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Abstract Four-dimensional cardiac tagged imaging with retrospective

respiratory gating and its image processing were performed A 3D-

cine-TrueFISP sequence with plane-tag pulses was developed, using

LISA and TARD techniques for transient-artifact reduction. For

respiratory monitoring, an optical displacement sensor fixed in the

gantry was used to measure the lower abdomen level during a scan.

The obtained MRI raw- and respiratory-data were combined for

retrospective gated reconstruction. Automatic tag-plane detection

based on a quadratic approximation was applied to each 3D image.

Although time resolution was relatively low (97 ms/cardiac phase),

clear tag-contrast was observed on the images through a whole car-

diac cycle. Almost all tag-planes being on the images could be de-

tected with subvoxel resolution.

Keywords Respiratory-gating Æ Artifactless-coherent-ssfp Æ
Subvoxel-tag-detection

1 Introduction

Regional deformation abnormalities in the heart wall provide a useful

indicator of ischemia [1, 2]. Myocardial magnetization tagging is one

of only a few methods for noninvasive assessment of regional myo-

cardial deformation. However, in order to find the complex three-

dimensional motion of the left ventricle (LV), tagged images must be

taken of at least 8–10 slices, the tagged images must be analyzed slice

by slice, and then the obtained set of 2D deformation data is inte-

grated to find the 3D deformation of the heart wall [3]. This long

imaging time, with repeated breath-holds and time-consuming image

analysis, increases the difficulty of using this method clinicallly.

Moreover, variation of diaphragm position between the breath-holds

lowers the precision of the reconstructed 3D LV-deformation.

Our goal is therefore to develop a rapid 4D (3D-cine) MR tagged

imaging without breath-holds, and an automatic 4D tagged image

analysis method. In this report, we describe a method for rapid 4D

tagged imaging with a combination of ECG and respiratory gating

using an optical displacement sensor, and a method for automatic

tag-plane detection with subvoxel resolution, based on a regional

quadratic approximation with Taylor expansion.

2 Materials and methods

2.1 Data acquisition

Four-dimensional MR tagged images were taken with a 1.5 T whole

body scanner (Sonata, Siemens Medical Solutions, Inc., Erlangen,

Germany).

Respiratory gating was accomplished retrospectively using a optical

displacement sensor (LK-500, Keyence, Osaka, Japan) whose maxi-

mum spatial and temporal resolution are 0.05 mm and 1 ms, respec-

tively. The sensor and a mirror were fixed on a frame covering the

subject so that the laser targeted the lower abdomen (Fig. 1). The

abdominal motion was monitored as respiratory motion data during a

scan, and it was recorded on a PC with 10 ms temporal resolution.

A conventional cine-TrueFISP sequence [4] was extended for 3D-cine

imaging and magnetization tagging. A parallel-plane tag pattern,

which is perpendicular to the readout direction, was produced with

8 mm spacing, just after R-wave detection in the ECG signal. Since the

tag-planes deformation in a set of 4D tagged images only provides the

regional heart wall motion component along the readout direction,

three sets of 4D images were taken with their readout directions along

three orthogonal ones, one of which was parallel to the long axis of LV

and the other two were orthogonal to it. In the following part, these sets

of 4D images are called ‘‘LA’’, ‘‘SA1’’ and ‘‘SA2’’ images, respectively,

because the imaged planes are so-called long-axis-view and short-axis-

views, respectively. In order to obtain sufficient signal-to-noise ratio,

each 4D data set was measured with ten repetitions. For reduction of

the initial artifact of TrueFISP sequence which can be observed in

images taken less than about 100 ms after the tagging pulses, TARD

(Transient Artifact Reduction with Dispersion of phase) [5] and LISA

(Linearly Increasing Startup Angles) [6] methods were also applied.

For the retrospective respiratory gating, raw data was recorded and the

4D images were reconstructed off-line as described in the next part.

Other imaging parameters are summarized in Table 1.

2.2 Image reconstruction

We here provide a brief and simple explanation of the raw data in

MRI, so-called ‘‘k-space’’. The k-space can be considered as a fre-

quency domain, in contrast to the reconstructed images as a space

domain. In this study, the number of dimensions of k-space included

was three; the directions of the 3D space represented the readout,

phase-encoding and partition (slice-thickness) directions, respec-

tively. The number of k-space data sets is the product of the number

of cardiac phases and that of the receiver coils, i.e., (7 · 4 = 28) k-

space sets were used for each image set in this study. A reconstructed

3D image at a given cardiac phase can be obtained by applying the

Fourier transform to each k-space data set at the cardiac phase,

calculating the magnitude value at each voxel and then adding all the

magnitude images from different coils.

The structure of a raw data file obtained within a single scan is a series

of a mini-header and 1D-data along the readout direction of the k-

space, in acquisition order. A mini-header contains information about

the 1D-data, e.g., cardiac phase, coil number, phase-encoding number,

partition number and time stamp at which the data is measured. From

these information, the 1D-data can be restored to the appropriate

Fig. 1 Respiratory sensor system. The optical displacement sensor

and mirror was positioned on a frame which covers the subject’s body.

Laser output from the sensor targetted the lower abdomen of the

subject via mirror reflection and addomen surface motion with

respiratory was monitored in the vertical direction
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position of the particular k-space. Also, from the time stamp, the

respiratory level (related to the excursion of the lower abdomen) at the

moment of data data acquisition can be found from the respiratory

monitor data, and a decision can be made whether or not the data are to

be discarded. In this study, for the retrospective respiratory gating, a

range of the respiratory levels, which was determined from the histo-

gram of the observed levels, was applied for this decision.

2.3 Image processing

Tag-plane detection with subvoxel resolution was accomplished with

a quadratic approximation, using a Taylor expansion. Signal change

near a voxel center, x, of the original 3D image, f(x), can be

approximated by

f ðxþ dxÞ ffi f ðxÞ þ rf � dxþ 0:5 �T dx �H � dx

¼ 0:5 �
X3

i¼1

ki dx � vi þ
rf � við Þ

ki

� �2

þ f ðxÞ � 0:5 �
X3

i¼1

rf � við Þ2

ki

ð1Þ

where �f is the first derivative of f(x), H is the Hesse matrix whose

components are second derivatives, ki (i = 1,2,3, |k1| ‡ |k2| ‡ |k3|) are

the eigenvalues of H and vi (i = 1,2,3, |vi| = 1) are the corresponding

eigenvectors. Equation (1) denotes that signal change near a voxel

center can be approximated by the sum of quadratic functions.

Therefore, at a voxel through which a tag-plane runs, the following

conditions are expected to be satisfied: (1) k1 > 0, (2) |k1| is much

larger than |k2| and |k3|, (3) v1 is almost parallel to the readout

direction which is orthogonal to the initial tag-plane, and (4) the

position x)(�f Æ v1)/k1 Æ v1, which is the nearest center point of the

tag-plane, is inside the voxel. In this study, all voxels at which the

above four conditions were satisfied were selected as tag voxels and

their nearest center points were detected as lying on tag-planes.

3 Results
Figure 2 shows cross-sectional images of typical LA images, which

were reconstructed with five different ranges of respiratory levels,

100, 89, 57, 38 and 22%. The ranges are named ‘‘R1’’ to ‘‘R5’’,

respectively. In spite of low temporal resolution (about 100 ms

intervals), good tag-contrast is maintained during a whole cardiac

cycle. Although the spatial resolution is different along the three

directions (highest in the readout direction and very low in the other

two), not only tag-contrast but also organ edges are clearly observed.

Figure 3 shows cross-sectional images of detected tag-planes fused

onto original SA1 and SA2 images. Almost all tag-planes observed

on the original images can be detected well with our method. In

particular, straight tag-lines detected on images taken at the first

cardiac phase demonstrate that initial artifacts can be suppressed

enough not to affect the tag-plane detection. Note that although

detected tag-planes are displayed as aligned voxels, the center of the

tag-lines can be estimated with subvoxel resolution.

4 Conclusion

A four-dimensional MR tagged imaging method combined with ret-

rospective respiratory gating, and an automatic tag-detection method

based on a regional quadratic approximation technique, were devel-

oped. Resulting images show that clear tag-contrast is maintained

during a whole cardiac cycle, and the tag-planes which are observed

on the images can be well-detected with the proposed method.

In the future, real-time respiratory gating and optimum ‘‘reordering’’

(order of line-data acquisition in a k-space) will be introduced to

shorten the total imaging time. For tagged image analysis, additional

algorithms, such as deformable model based ones and/or manual

corrections, are necessary to estimate tag-plane positions which have

disappeared from the images or to eliminate detected points which

are artifacts or on tag-plane locations not within the LV wall.
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Table 1 Imaging parameters

Parameters SA LA1 LA2

TR (ms) 3.13 3.13 3.35
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· 96

360 · 236

· 120

360 · 281

· 120

Acquisition

matrix (pixels)

256 · 70

· 30

256 · 70

· 39

256 · 87

· 39

Image matrix

(pixels)

256 · 120

· 64

256 · 186

· 80

256 · 232

· 80

Tag interval

(mm)

8

Voxel size

(mm)

1.4 · 1.4 · 1.5

# CardiacPhase 7

CardiacPhase

Interva (ms)

97

Coil body array (two channels) and spine array

(two channels)

Scan time (s) 90 117 156

Total scan

time (h)

1.5
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K.S. Shriram Æ M.J. More Æ S. Suryanarayanan

Imaging Technologies, GE Global Research, Bangalore, India

Abstract Model-based segmentation techniques using shape/texture

priors are attractive solutions for cardiac segmentation owing to large

variations in intensity and anatomy among subjects In this paper,

we have compared the performance of three previously known model

selection strategies for automated image-based segmentation of

cardiac region. Additionally, we have introduced a novel model

creation strategy that depends on the demographic profile of the

target data. The models were created from a set of cardiac CT cases

manually segmented by an expert. Each model was registered to a

bank of target CT data and the extent of its agreement with the

ground truth was used as the performance criteria. Finally, the model

that demonstrated the best performance was selected for segmenting

the normal cardiac CT and the saline flush CT acquisitions.

Keywords Segmentation Æ Model Æ Cardiac CT Æ
Saline flush

1 Introduction

Segmentation of the heart and its chambers is a pre-requisite for 3-D

visualization and quantitative functional analysis of cardiac CT.

Heart segmentation is challenging due to the heterogeneity in anat-

omy and contrast variability from case to case as well as within

chambers of the same case. Variations in scan/contrast timing,

unpredictability of patient metabolism and new acquisition protocols

such as the saline flush [1] further complicate the task, making

intensity-based segmentation tools unreliable. Thus, there is a need

for segmentation schemes that incorporate some higher-level ana-

tomical information in the form of a model.

Prior attempts at model-based segmentation have taken two distinct

approaches – statistical and non-statistical. Non-statistical approaches

like Metaxas et al. [2] tend to approximate the region of interest in

terms of geometric primitives such as ellipsoids and super-quadrics. In

statistical approaches, Frangi et al. [3] have incorporated the shape

information from a set of training cases into an automatically con-

structed point distribution model represented using an average shape

along with the primary variation modes. Park et al. [4] create a

probabilistic atlas of organs in the abdominal area where every voxel

has an associated probability of belonging to a particular organ.

However, the model selection process itself has not received a lot of

attention. Rohlfing et al. [5] have studied four different atlas selection

methods for segmenting confocal microscopy images of bee brains.

Our approach is along the lines of [5] but in the context of cardiac CT

where the challenges are drastically different. We have introduced a

novel model selection strategy where the choice of the model is

conditional on the demographic profile of the data to be operated

upon. Additionally, we compare this population-based model against

three methods proposed in [5] namely, random selection (baseline),

average model, and ‘‘Best-case’’ model. Models are compared

against each other using ground truth obtained via expert segmen-

tation of the heart.

2 Methods

2.1 Model creation

From a database of about 100 cases, a subset of 19 cases was chosen

for training and subsequent testing. Variables such as gender, age,

axial coverage, ethnicity, cardiac phase of acquisition, and field of

view were considered during the down-selection. The 19 cases were

further sub-divided into 10 training cases to build the model and 9

testing cases for performance analysis. The heart and the chambers

were manually segmented by two radiologists using an existing

software tool. Each expert segmented 30 cases, 10 of which were

overlapped with the other expert to quantify the inter-reader vari-

ability. The extent of agreement between the two operators was

measured using the Dice Similarity Coefficient (DSC), defined as:

DSC ¼
2 Volop1 \Volop2

� �

Volop1 [Volop2

� �

where, Volop1 and Volop2 are the volumes carved out by operators 1

and 2 respectively.

2.2 Model selection strategies

Random model This scheme forms the baseline for all the other

methods, is unbiased and a starting point in all the other studies. It

involves picking a random case from the training database and des-

ignating it as the model.

Best-case model The aim here is to select a case as the model that

best represents the average shape of the population. This is the

central representative of the training cluster and hence, undergoes

the least amount of deformation while matching to a target case. All

the n images in the training database are co-registered with each

other and the overlaps are calculated creating an n · n matrix of the

DSC values. For a specific case p chosen as the model, the perfor-

mance measure is computed as:

lDSC ¼
Pn

i¼1 DSCði;pÞ
n

;

rDSC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

DSCði;pÞ � lDSCð Þ2
s

; COV ¼ lDSC

rDSC

The case that is most central in the cluster i.e. having the highest

coefficient of variance (COV) for DSC values is picked as the best-

case model. Park et al. [6] in their implementation have used a matrix

of the bending energies of all the registration pairs, picking the case

that lies around the mean as the best-case model.

Average model Here, all the segmented volumes from the training

set are aligned together and averaged (either by simple averaging of

intensities or by majority voting), forming the averaged model. In

iterative averaging [7], a random case from the training database is

chosen as the seed, to which all the other cases are registered. The

intensities are then averaged; the average now becomes the seed to

which all the training cases are registered in the subsequent iteration.

This process is repeated until convergence.

Iterative averaging scheme faces challenges while dealing with het-

erogeneous data exhibiting large variations like cardiac CT, where

mis-registrations at the periphery might lead to averaging intensities

from disparate regions. To overcome the problems associated with

large-scale deformations, Lorenzen et al. [8] have proposed a diffe-

omorphism-based approach for creating a population average.

Population-based model The idea behind this scheme is to pick the

model from the training database that is closest to the target data in

terms of demographic profile. We studied age and gender as the

possible demographic categories while holding ethnicity and CT

acquisition parameters constant. Volumes were measured from the

segmented hearts obtained from the experts. We found that while

there is a significant difference in heart volumes between male and

female cases, the relationship between heart volumes and age profile

remained inconclusive. The training dataset was divided into male

and female subgroups and the cases closest to the average heart

volume in both the clusters were picked as the population-based
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models. The implementation of this scheme involves obtaining the

gender information of the target case from the DICOM header and

matching it with the corresponding model.

2.3 Registration framework

To capture statistical variation, each of the training datasets has to be

aligned to a common coordinate frame using a registration algorithm.

The basic components of the registration framework are two input

images, a transform, a metric, an interpolator and an optimizer.

Global rigid registration with the target as the fixed image and the

model as the moving image was implemented using the Insight Tool

Kit [9].

Transform The Affine and the Versor transforms were considered

for experimentation. The rotation/scaling/shear coefficients accom-

panying the transform are usually of a very different dynamic range

compared to translation. In the case of our cardiac CT database, the

dominant transform required to register images was translation,

accompanied by small amounts of rotation/scaling/shear.

Metric The choice of metric was between Mutual Information (MI)

and Mean Square error (MSE). MSE makes eminent sense for intra-

modality registration, while MI has a more generic framework suit-

able even for inter-modality registration.

3 Results

3.1 Manual segmentation

The segmented output from both operators was found to be in good

agreement with each other. The average DSC over the ten overlap-

ping cases was calculated to be 96% (r = 1.3%).

3.2 Registration framework

To compare similarity metrics, five manually segmented cases were

co-registered with each other and DSC comparison with the ground

truth was used for evaluation. It was found that both MI and MSE

metrics resulted in similar accuracies (Fig. 1a) with the only differ-

ence being that MI required significantly less time for computation.

MI being more statistical in nature works even if the images are

sampled sparsely for computing the joint histograms. Similarly, affine

and versor transforms were evaluated using three manually seg-

mented cases and DSC was used for comparison. The accuracies with

both affine and versor were comparable (Fig. 1b), the difference

being the versor transform was found to be more stable across all the

registration pairs. Figure 1b shows a case (50_10) where the affine

transform failed to produce any results. Thus, versor transform with

MI metric was used for all further model to target registrations.

3.3 Model selection

Best-case model Table 1 shows the 10 · 10 matrix of DSC values

along with the COV for each of the training cases. Higher the COV,

better the model at representing the population. In our case, CT_46

(Table 1) was picked as the Best-case model.

Average model Simple averaging after co-registration of training

images could not handle large spatial and intensity variations in the

heart chambers. When all the training images were co-registered to a

common coordinate frame, the overlaps among the chambers of the

heart were not high enough to mandate a probabilistic atlas (Fig. 2);

hence the average model was discarded.

Population-based model The training dataset was divided into two

clusters based on gender. The efficacy of this method was tested by

comparing situations where model and target were of the same

gender (intra category) to one where they belonged to different ones

(inter category). We found that female–female transformations per-

formed better than female–male transformations, while difference

between male inter- and intra-category transformations was not

conclusive. A two sample t-test yielded a P-value of 0.18 indicating

that the difference between the inter- and intra-category registration

was not significant. This result could be due to the limited nature of

the training database.

The performance of the Random, Best-case and the Population-

based models were compared (in terms of DSC) on the training

examples. The Best-case model was found to outperform the other

two with an average DSC of 90.4% across all cases (r = 3%). The

comparative study was further validated on the test cases and similar

results were obtained. Figure 3 (top) shows an example where the

Best-case model was registered to a test CT case. Finally, the Best-

case model was implemented on Saline flush data whose right

chambers were devoid of any contrast. Figure 3 (bottom) shows that

the model aligned well with the target heart in its entirety notwith-

standing the vagaries of the intensity values on the right side chamber

of the target. After accurate alignment, the model was used as a mask

to segment the heart from the target CT image. The volume rendered

image of the segmented heart for a saline flush target case is shown in

Fig. 4 (bottom) and compared against that obtained from a bottom-

up method (top).
4 Conclusions

In this paper we have studied four model creation strategies for

cardiac CT, including a novel strategy based on the demographic

profile of the target data. Using an ITK-based registration framework

we selected MI over MSE for the choice of similarity metric and the

versor transform over the affine transform for our application. The

Metric
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Fig. 1 Comparison of overlaps with ground truth of: a left MI and

MSE metrics and b right affine and versor transform when used to

drive registration

Table 1 The 10 · 10 matrix of DSC values generated by co-

registering all the training cases with each other. Moving image

was taken as the model while the fixed image as the target. CT_46

was chosen as the Best-case model since it had the highest COV

Target Model

CT_02 CT_10 CT_13 CT_14 CT_18 CT_19 CT_20 CT_43 CT_46 CT_50

CT_02 88 83 94 89 85 78 90 91 91

CT_10 85 84 90 87 88 83 92 92 93

CT_13 89 88 91 88 87 81 91 90 88

CT_14 95 91 91 92 91 77 94 93 91

CT_18 90 91 90 92 89 77 77 92 90

CT_19 91 92 86 93 89 64 92 94 93

CT_20 71 75 88 76 89 71 60 87 81

CT_43 86 84 71 86 77 80 69 87 89

CT_46 90 88 86 91 84 87 80 92 91

CT_50 82 87 81 82 85 88 70 89 85

AVG_DSC 86 87 84 88 87 85 75 86 90 90

Stdev_DSC 7 5 6 6 4 6 6 11 3 4

COV 12.54 16.41 14.23 14.64 20.17 13.73 12.13 7.96 29.86 25.00

Fig. 2 Average model obtained by averaging intensities (left);

overlap between the individual chambers (right). Misalignment is

greater in the atria than in the ventricles
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Best-case model outperformed the Random and the Average models.

The Average model based purely on global registration gave ana-

tomically unacceptable output owing to the large variations in the

individual chambers. The Population-based model did not perform

significantly better perhaps because of the limited datasets used in

our study. Finally, we demonstrated segmentation of cardiac region

from saline flush cases that present a big challenge in the form of

inter-chamber contrast variability.
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Abstract Phase-Contrast Magnetic Resonance Imaging (PC-MRI) is

a technique that allows radiologists to non-invasively assess blood

flow While its routine use is limited to the quantification of flow in

vessels based on one-dimensional velocity-encoded images, more

recent sequences allow for the acquisition of complete velocity vector

fields in a reasonable setting. These vector fields may give a deeper

insight into the physiological or patho-physiological conditions in

large vessels such as the aorta. Currently clinicians lack appropriate

software tools that combine classical flow visualization with medical

image processing. In this paper we present a dedicated, versatile

software tool for the analysis of 3D-PC-MRI flow data, which is

based on the MEDIFRAME application framework. It implements

several visualization and quantification techniques including virtual

echocardiography and streamlines. Examples from animal experi-

ments illustrate its usage and usefulness.

Keywords MRI, Vascular imaging Æ Flow visualization Æ
Flow quantification

1 Introduction

Phase-Contrast Magnetic Resonance Imaging (PC-MRI) is a tech-

nique that allows radiologists to non-invasively assess blood flow by

measuring local blood velocities. It is based on the fact that nuclear

spins, when moving along a magnetic gradient, get a phase shift

proportional to their velocity. This implies that velocity measurement

is possible only along one user defined axis. However, more recent

imaging sequences acquire such flow-sensitive images along three

orthogonal axes in rapid succession that the result may be taken as

three-dimensional velocity vectors.

Conventional, i.e. one-dimensional PC-MRI is often used to measure

flow, particularly in large vessels such as the aorta or the pulmonary

artery [1, 2]. Commercially available software tools, e.g. ARGUS

(Siemens Medical, Erlangen, Germany) compute the effective blood

flow through a manually defined region of interest. 3D-velocity-en-

coded phase images, on the other hand, are generally difficult to

Fig. 4 Heart Segmentation for a saline flush case using bottom-up

method (top) versus model-based method (bottom)

Fig. 3 Best-case model overlaid on the target CT image before (left)

and after (right) registration. The top row shows model registration to

target for a normal CT acquisition while the bottom row is for a saline

flush case
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interpret visually and currently there is virtually no commonly ac-

cepted application in the radiological practice. Moreover, the lack of

appropriate software tools impedes the exploitation of the velocity

vector data in the clinical routine.

This technique does not only deliver quantitative information about

blood flow, it can also give valuable insight into specific pathological

flow patterns. For example it may be possible to track regurgitational

flow through insufficient heart valves or to examine the main direc-

tion of flow in large vessels.

In this paper we present a new versatile software tool that is dedi-

cated to analyze vectorized flow data acquired using 3D-PC-MRI and

we illustrate its usage with a few examples from animal experiments.

2 Methods

2.1 Data

For this work a 3D phase-contrast sequence has been used on a

Siemens Magnetom Symphony 1.5 T MR-Scanner. It is based on the

FLASH sequence and allows the acquisition of a time-resolved field

of three-dimensional blood velocity vectors on one two-dimensional

slice – in addition to the morphological image. The sequence is ECG-

triggered. Several parallel, 5 mm thick slices are acquired consecu-

tively at equidistant positions, resulting in two datasets: morphology

and velocity field (see Fig. 1). Technically, both are discrete regular

4D grids (x,y,z,t) with 1D (morphology) and 3D (velocity vectors)

data defined on it. The size of the datasets usually adds up to

150 MB.

A series of animal experiments have been used to test the software

tool. In ten domestic pigs sagital slices of the heart and the aorta were

acquired on a 256 · 256 pixels matrix. Voxel size was

1.4 · 1.4 · 5 mm3, VENC was set at 100 cm/s. The acquisition was

performed without any breath-hold using retrospective ECG-trig-

gering.

2.2 Software tool

MEDIFRAME is an extendable software framework for medical

applications that has been developed at the Institute of Computer

Science and Engineering, University of Karlsruhe [3]. Apart from

being a high-level application framework it offers basic functionality

needed for medical applications such as volume and sliced visuali-

zation of image data, DICOM import and data management. It has

been implemented in C++ and is available for all common platforms

(Windows, Linux and MacOS). A flexible plug-in concept allows for

easy integration of application-specific components.

The tool for the analysis of vector flow data, which is being presented

here, has also been realized as a plug-in component. At startup the

user may select morphological and corresponding velocity encoded

data into the component.

The component basically offers three different ways to visualize the

data: virtual echocardiography, vector flow and streamlines. In any

case the morphological data is rendered as a three-dimensional vol-

ume using VTK raycasting (The Visualization Toolkit, Kitware, New

York, USA). Hardware accelerated raycasting using VolumePro

(Terarecon, San Mateo, USA) is also supported and quite advanta-

geous for the large datasets. Additionally the data may be viewed in

up to three arbitrary cross-section planes. The complete represen-

tation may be animated playing the whole heart cycle as a video.

2.3 Visualization techniques

Virtual echocardiography is a visualization technique that emulates

in some way the Color-Doppler Echocardiography which is well

known to medical doctors. A virtual transducer is displayed on the

screen and may be placed and oriented arbitrarily [4, 5]. Conse-

quently the flow data is blended with the morphological data with

blood moving towards the transducer being colored red and blood

moving away from the transducer being colored blue. Of course,

movement in a perpendicular direction is not visible at all. Although

this method seems to go against the idea of vector field visualization

it turned out to be a good way to interactively explore the flow.

Vector flow visualization is the most common way to represent flow:

small arrows show the direction of the velocity vectors at each po-

sition. However, with the 3D data at hand, this technique must be

appropriately adapted to be useful. For example it would be not

helpful to display an arrow at every voxel because due to the sheer

number of arrows it would be impossible to get any useful informa-

tion. Hence a probing technique has been implemented, i.e. the

vector arrows are only displayed at certain probing points. The user

may for example define a plane with equally distributed probing

points and move it through the data.

Streamlines are also a well known method to visualize flow.

Streamlines allow tracking the way a particle takes through the

velocity field. In this tool the user may define the starting points for

streamlines and observe the traces.

In order to complete the functionality, the tool also offers the pos-

sibility to quantify flow through arbitrary elliptical planes. The user

may place an elliptical plane for example into a vessel and fit it to the

vessel wall. The software automatically computes the flow and the

effective stroke volume over the whole heart cycle, where the specific

placement of the elliptical plane may be adjusted for each time

frame. Technically, the vector field is projected to the normal of the

plane and integrated over the defined area. The results are displayed

as a bar graph and a numerical table. Additionally the flow profile of

the region of interest may be viewed.

3 Results

Visualization of vector fields is generally known to be difficult be-

cause of the high-dimensional nature of the data. The techniques

presented above all aim to reduce the data in some way, which makes

it cognizable, but which also brings along the need for interactive

exploration, i.e. changing the view in order to find and to collect the

needed information.

The software tool proved to be sufficiently fast for this purpose

thanks to optimized multi-threaded programming. Also, the flexi-

bility, i.e. the possibility to combine or quickly change the different

visualization functions showed to be very useful. However, the three-

dimensional visualization of vector arrows and streamlines in com-

bination with raycasted morphology was not yet optimal as under

certain view angles the arrows did not appear at the right depth, i.e.

they seemed to lie outside the volume. This is due to problems of

blending raycasted images and polygonal surface-mesh data, espe-

cially when using VolumePro.

The software has been tested with different datasets. The visualiza-

tion of large flow patterns such as aortic or pulmonary outflow or left-

ventricular diastolic inflow was easily possible and showed to be quite

instructive. Also ventricle vortexes were observed (Figs. 2, 3).

4 Conclusion

While phase-contrast magnetic resonance imaging is mainly used

for the quantification of flow in vessels today, its capabilities to

acquire three-dimensional velocity fields remain unused in the

radiological routine. We presented a software tool to process and

visualize velocity field data from MRI giving insight into the flow

characteristics of a specific patient. The tool showed to be func-

tional and useful. However, more work needs to be done con-

cerning usability and more adapted views, e.g. more specialized

probing schemes.

Fig. 1 MRI acquisition scheme
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Currently the accuracy of the quantification function is examined.

Furthermore specific segmentation techniques are being imple-

mented in order to help the user track interesting flow more easily.
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Abstract Computed tomography angiography (CTA) is an estab-

lished tool for vascular imaging However, high-intense nonvascular

structures in the contrast image can seriously hamper luminal visu-

alisation. Even when using subtraction CTA, where a native image is

subtracted from the contrast image, patient and organ motion limits

the widespread application of this technique. Within this paper, a

procedure is presented to overcome this problem. First, a native

image without contrast administration and a contrast image after

contrast administration are acquired. Next, the images are trans-

mitted to an image processing workstation. In this workstation, the

native image is registered to the contrast image using an automatic

intensity-based nonrigid three-dimensional registration algorithm.

The registered native image and the contrast image are fused to

create the arterial and bone image. Finally, the newly created images

are send back to the console for visualisation. Our method allows the

user to switch between a view of the arteries, the bone or both. The

average calculation time of the whole procedure is about 30 min.

This procedure has been used to image the carotids of 31 patients.

Although the patients were carefully instructed not to move between

the two scans, and exactly the same region was imaged, all initial data

sets show significant movement artifacts. In all cases, the artifacts are

reduced by the nonrigid registration. Remaining artifacts mostly

occur in the tooth region, well separated from the vessels of interest.

Keywords CTA, CT angiography Æ sCTA Æ
Subtraction CT angiography Æ Head-and-neck Æ Parotids Æ
Registration

1 Purpose
With the ever increasing temporal and spatial resolution of multi-

detector CT scanners, CT has become an excellent modality for

accurate imaging of vascular structures. Therefore, CT angiography

(CTA) is since some years used in daily clinical practice [1]. Espe-

cially in combination with volume rendering, CTA images often are a

helpful clinical tool. Nevertheless, when the blood vessels of interest,

which appear high-intense on the contrast-enhanced images, are lo-

cated near other high-intense structures like bone or plaques,

intensity thresholding or volume rendering is not suitable to dis-

criminate the vessels. In those cases, registration of pre- and post-

contrast images and subsequent subtraction of the co-registered

images provides an elegant solution. Several authors published

promising work using a rigid registration approach (e.g. [2]). How-

ever, due to subtle changes in pose or muscle tension, rigid regis-

tration is often insufficient to cover all changes and nonrigid

registration is often required.

A region that is especially of interest for subtraction CTA is the

head-and-neck region. Precise noninvasive evaluation of the cervico-

cranial vessels is of utmost clinical importance. The main diagnostic

issues concern the demonstration of the presence and degree of

stenosis of the cervical vessels and of concomitant lesions of the

intracranial vasculature. Detection and quantification of stenoses of

the cervical arteries appears very accurate with CTA, allowing

application of the NASCET-criteria [3, 4]. For the intracranial ves-

sels, besides the diagnosis of stenosis and occlusion, other diseases

benefit from early and noninvasive diagnosis with CTA. In the

diagnosis of intracerebral aneurysms the accuracy of CTA ap-

proaches 100% when compared with DSA [5, 6]. It can miss smaller

aneurysms, inferior to 4 mm, but is superior as a fast noninvasive

method without complications [7].

Bone subtraction seems to be useful to avoid superposition of bony

structures especially in the vertebrobasilar system [8]. It furthermore

might be important to allow determination of the degree of stenosis

in heavily calcified plaques [9].

2 Methods

We have implemented a method that allows nonrigid 3D registration

of the pre-contrast image to the post-contrast image in a clinically

Fig. 3 Flow quantification: elliptical plane placed in the ascending

aorta (upper left: 3D virtual echocardiography, lower left: cross-

sectional view, upper right: flow over time, lower right: flow profile)

Fig. 2 Flow visualization in the aortic arc using vector arrows (left)

and streamlines (right). Color corresponds to velocity magnitude
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acceptable time, using a standard PC workstation for the image

processing part. The procedure consists of the following steps:

1. Acquire the native (pre-contrast) image

2. Administer contrast and record the contrast enhanced (post-con-

trast) image

3. Send both images to the image processing workstation

4. Nonrigidly register the native image to the contrast enhanced

image

5. Fuse the registered images into a single dataset

6. Transmit the fused image back to the CT console

7. Visualise the images

The whole procedure is fully automated, thus requiring no user

interaction.

2.1 Acquisition setup (steps 1–2)

All images are recorded on a Siemens Sensation 64 (Siemens,

Erlangen, Germany) using 120 keV radiation at about 500 mA s and

a pitch of 1.2. Reconstructed images contain 512 · 512 pixels

and 700–900 slices with a cubic voxel size of about 0.4 mm ·
0.4 mm · 0.4 mm. Care was taken that the contrast enhanced image

is acquired with exactly the same settings (i.e. field of view, voxel size,

reconstruction filter,...) as the native image. The patients were care-

fully instructed not to move between the two scans, and exactly the

same acquisition settings were used. Recording takes about 30 s per

scan with an interval of about 2 min between the scans to administer

contrast.

2.2 Image registration (step 4)

The nonrigid deformation is modelled by a B-spline deformation

mesh [10]. As similarity measure, mutual information between the

native and contrast enhanced image is chosen [11]. A grid of mesh

control points is positioned over the image. A multiresolution opti-

misation algorithm is adopted, using four multiresolution steps. Ini-

tially, to model a more global deformation, the grid spacing is large,

yielding a coarse mesh with few control points. The final finer mesh

has small grid spacing and many control points, allowing a more local

deformation. In the first two steps, the images are downscaled three

times in each direction (i.e. using only 1/83 = 1/512 of the original

voxels). In the last two steps, the images are downscaled twice with

respect to the original image sampling. Initially, a mesh spacing of

128 voxels is used, gradually decreasing to 64 voxels in steps 2 and 3

and 32 voxels in the last step. As the registration algorithm has

subvoxel precision; the obtained smaller scale deformation can be

upscaled retaining sufficient accuracy [12]. The multiresolution ap-

proach greatly reduces calculation time by performing the initial

calculations on a smaller image. Gradually decreasing the grid

spacing will first recover more global deformations and progressively

advance to finer deformations, thus creating a more realistic defor-

mation field and avoiding local optima. After registration, the ob-

tained transformation is applied to the full-scale original native

image, yielding the deformed native image.

2.3 Image fusion (step 5)

On the basis of the intensities in the registered native and contrast

enhanced image, each voxel is classified as bone (high intense in both

images), vessel (high intense in the contrast enhanced image, low

intense in the native image) or soft-tissue (low intense in both ima-

ges). A fused image is created, in which soft tissue voxels are set to

0 HU (Hounsfield units), vessel intensities remain unchanged and

bone voxel intensities are mirrored around 0 HU (i.e. the sign is

inverted). This leads to a histogram in which the vessel voxels remain

situated in the range around 300 HU, all soft tissue is concentrated at

0 HU and the bone voxel intensities are situated in the range )100 to

)1,000 HU. Therefore, vessel and bone intensities are well separated

and can be visualised independently.

2.4 Visualisation (step 7)

The images are visualised on the Siemens Syngo (Siemens, Erlangen,

Germany) volume renderer. Due to the construction of the fused

image, the normal volume rendering settings can be used to visualise

the arteries. An extra ramp can be inserted for the bone voxels; its

transparency can be individually controlled.

3 Validation
The registration quality is measured by the average intensity of the

voxels with negative intensity in the subtraction image [13]. As the

administered contrast causes an increased intensity in the contrast-

enhanced image, corresponding voxel intensities in the contrast

enhanced image are expected to be higher (in the vessels) or equal

(everywhere else) to the voxel intensities in the native image.

Negative intensities in the difference image (Icontrast enhanced ) Inative)

are caused by registration inaccuracy or CT acquisition artefacts.

To visually asses the registration quality, error images are created

showing the sum of the negative voxels in the difference images.

Darker pixels reflect more artefacts and thus a worse registration;

brighter pixels indicate no errors. The images give an indication of

the location of the registration artefacts and a visual demonstration

of the artefact reduction over increasing registration stages.

4 Results
The automated registration procedure has been used to image the

carotids of 31 patients. Initially, all datasets show significant move-

ment artefacts; the average negative error is 25.6 HU. This error

gradually decreases over the registration stages to 9.9 HU in the final

stage. This final error is comparable to the error due to normal

multislice spiral CT artefacts [14]. An example of the results obtained

without and with registration is shown in Fig. 1. When the bone is

rendered completely transparent, a clear view of the vessels is gen-

erated. Figure 2 shows some details of the passage of the carotids

through the skull base. Alteration of the bone transparency allows

changing the visibility of the calcified structures, and thus also allows

distinguishing between soft and hard plaques, as shown in Fig. 3.

Figure 4 displays, for a typical patient, the error images for each

registration stage. A clear reduction of registration artifacts can be

seen; the remaining artifacts are mainly situated in the tooth region,

well separated of the vessels of interest.

The average processing time per patient is about 30 min on a Dell

PowerEdge 2600, requiring about 20 min for the registration.

5 Conclusion
In this paper, we presented a nonrigid registration algorithm that

substantially reduces the movement artefacts in subtraction CT

angiography, allowing for a clear 3D view of the vascular structure.

Fig. 1 Fused images, before (left) and after nonrigid registration

(middle and right). In the middle image, the bone is shown semi-

transparent, in the left and right image it is shown transparent. Due to

misregistration, most of the skull is visible in the left images and e.g.

the left clavicle

Fig. 2 Detail of the passage of the carotids through the skull base,

original contrast image (left), with semi-transparent bone (middle)

and with transparent bone (right)
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The algorithm was successfully tested on 31 datasets. The method is

fully automated and runs in the background. The method has the

potential to enable e.g. accurate diagnosis of emergency patients with

stroke indications in less than an hour, allowing for a much quicker

and thus better treatment, which is subject of future work.
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Abstract We introduce a new approach to the prediction of the final

infarct growth in human acute ischemic stroke based on image

analysis of the apparent diffusion coefficient (ADC) MR maps ac-

quired in the acute stage The ADC maps are likely to reveal brain

regions belonging to the ischemic penumbra, that is, areas that may

be affected by the infarction in the following next few hours. In a

context where ‘‘time is brain’’, and contrarily to the most devel-

oped—though still-debated—perfusion–diffusion mismatch ap-

proach, the ADC MR sequences are fast to acquire and do not

necessitate injection of a contrast agent. Image analysis consists of

the segmentation of the ischemic penumbra using a fast 3D region-

growing infarct approach.

Keywords Stroke Æ Magnetic resonance imaging Æ
Diffusion imaging Æ Region-growing segmentation Æ
Cerebral ischemia Æ Infarct growth prediction Æ
Apparent diffusion coefficient

1 Introduction

In the immediate aftermath of acute ischemic stroke, knowledge on

the significant growth potential of radiological abnormalities de-

tected during the early therapeutic window is of critical importance.

Prediction of the regions—and consequently functional sys-

tems—eventually involved in the infarct will influence the very

choice of the most effective therapy. In this context, recent MR se-

quences could contribute to reduce the huge social impact of stroke if

image analysis tools for accurate and immediate distinction between

the already-infarcted and still-at-risk ischemic tissues can be pro-

vided. A first approach consists in determining thresholds on imaging

measures to distinguish between regions (1) bound to spontaneous

recovery, (2) threatened but potentially viable, the ischemic pen-

umbra or, (3) irreversibly injured and infarcted [12]. The penumbra

region is an assembly of areas that may be affected by the infarction

in the following next few hours. It includes functionally impaired but

Fig. 3 Detail of the carotid bifurcation, (left) original contrast image,

(middle) with semi-transparent bone and (right) with transparent

bone. The left stenosis is caused by soft plaque, visible in none of the

images. The right stenosis is caused by hard plaque, visible in the

original image, semi-transparant in the middle image and invisible in

the right image

Fig. 4 Axial view of error images from left to right without

registration and for stage 1, 2, 3 and 4. The images give an indication

of the location of the registration artefacts and a visual demonstra-

tion of the artefact reduction with ongoing registration stages.

Window/level is kept fixed for all images
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salvageable ischemic brain tissue surrounding an irreversibly dam-

aged core.

Like in other non-ischemic CNS pathologies, basic structural MRI

can help reveal the earliest hemodynamic and a tissue change in-

duced by ischemia [4], but carries no information about the forth-

coming outcome of the infarct growth. In this context, the perfusion–

diffusion mismatch approach has been proposed to estimate the

growth potential of the infarct in the acute phase, with limited

specificity though [1, 11]. Alternatives based on diffusion MR

imaging such as diffusion-weighted (DWI) and apparent diffusion

coefficient (ADC) maps may unveil three types of information: the

initial location of the early cerebral ischemic accident; the final vol-

ume of abnormalities with irreversible lesions at the time the MRI

scan was acquired; and the severity of ischemia. Because of the ad-

vent of these techniques in clinical MRI units, recent studies have

highlighted the clinical value of DWI in stroke diagnosis and the

potential impact of water ADC measurement on the quantification

and prediction of histopathologic damage in ischemic brain infarcts

[7, 8, 9]. DWI for instance, reveals relative hypersignals in regions

with lower diffusion, such as areas of acute stroke. Tissues in which

water diffusion is reduced can therefore be readily detected as a

hyperintense area on heavily diffusion-weighted MR images, which

has become the hallmark of detection of recent ischemic stroke.

These signal discrepancies also correspond to reduced water ADC in

ischemic brain tissue due to cytotoxic oedema [3]. The smaller ADC

values in the vicinity of the early-infarcted core are also indicative of

tissue at risk of final infarction. Indeed, subtle ADC changes remain

invisible on DWI, and early moderate decrease in ADC may occur in

true penumbra. Extraction of the penumbra area from ADC maps

within 6 h following stroke onset could help predict the infarct

growth and, even more accurately, the final size of the infarct [4, 8,

10]. Further, DWI signal intensity depends on multiple factors such

as the diffusion rate of molecules, T1 and T2 relaxation times, and

local proton density. ADC, however, is independent of confounding

T2 effects and ADC average or ‘‘trace’’ maps are also independent of

diffusion anisotropy. Finally, ADC is an absolute measure expressed

in mm2 s)1, which is independent on the scanner [2].

2 Subjects and methods

The present study consisted of the development and pilot evaluation

of a region growing segmentation technique of ADC maps dedicated

to the extraction of brain areas likely to be affected by infarct within

the next few days following stroke.

2.1 Patients

The patient population consisted of an initial database of 20 patients

(age: mean 57, range [30, 73]; 100% without re-permeability) to tune

the parameters of the method and a larger database of 77 patients

(age: mean 59, range [26, 84]; with 49% complete, 22% partial, 29%

without re-permeability) dedicated to its evaluation. These patients

suffered from acute hemispheric stroke and were scanned with DWI

within the 6 first hours following symptoms onset. ADC maps were

obtained from DWI processing. A follow-up scan was performed

within the next 1.2 days on average (range [0.5, 6.3]).

2.2 Imaging parameters

DWI scans consisted of 24 256 · 256 axial slices (5 mm thickness)

with an inter-slice gap of 0.5 mm. Each axial slice was obtained with

spin-echo multi-slice single-shot echo-planar imaging sequence with a

baseline T2 acquisition (b = 0 s mm)2) and b = 1,000 s mm)2. ADC

‘‘trace’’ images were generated with a dedicated software tool

(FuncTool, General Electric, Buc, France).

2.3 Image pre-processing

Original image processing tools were developed in C on a conven-

tional Linux workstation under the brainVISA environment (http://

www.brainvisa.info). Initial and follow-up scans were co-registered in

the Talairach reference system and retrospective quantitative mea-

surements were obtained from three pathophysiological regions of

interests (ROI): (1) the volume of initial DWI abnormalities, which

was considered as the ischemic core (CORE); (2) the final volume of

the infarct (INF) taken from the final DWI abnormalities; and (3) the

at-risk region or infarct growth area (IG), defined as the difference

between INF and CORE ROIs. Mirror regions were also delineated

for subsequent comparison with ADC values within contralateral

healthy tissues. ADC maps were thresholded between 150 and

1,200 mm2 s)1 to remove voxels contaminated with partial volume

effects from cerebrospinal fluid. For each patient, all ROIs were

manually delineated by the neurologist for quantitative comparison

with the outcomes of the automatic segmentation procedure.

2.4 Image analysis and region-growing segmentation

The segmentation procedure is guided by a region-growing process as

a modelling approach to the infarct growth. Initialization consists of

the definition of a mask for the initial lesion obtained by expert

neurologists using visual adaptive thresholding of the initial DWI

(see [5] for automatic alternatives). Growth then runs through iter-

ative voxel classification at the evolving infarct 3D envelope using

voxel-based and region-based prior models of ADC intensity profiles

in the INF region. These models are built on basic sample statistics of

ADC values that were extracted from all ipsi and contralateral ROIs

in the initial database (Table 1). Voxel classification is therefore

achieved by alternatively considering the next voxel candidates as

either ultimately belonging to the final infarct region or to healthy

tissue. The numerical objective consists in minimizing a global energy

index E computed over the set of voxels v in the INF region. Recent

studies have demonstrated that the average and individual voxel

ADC intensity values are significantly smaller in the INF region

during the acute stage than in controlateral healthy tissues [6,11].

Therefore, E includes terms that relate to region and pixel-based

properties (ER and EP, respectively) of the infarct volume and a

regularizing feature, Es, which ensures a smooth surface envelope to

the infarct volume along iterations: E = aER + bEP + cES. a, b and c
are scalar hyperparameters. The individual energy terms are defined

as:

ER ¼
�iINF � iINF

rINF

� �2

; where �iINF ¼
1

NINF

X

v2INF

i vð Þ;

EP ¼
X

v2IG

iðvÞ � iIG

rIG

� �2

; ES ¼
X

v2INF

Nv �N=2

d

� �b

:

All voxel intensity values in ER and EP are expressed relatively to the

average tissue intensity in the contralateral healthy region (see Sect.

3). �iINF is the average ADC intensity in the current INF region; iINF

(res. rINF) is a prior on the expected average (res. tolerance) ADC

intensity in the final INF region. i(v) is the ADC intensity at voxel v.
�iIG (res. rIG) is also a prior on the expected ADC intensity (res.

standard deviation) at the voxel level for voxels in IG. NINF (res. NIG)

are the current counts of voxels in the INF and IG regions, respec-

tively. ES is the Ising regularization functional: N is the total number of

Table 1 Sample statistics of ADC intensity values obtained from the

initial database (N = 20): region-based (average ADC values and

standard deviations for each ROI) and voxel-based statistics (sample

statistics of the voxel population in each ROI)

ADC intensities

Region-based statistics Voxel-based statistics

ROI CORE IG INF CORE IG INF

Lesion 645 ± 75 823 ± 43 750 ± 69 690 ± 199 824 ± 174 772 ± 196

Mirror 840 ± 52 860 ± 36 851 ± 44 851 ± 167 860 ± 160 861 ± 156

Ratio 0.77 0.96 0.88 0.81 0.96 0.90

The mean ADC values of regions can further be compared with the

values in the contralateral healthy hemisphere and expressed as an ADC

ratio
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voxel neighbours (e.g. 26) out of which Nv belong to INF. d and b are

fixed scalar parameters. Global optimization is run iteratively on each

element v0 of the voxel front according to: v0 2 INF, Ev02INF

\Ev0 62INF: Growth is complete when no more voxels are acceptable in

the INF region. Infarct growth was considered as significant if the IG

volume was superior to 10 cm3. Performances of our method were

then evaluated in terms of specificity and sensitivity of infarct growth

prediction and compared with those generally observed from the

perfusion–diffusion mismatch alternative approach.
3 Results

The average volume of the infarct lesions in the initial database in-

creased from 36 ± 26 cm3 (CORE) to 96 ± 81 cm3 (INF). In the

hemisphere ipsilateral to the infarct, ADC intensity values revealed

significant differences between all 3 ROI types, while as expected, no

difference were detected between the corresponding mirror ROIs in

the healthy hemisphere (Table 1). Our study confirms that average

ADC values are significantly smaller in CORE than in INF [10].

In the final evaluation database (N = 77), the volume of the lesion

increased from 40 ± 36 cm3 to 81 ± 72 cm3, (mean growth:

41 ± 50 cm3). The average final infarct volume predicted by our

method was 79 ± 72 cm3, with significant correlation with the true

final volumes (resp. infarct growth) at the population level: r = 0.71

(resp. r = 0.56; Fig. 1a), P < 0.0001.

Automatic prediction of the infarct growth performed with 75%

sensitivity and 71% specificity scores. ROC analysis revealed a sat-

isfactory measure of the area under the curve index (c = 0.74,

Fig. 1b). These performances are comparable to the ones achieved by

the perfusion–diffusion mismatch approach, though this latter

necessitates the monitored injection of a contrast agent in the scan-

ner, a heavy constraint in the context of absolute emergency. Con-

vergence of the iterative algorithm was fast ( < 10 min on average,

on a conventional workstation). The method is exemplified Fig. 2.

4 Conclusions

Because the ADC values reflect the ischemic history of the tissue,

this parameter was confirmed to be predictive of final tissue outcome.

We have shown in this study that automatic segmentation of the

ADC profile from early scans is reliable, fast, and no-invasive. Seg-

mentation was achieved by a region-growing procedure that includes

limited a priori knowledge about the infarcted area: the expected

average ADC value—derived from the retrospective analysis on a

limited population of patients—and smooth surface envelopes priors.

These are encouraging results for the fast and automatic segmenta-

tion of ADC maps in the anticipation of infarct growth and represent

an alternative to the still-debated perfusion–diffusion mismatch ap-

proach. Ongoing research includes refinement of the segmentation

procedure to achieve greater quantitative accuracy by including

extended knowledge on brain vascular structure and comprehensive

investigation of the 3D ADC profile.

References

1. Connelly A, Calamante F, Porter DA, Gadian DG (2000) Case

study on diffusion and perfusion magnetic resonance imaging in

childhood stroke. Electromedica Neuro 68:2–8

2. Cosnard G, Duprez T, Grandin C et al (1999) Imagerie de Dif-
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Fig. 1 a Real vs. predicted infract growth volumes. b ROC analysis

of the performances from the automatic prediction method. c Area

under the curve

Fig. 2 An example of the automatic prediction in a patient with

initial infarct volume of 81.9 cm3 (a), the real final infarct volume is

130.4 cm3 (c), and the predicted final volume was 154.9 cm3 (b, d

with blue mask). True (resp. predicted) growth is 48.5 cm3 (resp.

68.0 cm3)
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