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Abstract
Objective Many image-guided surgery applications require
tracking devices as part of their core functionality. The Image-
Guided Surgery Toolkit (IGSTK) was designed and devel-
oped to interface tracking devices with software applications
incorporating medical images.
Methods IGSTK was designed as an open source C++ library
that provides the basic components needed for fast proto-
typing and development of image-guided surgery applica-
tions. This library follows a component-based architecture
with several components designed for specific sets of image-
guided surgery functions. At the core of the toolkit is the
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tracker component that handles communication between a
control computer and navigation device to gather pose mea-
surements of surgical instruments present in the surgical
scene. The representations of the tracked instruments are
superimposed on anatomical images to provide visual feed-
back to the clinician during surgical procedures.
Results The initial version of the IGSTK toolkit has been
released in the public domain and several trackers are sup-
ported. The toolkit and related information are available at
http://www.igstk.org.
Conclusion With the increased popularity of minimally inva-
sive procedures in health care, several tracking devices have
been developed for medical applications. Designing and
implementing high-quality and safe software to handle these
different types of trackers in a common framework is a chal-
lenging task. It requires establishing key software design
principles that emphasize abstraction, extensibility, reusabil-
ity, fault-tolerance, and portability. IGSTK is an open source
library that satisfies these needs for the image-guided surgery
community.

Keywords Trackers · Open source software ·
Image-guided surgery · Software design principles ·
State machines

Introduction

Image-Guided Surgery Toolkit (IGSTK) overview

Image-Guided Surgery Toolkit is an open source C++ library
designed for fast prototyping and development of image-
guided surgery applications [1,2]. The toolkit is being devel-
oped with support from the National Institute of Biomedical

123

http://www.igstk.org


396 Int J CARS (2008) 3:395–403

Imaging and Bioengineering (NIBIB) at the National
Institute of Health (NIH). Both industry and academic part-
ners have contributed to the toolkit. The toolkit provides the
basic components required to build image-guided surgery
applications. The initial version of the toolkit was released
in February 2006 at the SPIE Medical Imaging conference
at San Diego. Since then, applications built using the toolkit
have been demonstrated at various scientific conferences
(SPIE 2006, 2007, 2008 and SMIT 2007). Furthermore, an
FDA approved single center clinical trial for electromagnet-
ically tracked lung biopsy based on IGSTK has begun at
Georgetown University Medical Center (Washington, DC,
USA).

Since an active user community is essential for the contin-
ued success of an open source toolkit, the IGSTK developers
have been proactive in expanding the user base. A mailing list
is constantly monitored to provide user support. The list has
led to extensive and productive discussions aimed at improv-
ing the utility of the toolkit for fast prototyping and develop-
ment of surgical applications. Discussions from the mailing
list have resulted in new collaborations and have contributed
to improvements in the components. The developers’ team
attempts to respond to users’ requests by fixing bugs and
implementing essential new functionality in a timely fash-
ion. Currently, new developments include the integration of
automatic and manual-based image reslicing, the extension
of tracker support to additional trackers, and the implementa-
tion of a video grabber component. The initial developments
of these components are archived in the IGSTK sandbox
(test-bed repository) to allow users to follow new develop-
ments and provide early feedback.

IGSTK architecture

IGSTK follows a component-based architecture. The toolkit
contains several components with a well defined set of behav-
iors governed by state machines. The state machine ensures
that each component is always in a deterministic state and
all state transitions are valid and meaningful. State machines
were included from the beginning as an integral part of the
toolkit design and intended to produce a safe and reliable
software library suitable for safety critical applications.

By analyzing typical clinical applications, the required
components for image-guided surgery applications were
identified. Figure 1 shows a UML collaboration diagram
of the main components in IGSTK. The main components
include View, Spatial Objects, Spatial Object Representa-
tions, Image Readers and Tracker components.

The View component is used to display the graphical repre-
sentations of surgical scenes. This component provides visual
feedback to clinicians to assist them with instrument place-
ment during image-guided procedures. For GUI-based appli-
cation development, the view component is linked with GUI
libraries using widget classes. IGSTK provides widgets for
Qt and FLTK GUI libraries.

The Spatial Objects component defines a common struc-
ture for geometrical objects. Different spatial objects that
define the shape and the physical characteristics of typical
anatomical structures and surgical devices are provided in the
toolkit. The graphical representations of spatial objects are
characterized using the Spatial Object Representations com-
ponent. This component describes properties such as color
and surface properties.

Fig. 1 IGSTK component architecture
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Fig. 2 Typical image-guided system using IGSTK: vertebroplasty
spinal therapy using an electromagnetic tracking device

The Image Reader component loads data into the scene
generation and representation process. DICOM image and
mesh data readers are available in IGSTK.

The Tracker component, which is the main focus of this
paper, handles communication between the control computer
and the tracking devices to gather pose information from
surgical instruments present in the scene. IGSTK provides
interfaces for several commonly used tracking devices.

In addition to the above main components, IGSTK pro-
vides infrastructure and service classes such as state machine,
loggers, pulse generators, registration, and calibration
classes. All the components are implemented using the C++
programming language. The components also make exten-
sive use of classes from the Visualization Toolkit (VTK) [3]
and Insight Toolkit (ITK) [4] open source toolkits.

Time management and synchronization is an integral part
of the architectural design. It is critical to ensure that the
positions and the orientations of objects in the view remain

consistent with the current relationships in the surgical scene.
For this purpose, pulse generators are used to synchronize
time across the components. As shown in Fig. 1, the tracker
and view classes contain their own pulse generators. The
pulse generators can be set to different frequencies depend-
ing on the requirements of the application. The frequency of
the view pulse generator determines the view refresh rate.
The frequency of the tracker pulse generator determines how
fast tracking information is read from the tracking device. At
every pulse, during the tracking cycle, the tracker component
queries the tracking device to gather position and orientation
information of surgical instruments (tracker tools). Tracking
information of multiple tools is independently gathered as
shown in Fig. 1. Transform objects are time-stamped to indi-
cate the start and the expiration times of the transform. The
view component compares the expiration and the start times
of the tool transform and the refresh render time to turn on
or off the visibility of the tool representation in the view.

Tracker overview

An image-guided surgery system consists of a control com-
puter; software for image processing, registration and visu-
alization; and a device for tracking surgical instruments and
anatomical structures. A typical image-guided system based
on IGSTK is shown in Fig. 2. In this experimental setup, an
image-guided vertebroplasty spinal therapy was performed
on a phantom model using an electromagnetic tracking device
[5]. The tracking device reports position and orientation infor-
mation from the surgical tools and anatomical structures.
Various tracking devices based on different working princi-
ples and technologies are available for surgical use [6]. The
three main types are mechanical, optical, and electromag-
netic trackers as shown in Fig. 3.

Fig. 3 Tracking systems. a Mechanical tracker (photo courtesy of Robert Galloway, Vanderbilt University), b optical tracker: Optotrak Certus
(Northern Digital Inc., Waterloo, ON, Canada), c electromagnetic tracker: Aurora electromagnetic tracker (Northern Digital Inc. Waterloo, ON,
Canada)
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A typical mechanical tracker uses a probe that is linked
to articulated (multi-jointed) arms. Mechanical trackers are
highly accurate and stable, but they are bulky and their util-
ity is limited to specific interventional procedures where they
will not interfere with the surgical procedure. Furthermore,
mechanical trackers can only track a single object in the sur-
gical scene. Therefore, mechanical trackers are typically not
used today in image-guided systems. The flexibility and per-
formance of optical and electromagnetic trackers have made
them the trackers of choice for current image-guided surgery
systems.

Optical trackers use cameras to track fiducial markers
that are attached to the surgical instrument. These track-
ers use triangulation techniques to determine the position
and orientation of the instruments. The cameras could be
infrared-based (Polaris trackers from NDI), video-based
(MicronTracker from Claron Technology) or laser-based
(laserBird2 from Ascension Technology). These systems pro-
vide high frequency refresh rates (on the order of 30 Hz) mak-
ing them useful for medical procedures. Unlike mechanical
trackers, optical trackers can track multiple objects. Opti-
cal trackers use either active or passive markers (such as
retro-reflective infrared markers for Polaris trackers and high
intensity contrast markers for the MicronTracker). In gen-
eral, optical trackers are accurate and have a large field of
measurement. However, the tracking device has to be in a
line-of-sight with the object to be tracked. This makes them
unusable for tracking flexible objects inside the body.

A line-of-sight between the tracking device and tracked
objects is not required for electromagnetic trackers. Electro-
magnetic trackers use an electromagnetic field generator and
small electromagnetic coils that can be embedded in surgi-
cal instruments. Similar to optical trackers, multiple objects
can be tracked concurrently. The main drawbacks of elec-
tromagnetic trackers are (1) the surgical environment must
be devoid of any ferromagnetic material that can interfere
with the electromagnetic field and degrade the measurement
accuracy and (2) instruments to be tracked must be modified
to include sensor coils.

Ultimately, the choice of tracking device depends on the
requirements of the medical procedure and availability of
tracked tools. Major factors that need to be considered include
the line-of-sight requirements, update rate, number of tools
that need to be tracked, size of the measurement volume,
accuracy, cost, and conditions in the surgical environment.

Tracker software design

Designing high quality and safe tracking software that
handles different types of tracking devices in a common
framework is a challenging task. It requires establishing
appropriate software design principles [7]. The software

design is driven by the high level functions of the track-
ing software. Tracking software performs the following main
functions:

1. Communicate with a tracking device.
2. Configure and initialize tracking tools.
3. Gather and store pose measurements for each tracking

tool in the surgical scene.
4. Convert measurements into internal data representation

for use by other components in an image-guided system.

Software requirements

An analysis of tracking needs in several image-guided appli-
cations has led us to develop the following ten major require-
ments for tracking software.

1. Tracking device abstraction. A variety of tracking
devices based on different working principles and tech-
nologies are available for clinical use. Recurring opera-
tions common among tracking devices should be
abstracted and implemented in generic classes. Further-
more, device specific intricacies should be delegated to
concrete subclasses.

2. Tracking tool abstraction. Tracking tools can be wired,
wireless, active, or passive. Different tracking devices
support one or more of these types of tools. For fast and
easy application development, the common parameters
and behaviors of these tools should be abstracted.

3. Extensibility. With new tracking devices continuously
being developed, tracking software should be easily
extensible to handle new devices.

4. Portability. For wide usability and applicability, track-
ing software should be portable across compilers and
platforms. Cross-platform configuration and build tech-
nologies should therefore be used.

5. Decomposition. Complexity should be handled by
decomposing large problems into smaller ones. For
example, the communication interface with a tracking
device should be implemented separately from mea-
surement data buffering and transmission to other
components.

6. Reduced latency. Surgical applications require timely
measurements of the positions of surgical instruments.
Hence, communication with the tracking device and
data collection processes should not add too much over-
head to the overall system.

7. Fault-tolerance. Several hazardous conditions related
to tracking could occur during a medical procedure.
For example, a loss of communication with the tracker
could occur if a tracking tool cable or tracking device
cable is disconnected. Power interruption could also
occur in the main control computer. The tracking
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software should be able to detect and compensate for
software faults.

8. Transparency. The software design should allow users
to record and replay tracking measurements for testing
and validation purposes. This design is also useful for
setting up virtual environments to train clinicians in
surgical procedures.

9. Deterministic behavior. The most critical requirement
of image-guided surgery software should be patient
safety. To ensure patient safety, the software must have
deterministic behavior during runtime. Software
methodologies that guarantee determinism must be uti-
lized.

10. Time synchronization and dynamic objects handling.
Position measurements of surgical instruments are time-
specific. The measurements should be stored in a
dynamic object that has a notion of time validity. Time
synchronization techniques should be used to synchro-
nize time-dependent tasks such as scene generation and
position measurement data gathering.

IGSTK tracker component

The IGSTK tracker component was designed and imple-
mented with the above ten requirements as guiding prin-
ciples. Table 1 shows the software technologies and/or the
IGSTK implementation that fulfill the above requirements.
Three main classes provide the tracker support:
(1) igstk::Tracker, (2) igstk::TrackerTool, and (3) igstk::
Communication classes. The igstk::Tracker class presents
a generic interface for tracking the positions of objects in
a surgical scene. Derived subclasses provide tracker spe-
cific implementations for several widely used tracking sys-
tems as shown in Fig. 4. The current tracker classes include
igstk::PolarisTracker and igstk::AuroraTracker for NDI
trackers, and igstk::MicronTracker for the Claron Technol-
ogy MicronTracker.

Tracker tools are abstracted in igstk::TrackerTool. The
tracker class can track multiple tools simultaneously. A com-
munication class (igstk::Communication) class was imple-
mented to establish the communication between the tracker

Table 1 Tracking software requirements and IGSTK implementation

Requirement IGSTK implementation/technology

Tracking device abstraction igstk::Tracker abstract class

Tracking tool abstraction igstk::TrackerTool abstract class

Extensibility Tracker and Tracker tool class provide implementation of essential behaviors
that can be easily subclassed to implement tracking-device specific classes
(such as Polaris, Aurora, and MicronTracker)

Portability Cross-platform software development technologies (Dashboards, CMake
build system)

Decomposition Component-based architecture

Reduced latency C++ implementation

Fault-tolerance State machine

Transparency Loggers

Deterministic State machine

Time synchronization and dynamic object handling Pulse generators and transform time stamps

Fig. 4 Tracker class hierarchy
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class and the hardware tracking device. Currently supported
interfaces include RS232 over a serial port or TCP/IP sockets.

State machines

All the tracker classes are designed for state machine control.
State machines ensure that the tracker and tracker tool classes
are always in a known configuration. State machines contain
a set of states, state inputs, and state transitions. IGSTK pro-
vides an igstk::StateMachine class that offers a set of pub-
lic methods for programming, executing, and querying state
machine logic. Figures 5 and 6 show the state machine dia-
grams for the Tracker and TrackerTool classes respectively.

The tracker class contains the following major states:

1. Idle. Initial state.
2. CommunicationEstablished. This state is entered if the

tracker class establishes communication with the track-
ing device successfully. For example, for MicronTrack-
ers, the camera calibration file is loaded and the cameras
are setup by invoking relevant commands in the Micron-
Tracker library.

3. TrackerToolAttached. This state is entered if a tracker
tool is instantiated, configured, and successfully attached
to the tracker.

4. Tracking. The tracker will enter this state if a request
(RequestStartTracking) is made by the user to start
tracking.

The tracker tool class contains the following major states:

1. Idle. Initial state.
2. Configured. The tracker tool makes a transition to this

state if all the required parameters of the tool are speci-
fied. The required parameters depend on the type of the
tracker tool. For example, for the MicronTracker tool, a
marker name is required, whereas for a wireless polaris
tracker tool, a SROM filename is required.

3. Attached. Once the tracker tool is instantiated and prop-
erly configured, a request will be made to attach it to
the tracker. This request will be processed by the tracker
class. During this time, the tracker class will verify if the
parameters specified for the tracker tool matches with
what the tracker identifies by querying the actual hard-
ware. Once the tracker tool is validated, it will make the
transition to the Attached state.

4. Tracked. During tracking, if the tracker tool is identified
in the measurement volume, it will stay in the Tracked
state.

5. NotAvailable. During tracking, the tracker tool could
move out of the measurement volume or lose line-of-
sight. If that happens, the tracker tool will make the tran-
sition to the NotAvailable state.

In addition to these major states, transitional states exist
that the tracker waits in until the requests are accomplished
successfully. For example, the tracker makes a transition to

Fig. 5 Tracker state machine diagram
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Fig. 6 Tracker tool state machine diagram

AttemptingToEstablishCommunicationState when a
RequestOpen() method is invoked.

Multithreading and data buffering

All components in IGSTK other than the tracker component
run in a synchronous mode. For the tracker component, how-
ever, concurrent execution is used since the tracking hard-
ware has its own update cycle independent of the update
rate of the application’s main event-handling cycle. If posi-
tion measurement gathering is designed to run synchronously
with the rest of the system, it will introduce latency and tem-
poral aliasing in the behavior of the system. Hence a software
design decision was made to spawn a separate thread for
tracking device communication. As shown in Fig. 7, a sepa-
rate thread is dedicated to communication with the tracking
device. Position measurements gathered from the tracking
device will not be immediately used as they are received.
Instead, they will be buffered in a transform container inside
the tracker. The transform will be copied from the buffer to
the tracker tool objects when the pulse generator generates a
pulse (as shown Fig. 7) indicating that it is time for the tracker
tool transforms to be updated in the main application.

Pose measurement data representation

After reading a position and orientation measurement from
the tracker hardware, the tracker class generates an
igstk::Transform object to store the position and orientation

Fig. 7 IGSTK Tracker component structure

measurement data. The igstk::Transform object contains a
vector with three position coordinates, a versor that describes
the orientation of the tool, a timestamp that gives the time
at which the measurement was made, and an expiration time
after which the measurement should be considered invalid.
The expiration mechanism allows other components in the
toolkit to know when the transform will no longer reflect the
spatial position of a tracked object.

IGSTK in use: needle biopsy application with multiple
tracker support

Needle biopsy is a common medical procedure for diag-
nosis of lung, breast, liver and prostate cancer. During the
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Fig. 8 Needle biopsy application with multiple tracker support

procedure, a clinician uses X-ray or other image guidance to
insert a needle into the lesion to take a tissue sample tisse
for pathological analysis. An image-guided application that
provides real-time visual feedback may assist clinicians in
performing the procedure effectively and efficiently, as well
as enabling them to target smaller lesions.

A demonstration needle biopsy application with multiple
tracker support was developed using IGSTK. The application
set up is shown in Fig. 8. A Polaris Vicra optical tracker
(Northern Digital, Ontario, and Canada) and MicronTracker

(Claron Technology Inc., ON, Canada) were used. Testing
was performed using an abdominal phantom (CIRS Model
57, Norfolk, VA).

Figure 9 shows the application screenshot. The applica-
tion has a four quadrant display for axial, sagittal, and coronal
orientation and a 3D view. A tracking device selection menu
is provided on the left. Once a selection is made, a configu-
ration window pops up for users to specify device parame-
ters. The parameters vary depending on the selected tracking
device type. The application utilizes a fiducial-based rigid-
body registration algorithm to establish the transformation
between the pre-operative image and patient coordinate sys-
tem. In the pre-planning stage, the entry and the target point
of the needle are established along with the fiducial point
coordinates. An I/O class is provided to store and load this
treatment plan. The workflow of this application is outlined
below.

1. Record patient demographic information.
2. Load the pre-operative CT image using the DICOM file

format.
3. Verify the patient information against the DICOM tags.

If there is a discrepancy, notify the clinician.
4. Identify and record fiducial points and treatment path on

the pre-operative CT image using a mouse pointer. The
fiducial points will be used to register the image with
the patient coordinate system. A minimum of three non-
collinear fiducial points are required.

Fig. 9 Screenshot of the needle
biopsy application
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5. Select a tracking device type and establish
device-specific parameters such as port number and
SROM file for a Polaris tracker and camera calibration
directory and marker template files for a Micron tracker.

6. Identify the corresponding fiducials in the physical body
using the tracker pointing device.

7. Perform registration to compute the transformation from
patient image to tracker coordinate system.

8. Start tracking and representation of the needle (cylin-
drical spatial object). The needle path will be displayed
overlaid on top of the image.

Having a common framework for different types of tracking
devices in IGSTK allows developers to rapidly and easily
develop applications with support for different types of track-
ers. The application source code can be downloaded from the
IGSTK Sandbox. For download and other information, the
reader is referred to the IGSTK website http://www.igstk.
org.

Conclusion

Tracking is a critical component of an image-guided surgery
application. IGSTK provides a tracker component that
handles communication between a control computer and
tracking devices to obtain the position and orientation infor-
mation for surgical instruments in the surgical scene. Design-
ing tracking software requires establishing software design
principles that simplify handling different types of tracking
devices in a common framework. Design principles such as
abstraction, portability, extensibility, and fault-tolerance are
vital for the acceptance, usability, and useful lifetime of the
software.
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