound imaging (US) and computed tomography (CT) scans
are widely used in prostate segmentation applications, such
as interventional procedures [1], where real-time aspect is an
undeniable advantage of US. CT scans are also commonly
used for prostate and other organs-at-risk delineation, for
treatment planning of prostate cancer radiotherapy, as Pekar
et al. [2] and Chaney et al. [3] suggested. Recently, there
has been a growing interest in MR prostate imaging for gui-
ded biopsies, treatment planning of robotized surgery, and
for emerging focal cancer ablation techniques (HIFU, pho-
todynamic or thermal therapy, etc.). In these cases, MRI is
best suited as its soft tissue contrast is superior to CT scan
images and ensures better delineation of the prostate, par-
ticularly of the apex and seminal vesicles [4,5]. Prostate
volume on MRI appears to be from 27 to 40% smaller than on
CT and inter-observer variation of apex location is reduced
[6,7]. It also provides a better contrast resolution for intra-
gland tissue characterization, and allows full 3D description
of the gland, potential regions of interest, and surrounding
structures. Some authors have stated that MRI alone could
be used in prostate cancer radiotherapy treatment planning
[8,9]. Considering this emerging role of MRI, and keeping in
mind that prostate manual delineation is a time-consuming
task, the development of automated prostate segmentation
tools has become a critical issue. Various image processing
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techniques have been investigated: Mazonakis et al. [10]
presented a growing region-based technique for prostate,
bladder and rectum segmentation on CT images, in which
user intervention remains necessary for thresholds definition.
In a recent work, Klein et al. [11] proposed an automatic
prostate segmentation method based on non-rigid registra-
tion of a set of pre-labeled MR atlas images. We could notice
that organ model-based methods are widely used in prostate
delineation. Freedman et al. [12] combined an appearance
model with probability distribution of object-inside photo-
metric variables for prostate and rectum segmentation. El
Naqa et al. [13] have developed variational methods based on
multi-valued level set deformable models for simultaneous
2D or 3D segmentation of multimodality images consisting
of combinations of co-registered PET, CT, or MR data sets.
In a recent work, Costa et al. [14] proposed a method for 3D
localization and segmentation of prostate and bladder CT
images, using coupled 3D deformable models. In 2007, Pas-
quier et al. [15] presented a deformable model-based method
for automatic prostate volume definition in conformal radio-
therapy planning MRI images. The authors have established
a statistical 3D shape model (SSM) [16] that is deformable
to fit prostate’s contours. This method globally showed good
results, but manual correction was still necessary for both
apex and base of the gland, where contrast between prostate
and surrounding structures (muscles and seminal vesicles,
respectively) is a challenging issue. In this article, we refine
results obtained by Pasquier et al. by introducing the same
SSM in a Bayesian classification framework. The use of
Markov fields allows us to combine contextual information
on voxels’ neighborhood and gray levels with a priori know-
ledge on the gland’s geometry.

Method

We consider two random fields X = {xs, s ∈ S} and Y =
{ys, s ∈ S}, where S is the set of voxels.

Each xs takes its values in a finite set of labels � = {−1, 1}
and each ys takes its value in the set of MRI levels.

The approach described in this paper is a Bayesian
segmentation that can be summarized in four steps:

(i) Integration of prostate 3D model that will be used as
an initial labeling X0.

(ii) Characterization of an a priori probability P(X) of
voxels’ labeling, using Markov field modeling.

(iii) Establishment of a conditional law for the image gray
levels P(Y |X).

(iv) Estimation of the optimum labels’ field X that maxi-
mizes the a posteriori probability P(X |Y ).

Figure 1 shows the organizational structure of the method.

3D model

In a previous work [17,18], a generic prostate model had
been established from a training base of 20 manual outlines.
The statistical shape model [16,19], deduced by a principal
component analysis (PCA), is composed of an average shape
and the most important deformation directions. Depending
on the thickness, size and shape of slices, the prostate often
appears on 8–12 slices in standard pelvic MR examination.
To get a 3D model, the prostate was contoured, on each slice,
by placing 20 points represented by their 3D coordinates
pi = (xi , yi , zi ). Thus, the prostate surface is modeled by a
vector X = [x0, y0, z0, x1, y1, z1. . ., xP , yP , zP ], where P
is the total number of surface points. For this study, whate-
ver the number of slices used, the total number of prostate
points P was brought to 200. Twenty points were used to
describe each 2D contour as a compromise between the time
spending and a detailed description of the contour variation.
It should be underlined that this number of points is higher
than the number of points usually laid out by the experts for
delineating the prostate for radiotherapy purposes.

We initialize this SSM on the images, and a heuristic opti-
mization by simulated annealing algorithm is performed to
estimate parameters that best describe prostate’s contours, as
detailed in [20]. This first 3D contour is converted into a set
of labels by attributing +1 to voxels that belong to prostate

Fig. 1 Global scheme of the
method
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and −1 to those that do not. Consequently, an initial labels’
vector X0 is established.

A priori probability

The initial labeling X0 cannot be operated without ensu-
ring that it performs a Markov field. Precisely, according to
Hammersley–Clifford’s theorem (1971) for which a demons-
tration is given in [21], X is a Markov field if and only if it
follows a Gibbs’ distribution, defined as follows:

P(x) = 1

Z
exp[−U (x)] (1)

U (x) =
∑

c∈C

Jc(xc) (2)

where Jc is a clique-related potential that will be defined
further on, Xc is the restriction on the clique c, and C is the
set of S cliques.

To meet this requirement, we use the Gibbs’ sampler algo-
rithm. Frequently cited in the literature [22], it can generate a
Markov field from any vector of labels. To do this, we have to
express the a priori probability P(X) by defining the energy
function U (x). We will then use Potts’ (or Ising) model [23]
which defines U (x) as

U (x) = −β
∑

s∈S

xs − α
∑

s∈S

xs

⎛

⎝
∑

t∈Vs

xt

⎞

⎠ (3)

Evaluation of parameters α and β is usually carried
out by estimation methods and fairly generic approxima-
tions [21]. In this work, we try to approach these parameters
through simulation, as we have a relatively relevant initia-
lization of the X field. We consider a 26-connexity system,
in which the labels’ sum in each voxel’s neighborhood takes
a value ranging [−27, 27]. Figure 2 shows the variation of
P(xs = 1|xVs ) for different values of α and β = 0:

Fig. 2 A priori probability simulation

P(xs = 1|xV s) = exp[−U (1,xV s )]∑
ω∈{−1;1} exp[−U (ω,xV s )]

= exp[α ∑
t∈V s xt ]∑

ω∈{−1;1} exp[αω
∑

t∈V s xt ] (4)

From simulation results we can establish that P(xs = 1|xVs )

becomes more “fuzzy” when α decreases; assigning a tiny
value to α allows having a less deterministic labeling, which
authorizes further evolution possibilities.

Image formation law

To model P(Y |X), we conduct a statistical study on gray
levels. We process the histogram in a volume of interest (VOI)
defined as follows: at first the user defines a rectangle that
surrounds prostate in a central slice; then he/she selects both
upper and lower MRI slices. We can then define a 3D box
by applying the central rectangle to all images located bet-
ween upper and lower slices. This new field of view contains
the gland and the surrounding tissues and allows us to avoid
processing extra MRI data, without having any effect on seg-
mentation results. Once we compute the histogram, we fit
by a Gaussian mixture, which parameters are automatically
extracted using a mode recognition algorithm [24]. We can
then detect three modes:

(i) The first mode, which mean is located in the black
levels, represents tissues and fat surrounding the pros-
tate. In our study, we make it correspond to the class
ω = −1, and we compute its Gaussian parameters
µ−1 and σ−1.

(ii) The second mode represents the gray levels of pros-
tate’s central zone. We characterize it by its Gaussian
parameters µ11 and σ11.

(iii) The last mode is situated in the high gray levels, and
represents peripheral zone texture and eventually some
cysts in the transition zone. We characterize it by its
Gaussian parameters µ12 and σ12.

These two last modes are both representative of pros-
tate tissues and correspond to the class ω = 1, which could
involve an ambiguity if we try to represent each class
ω ∈ {−1, 1} by a single Gaussian mode.

So as a first approach, we approximate the conditional
probability by
⎧
⎨

⎩
P(ys |xs = ω) = 1

Z y
· 1√

2πσω
exp

[
− 1

2

(
ys−µω

σω

)2
]

ω ∈ {−1, 1}
(5)

where Z y is a normalization constant, and (µω, σω) are Gauss
parameters of class ω. Then we select the mode that repre-
sents best the class ω = 1 by comparing Mahalanobis dis-
tances between voxel gray level ys and the two means µ11

and µ12:
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(µ1, σ1) = arg

[
min

i∈{1,2}

(
ys − µli

σ1i

)2
]

(6)

Finally, we model the image formation law as follows:

P(ys |xs = ω)

⎧
⎪⎪⎨

⎪⎪⎩

1
Z y

1√
2πσ−1

exp

[
− 1

2

(
ys−µ−1

σ−1

)2
]

if ω = −1

1
Z y

1√
2πσ1

exp

[
− 1

2

(
ys−µ1

σ1

)2
]

if ω = +1
(7)

where (µ1, σ1) = arg

[
min

i∈{1,2}

(
ys−µ1i

σ1i

)2
]

Markov modelling’s constraints

It is important to note that our modeling of the image forma-
tion law is still local and does not obey to a Markovian law.
Nevertheless, in a global modeling of P(y|x), we can esta-
blish the most important Markov fields’ properties. In fact,
in hidden Markov fields’ context, we can stipulate that

H1 : P(ys |x) = P(ys |xs) ∀s ∈ S

H2 : P(y|x) =
∏

s∈S

P(ys |x)

Hence:

P(y|x) = ∏
s∈S

P(ys |xs)

= 1
(Z y

√
2π)|S|

1∏
s∈S

σω(s)
exp

[ ∑
s∈S

(
ys−µω(s)

σω(s)

)2
]

(8)

where ω(s) is the class of voxel s.
Supposing

∏
s∈S

σω(xs ) globally constant, we may express

P(y|x) as

P(y|x) = 1

Z yx
exp[−H(y, x)] (9)

where Z yx is a constant and H(y, x) is the energy function
defined on S.

According to Hammersley—Clifford theorem [22], (Y, X)

is a Markov field. This conclusion would allow us adopting
a posteriori-based decision method, as we describe it in the
following section.

Estimation and decision

On the basis of the maximum a posteriori (MAP) decision
method, voxels classification would consist in searching a
labeling x∗ that maximizes P(x |y):

x∗ = arg

[
max

x∈�|S|
(P(x |y))

]
(10)

According to Bayes’ formula:

P(x |y) = P(x, y)

p(y)
= P(x)P(y|x)

p(y)
∝ P(x)P(y|x) (11)

Hence, according to Eqs. (1) and (9):

P(x |y) ∝ 1

Zx Z yx
exp[−U (x) − H(y, x)] (12)

The issue of loosing contrast between prostate tissues and
surrounding structures at the apex and base levels is the
essence of combining gray levels analysis with a priori know-
ledge. When implementing this method, we could notice
that contours, at apex and base levels, would diverge to sur-
rounding non-prostate voxels unless the algorithm takes in
account the slice location as additional a priori knowledge;
in fact, automatic segmentation would be more accurate at
prostate’s apex and base, if we inhibit gray levels analysis
and increase the weight of prostate model-based informa-
tion. To do this, we adopted a dynamic weighting parameter
λ (k) ∈ [0, 1] which regulates gray level-related energy func-
tion, depending on the spatial location of the voxel:

P(xs |ys) ∝ 1

Zx Z yx
exp[−λ(k)U (xs) − H(ys, xs)] (13)

where k is the third coordinate of the voxel V [i, j, k], which
corresponds in our case to the axial slice number. We mode-
led λ(k) using the following mixture, which is inspired of
Rayleigh’s cumulative distribution function:

λ (k) = 1 − exp

(
− k2

2a2

)
− exp

(
− (k − n)2

2a2

)
(14)

where a is a constant and n the number of slices (0 ≤ k ≤ n).
Figure 3 shows the variation of λ(k) for different values of
a, and for n = 40 slices.

Optimization

Since it is nearly impossible to compute all labeling proba-
bilities, we assess the MAP by the iterated conditional mode
(ICM) estimator [21]. This determinist algorithm requires a
relevant initialization, and consists on retaining the class that
maximizes the probability P(xs |y) for each voxel:

Fig. 3 Variation of spatial location-dependant weighting parameter
λ(k)
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x∗ = arg

[
max

x∈�|S|
(P(x |y))

]

⇔
⎧
⎨

⎩

x∗ = (xs)s∈S so that:

∀s ∈ S, xs = arg

[
max
xs∈�

(P(xs |y))

]

(15)

In addition, according to Eq. (11):

P(xs |y) ∝ P(xs).P(y|xs)

As (Y, X) and X are Markov fields, which globally means
that labeling probabilities are neighborhood dependent, we
are able to assume that

P(xs |y) ∝ P(xs)P(y|xs) ∝ P(xs |xVs )P(ys |xs) (16)

Hence, maximizing P(xs |y) could be done by maximi-
zing P(xs |xV s).P(ys |xs). To do so, we implemented the ICM
algorithm as follows:

• Initialize a first labeling map X◦, using the Gibbs-sampled
3D model.

• Repeat, for each iteration n:

– browse all sites and calculate for each one the condi-
tional probability Pn (xs, ys) using Eq. (13).

– apply the following decision rule:
xn

s = arg
[
Maxxs∈{−1,1} (Pn (xs, ys))]

• Until
∣∣xn − xn−1

∣∣ ≤ ε

Experiments and results

The first tests were performed on 12 T2-weighted data sets
obtained with Philips 1.5 T Achieva MRI device, with a voxel
size of 0.83 × 0.83 × 4 mm. Figure 4a illustrates the results

in a large prostate, showing BPH (112 cc), for which the
deformable model alone was insufficient as prostate size
exceeded the generic model. Figure 4b shows a prostate with
a large uniform low-intensity tumor in the right peripheral
zone that mimics central zone signal, and could theoreti-
cally hinder automatic segmentation. For these tests, Markov
model parameters α and β were 0.15 and 0, respectively. The
weighting parameter λ(k) was computed considering a = 2
(Eq. 14). The mean manual contouring time (MMCT) requi-
red for the expert radiologist on 15 slices was 17 min and 42 s
(15–23 min). The mean automatic contouring time (MACT)
of our algorithm on a standard 2.8 Ghz PC was 76 s (64–83 s).
The method was evaluated by comparing the obtained results
(free from any manual correction) to manual segmentation,
performed by a senior radiologist involved in the manage-
ment of prostate cancer. We measured the following parame-
ters (Vm = manualvolume, Va = automaticvolume):

• Hausdorff distance (HD) [22]: it is the minimal number
r such that the closed r -neighborhood of Vm contains Va
and the closed r -neighborhood of Va contains Vm (opti-
mal value = 0). In other words, if d(Va, Vm) denotes the
distance in M , then:

d (Va, Vm) = max

{
sup
x∈Va

inf
y∈Vm

d (x, y) , sup
y∈Vm

inf
x∈Va

d (y, x)

}

• Gravity distance (GD): it is the Euclidian distance bet-
ween gravity centers of the two volumes (optimal
value = 0).

• Overlap ratio (OR): also called Jaccard index, it is the
ratio of the intersection volume of to the union volume
(optimal value = 1):

Fig. 4 Comparison of
automatic contours (in red) and
manual ones (in green): a
prostate with BPH, b prostate
with a large low intensity tumor
of PZ. We present 3D
visualization reconstruction, and
contours at (i) apex (ii) center
and (iii) base axial slices
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OR = |Vm ∩ Va |
|Vm ∪ Va |

It is important to stress that this index is very sensitive
to small variations in overlap because it is normalized to
the union of the volumes. As an example, if two equal
volumes overlap by 85% of each, the volume overlap
would be only 0.74.

• Volume properly contoured (VPC): it is the ratio of the
intersection volume to the manual defined volume (opti-
mal value = 1):

VPC = |Vm ∩ Va |
|Vm |

• Dice similarity coefficient (DSC): it is a similarity mea-
sure related to the Jaccard index (optimal value = 1):

DSC = 2 |Vm ∩ Va |
|Vm | + |Va |

As one of the aims of our study is to improve previous
work results [25], we computed the same coefficients for
contours obtained with the active shape model (ASM).
We detail full numeric results in Table 1, and we visualize
difference between the two methods on diagrams of both
Hausdorff’s distance and dice coefficient (Fig. 5).

Discussion and conclusion

Developments in image-guided therapies increase the amount
of work required for treatment planning and, in particular, for

organ delineation, which is one of the most time-consuming
procedures. MR delineation and TDM fusion are currently
used for prostate cancer radiotherapy. CT images are prima-
rily used for the treatment planning, but MR images are used
more and more because of their soft-tissue contrast. Indeed,
MRI prostate delineation allows a more accurate localization
of apex and could help characterizing intra-gland structures
and/or localizing suspicious tissues, in the case of tumors
detection.

Different automated organ delineation methods have been
studied, especially those who deal with pelvic structures.
Bueno et al. [26] have presented a 2D morphologic approach
based on watershed transformation for automatic rectum,
bladder and seminal vesicles segmentation. A good segmen-
tation accuracy has been reported for the tested slices
(1.2–1.7 mm average distance to ground truth for bladder
and rectum, respectively), but no validation of complete 3D
data sets was done. Mazonakis et al. [10] have proposed a
region-growing technique for the segmentation of prostate,
bladder and rectum on CT images but a slider was used to
define three independent threshold ranges and consequently
this method cannot be considered as automatic.

In the field of prostate delineation, most of the authors
consider organ model-based segmentation as a promising
method [27]. Broadhurst et al. [28] in their method based
on m-reps and statistical modeling of non-parametric his-
tograms built prostate and rectum models from 17 images
of a single patient. Although the approach is interesting, it
remains far from the practice since it is evaluated on the
same data having been used to build the models. Freedman
et al. [12] combined a shape-appearance model and a proba-
bility distribution of photometric variables inside the object

Table 1 Results of comparing manual and automatic segmentation for both Markov maximum a posteriori algorithm (MMAP), and active shape
model (ASM)

Sequence HD (mm) GD (mm) OR VPC DSC
MMAP ASM MMAP ASM MMAP ASM MMAP ASM MMAP ASM

1 8.0987 14.8191 3.2822 6.4021 0.8482 0.6967 0.9274 0.8026 0.9134 0.7189

2 10.2676 13.72 2.0753 3.93 0.8746 0.6824 0.9253 0.728 0.9333 0.8112

3 7.0582 11.6275 2.1834 3.5248 0.9114 0.8082 0.9569 0.8461 0.9509 0.8939

4 9.83 14.3109 2.1 3.0589 0.7866 0.7122 0.9381 0.7871 0.8805 0.8319

5 11.14 11.5342 0.67 2.4795 0.803 0.7581 0.8327 0.9585 0.8835 0.8654

6 13.28 14.95 3.73 3.9 0.8366 0.8198 0.8416 0.8552 0.911 0.901

7 8.3018 13.4953 1.5149 5.3109 0.8726 0.7596 0.9077 0.8128 0.9319 0.8633

8 8.4671 11.535 1.8684 2.1447 0.7854 0.7378 0.8968 0.7917 0.8798 0.8491

9 9.5439 16.0992 2.8791 3.8398 0.863 0.8337 0.9153 0.8654 0.9265 0.9093

10 9.4354 10.9193 2.9561 5.1033 0.869 0.7291 0.9025 0.7915 0.9299 0.8433

11 9.2115 12.4017 3.7207 4.7092 0.8147 0.7174 0.8766 0.767 0.8979 0.8354

12 10.8614 8.8236 1.7215 3.4162 0.7734 0.6856 0.9112 0.8491 0.8722 0.9134

Mean 9.6246 12.8529 2.3918 3.984 0.8365 0.7450 0.9026 0.8212 0.9092 0.8530
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Fig. 5 Contouring performances of Markov maximum a posteriori
algorithm (MMAP), and active shape model (ASM), evaluated using
dice similarity coefficient (a) and Hausdorff’s distance (b)

to segment the prostate and the rectum. The authors reported
major user interactions to correct the results. We also noted
that image registration is another major method. In Lu et al.
[29] and Foskey et al. [30], the key idea was the use of the
result of a deformable image registration to match two CT
examinations and automatically replace manual segmenta-
tion initially laid out on the reference image. The method
provides good results for intra-patient examinations but suf-
fers of weakness for inter-patient examinations because of the
assumption of conservation of voxel values. Klein et al. [11]
have also recently developed a similar segmentation process
by performing a non-rigid registration of a set of pre-labeled
prostate atlas with the target patient images. To the best of our
knowledge, Klein et al. [11] and Pasquier et al. [31] are most
recent works in prostate MRI segmentation. Both authors
published their results by comparing automatic contours to
manual expert delineation, using DSC coefficient and over-
lap ratio, respectively. These evaluations showed a best DSC
of 0.87 for Klein et al., and 0.88 for Pasquier et al., which
means that we have better segmentation results, as shown
in Table 1, even though we do not consider inter-observer
variability. Moreover, the computation time, measured on a
2.8-Ghz personal computer, was around 15 min per registra-
tion for Klein et al., and 20 min for Pasquier et al., while in
our method, we bring this time to less than 2 min, with the
same hardware settings.

Indeed, we have developed and evaluated a new MR
images anatomy automatic delineation method that combines
statistical information on prostate’s geometry, with a Markov
field-based Bayesian segmentation. The first tests, as detai-
led in Table 1, show that integrating a Bayesian framework
improves results previously reported by [32] when using a
deformable model alone, especially at the base and the apex,
where surrounding tissues are in contact with the gland and
hinder the deformable model. This increased performance
can be explained by the fact that our Markov field-based seg-
mentation process relies on precise modeling of gray levels
distribution that considers intra-gland structures, and avoids
converging to their boundaries. On the other hand, the ICM
estimator is much more rapid than both simulated annealing
optimization and MRI data registration; the ICM may lead
to a local extremum, which is not inconvenient as we have
a quite good labeling initialization that is relatively close
to optimal contours. Nevertheless, minor contouring errors
still persist at the apex, and our method still needs to be
improved at this location. It should also be evaluated on a
larger set of patients, and with different sequence parameters
(thinner slices, higher spatial resolution) that may improve
its accuracy.

This method was designed to be part of a multi-source
prostate segmentation project that will take account of other
MRI sequences with different contrasts (T2-w, T1-w, etc.).
Data fusion based on Evidence theory could help resolve
persistent issues at the apex.

We plan to include this segmentation method in a prostate-
dedicated computer-aided diagnosis (CAD) software [33]
designed for localization, volume assessment and treatment
planning of prostate cancer.
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