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Abstract Our work aims at investigating the suitability
of the medial representation method to model and analyze
shape and shape differences between healthy and diseased
hearts. For this experimental study, we use MRI short axis
scans of 11 healthy volunteers (age: 50±10) and 5 patients
(age: 57±11) with dilativ cardiomyopathy. Controlled semi-
automated segmentation provides labels, which are used for
the modeling process. To evaluate the model to image accu-
racy the similarity index (SI), the mean Euclidean distance
(ED), and the Hausdorff distance (HD) are calculated. A
very high SI (SI > 0.9) for the ventricles is achieved. The
mean ED is less than two times the voxel size (1.56 mm)
and the HD values for both chambers are in the range of
4.8±3 mm. Applying extended principal component analy-
sis (PCA) on all 16 subjects reveals the distribution of the
individual shapes, where the first two PC cover more than
40%, and the first ten PC cover 95% of the shape space. The
components show meaningful modes of variation, whereas
the healthy and diseased hearts are clustered in the first two
components. This preliminary result using the medial based
approach promises to discriminate at least globally between
healthy and diseased hearts.
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Introduction

Analysis of shape begins to emerge as a useful method of
medical image computing with the potential to improve the
accuracy of medical diagnosis as well as the understanding
of processes behind growth and disease. Therefore, a variety
of object representations have been suggested for 3D shape
analysis over the last years.

In the field of modeling and analyzing the complex shape
of the human heart, different surface and volume based meth-
ods have been applied. Major contributions are based on
methods as superquadratics, spherical harmonics, or point
distributionmodels(PDM)usingminimumdescriptionlength
(MDL) [1–4], as well as methods including physical infor-
mation [5]. A detailed review of the different approaches is
provided in [6]. Except for some recent studies [7–9], all the
approaches focus on the left ventricle. These methods suc-
ceed in representing the shape of a single object; they differ,
however, concerning the effort needed to correlate and ana-
lyze shape variations between subjects. All of them are based
in some way on manual or automatic landmark setting [5,8,
10,11].

Thepreviousmentionedshapetechniquesaresurfacebased
methods. A different approach is to use the object description
via medial skeletons. Those can either be FORMS (=flexi-
ble object recognition and modeling system) [12] or the me-
dial representation (m-rep) method, first introduced by Blum
[13] and developed later by Pizer [13,14]. The m-rep rep-
resentation is a multiscale approach, working in a figural
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Fig. 1 MRI short axis scan
slice of a healthy volunteer (left)
and a cardiomyopathy patient
(right) (IV: left ventricle, rV :
rogjt vemtroc;e)

coordinate system. It is based on an object hierarchy, and
an inner model structure, which implies the outer boundary
[14–16]. Furthermore this structure provides correspondence
between different subjects for complex multi objects, like the
heart, that is not depending on surface landmarks. Up to now
several single anatomical objects have already been modeled
and analyzed with this method [17]. In a previous study we
have already applied this method successfully to a small pop-
ulation of healthy hearts, modeled as an object ensemble and
to a cardiac cycle [18,19].

This work focuses on the question, ‘if m-reps provide dis-
crimination ability on healthy and diseased hearts?’ Figure 1
shows an example MRI slice of a healthy (left side) and dis-
eased heart (right side), suffering from dilatative cardiomyo-
phaty. It has already been shown, that shape differences e.g.
in the hippocampus study [20,21] may provide differences
between healthy subjects and patients. However, no work has
been done on analyzing the shape of the combined cardiac
ventricles for a population consisting of healthy and diseased
subjects.

Objectives

This work aims at testing the suitability of the m-rep method
to model and analyze shape and shape differences between
healthy and diseased cardiac ventricles. With this study we
want to investigate:

The accuracy of the achieved models for both ventricles.

The ability to discriminate between healthy and diseased
hearts.

In the following section, we give a short introduction to the
segmentation and modeling technique, and describe the anal-
ysis of the model quality with respect to the segmented data.
Section 3 provides the statistical results based on 11 healthy
and 5 diseased heart data sets. In Sect. Discussion, we con-
clude with a discussion on the previous mentioned objectives.

Methods

Data

For this experimental study, we use MRI scans of 16 com-
parable male subjects, 11 healthy volunteers (age: 50±10,
mean body surface: 1.94 m2) and 5 diseased patients (age:
57±11, mean body surface: 2.0 m2). The patients suffer from
a ventricular dysfunction because of cardiomyopathy (CMP,
ejection fraction: 22±10%) and have been treated either in-
patient or ambulantly. The heart geometry is acquired in
CINE mode during breath-hold (expiration) using short-axis
scans with 5 mm slice thickness and a pixel spacing of
1.56×1.56 mm.

Segmentation

For the level set based segmentation of the heart, we use a
software developed at IBIA providing algorithms based on
filters of the Insight Segmentation and Registration Toolkit
[22,23]. The segmentation process is done on isotropic data
with a voxel size of 1.56 mm, using geodesic active contour
level sets and shape priors [24]. To get the final binary im-
ages (labels) of the two main chambers of the heart, minimal
manual refinement is necessary, especially in the region of
small anatomical structures (i.e., papillary muscles). Figure 2
shows an example of an original MRI slice including the
boundary of the labels (left), and the segmented objects to-
gether with the generated boundary of the models (right).
The small structures of the papillary muscles are not covered
by the model leading to a global shape representation.

Modeling

The concept and application of m-reps has been already de-
scribed in detail [14,16,25,26]. In brief, the inner structure
consists of a grid of atoms along the medial plane of the
object and implies the outer boundary, covering the global
object shape. This technique has already been applied to a
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Fig. 2 The original MRI slice
and the boundary of the
segmented objects (left), and the
labels together with the
generated model boundary
(right). The model (solid line) is
not covering details and
substructures like the papillary
muscles

small population of healthy hearts and one healthy cardiac
cycle [19,26]. The m-rep generation is obtained using the
semiautomatic optimization technique provided by the soft-
ware framework “Pablo”, developed by the Medical Image
and Display Group at the University of North Carolina.

Model quality

One important property of any modeling technique is the
ability to correctly represent the modeled objects. To deter-
mine the quality of the model to image match we use the
similarity index (SI) and the Hausdorff distance (HD).

Similarity index

The SI is calculated using the following formula:

S = 2|A ∩ B|
|A| + |B| , (1)

A and B are nonzero pixels in the first and second binary
images. Operator |.| represents the size of a set and ∩ repre-
sents the intersection of two sets [27].

Hausdorff distance

Since the SI gives a global measure but ignores local extrem-
ities, we calculate the HD between the model (A) and the
image (B) in terms of non-zero pixels. The undirected HD is
computed using

H(A, B) = max (h (A, B) , h (B, A)) , (2)

where

h(A, B) = max
a∈A

min
a∈A

‖a − b‖ , (3)

is the directed HD.

Mean distance

Integral across the object surface of each vertex distance to
the boundary of the binary image object i.e., h(A,B).

Generation of statistical population models

Using a fixed grid of atoms for different subjects allows to
establish geometric correspondence by correlating the corre-
sponding atoms. Based on that, PCA can be applied to ana-
lyze shape variations. PCA in general has been proven to be
useful for understanding geometric variability in populations
of parameterized objects e.g., [2]. The statistical framework
is well understood when the parameters of objects are ele-
ments of an Euclidean vector space. However, shapes which
are represented by m-reps operate in a figural space and are
not elements of an Euclidean space. Therefore the PCA has
been extended by Fletcher et al.[17] to principal geodesic
analysis (PGA) which is also valid in figural space.

With this method, we generate a statistical model for the
two chambers for all subjects. The output is a model consist-
ing of a mean shape and the principal shape variations.

Results

The models are generated in an iterative way, using a boot-
strapping technique. The two ventricles are modeled with
the following atom grids: the right ventricle using 20 (4 × 5)
atoms and the left ventricle using 15 (5×3) atoms. The termi-
nation of the optimization process is tuned with a threshold
that ensures a good global fit (see below) but prevents the m-
rep to become irregular following to much into details, like
the papillary muscles (see Fig. 2).

Model quality

For all 16 subjects, the global average SI, the average
undirected HD, and the average mean Euclidean distance
(ED) for the two chambers are summarized in Table 1. The
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Table 1 The average similarity index, the Hausdorff distance and the mean Euclidean distance (incl. standard deviation) between the models and
labels of all individuals

Similarity index Hausdorff distance Mean euclidean distance

IPM WPM IPM mm WPM mm IPM mm WPM mm

Left ventricle 0.92±0.01 0.93±0.01 12.38±2.32 4.72±1.29 2.10±0.113 1.91±0.20
Right ventricle 0.90±0.02 0.92±0.03 12.03±4.03 5.14±1.04 2.35±0.264 2.10±0.42

Neglecting the papillary muscles from the calculation leads to the global values. (IPM: included papillary muscles; WPM: without papillary muscles)

SI is higher than 0.90. The all over mean ED is 2.23 mm and
the mean HD is in the range of 12 mm. Excluding the papil-
lary muscles (see Fig. 2) from the calculation leads to higher
similarity indices, lower EDs and respectivly better HD, in
mean the HD value decreases down to 5 mm.

Model expressiveness

Applying PGA on all 16 subjects, after the m-rep based align-
ment including scaling, reveals the distribution of shapes
shown in Fig. 3. The points 1–11 represent the healthy hearts
(blue) and the stars 12–16 represent the diseased hearts (red
stars). The first principal component mainly describes the
volume ratio between the right and left ventricles. A positive
value describes a larger volume of the right ventricle (blue)
and a lower volume of the left ventricle (red), a negative
value is indicating the opposite. The second principal com-
ponent describes a thinning and dilation of the right ventricle
along the axis through the atrioventricular valve and pulmo-
nary valve. Figure 4 illustrates these two main shape varia-
tions: shape for −1 standard deviation (left side), the mean
shape (middle), and the +1 standard deviation (right side).
The other principal components, higher than two, describe
shape variations like elongation, twisting, rotation, bending
or combinations, however with less impact to the model.

The first two pc cover more than 40% of the shape space,
and the first 10 pc cover about 95% of the shape space.

Discrimination of healthy and diseased hearts

The statistical output allows discrimination in healthy and
diseasedhearts.Thetwopopulationsareonlyseparablewithin
the plane of the first two principal components. This small
number of healthy and diseased hearts can be separated along
a diagonal line through the first two principal components.

Discussion

This paper describes the application of the m-rep method
includingshapestatistics to twodifferentpopulations(healthy
and diseased subjects) for the two main chambers, the left and

Fig. 3 Principal component distribution of shape changes (I: first main
component distribution; II: second main component distribution; blue
dots: 1–11, healthy hearts; red stars: 12–16, diseased hearts)

right ventricle of the heart. It presents first results concerning
the achieved model quality and expressiveness.

Model quality

The global analysis of the model to label fit shows a good
accuracy within the resolution of the original data. As it can
be seen from the SI values (see Table 1) the overall similar-
ity match for both chambers is rather high with values more
than 0.9. These values show a very close correspondence
between the boundary of the model and the binary image.
The HD provides more local distance information and differs
among the anatomical structures. For both the ventricles, HD
is in the range of 12 mm. These distances are rather high, but
they are related to specific anatomical areas within the object
(see fig. 2). The high values are detected in the zone of the
papillary muscles and in the apex. Excluding the papillary
muscles from the HD calculation leads to significantly lower
values, decreasing down to HD ∼5 mm. Overall, the mean
EDs of ∼2 mm are quite low with respect to the voxel size
of 1.56 mm. These quality parameters ensure that the object
shapes are covered quite well.
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Fig. 4 First (I, frontal view) and
second (II, downward view)
main shape variations: Shape for
−1 standard deviation (left), the
mean shape (middle), and the +1
standard deviation (right)

The main outcome concerning modeling the ventricles
with m-reps is a good global matching: noise and substruc-
tures are ignored and any statistical output is global. For mak-
ing global studies and analysis, as intended in this work, the
modelling technique using single m-reps for the ventricles
seem to be a good basis. For local studies typical structures
like the papillary muscles should be modeled using m-rep
subfigures.

It will be a future goal to compare other modeling tech-
niques like PDM using MDL [3,4] or spherical harmonics
on this problem.

Model expressiveness

The provided statistics of the object ensemble present a global
output of shape differences among healthy and diseased ven-
tricles (see Fig. 3). The common shape model of the heart is
given in Fig. 4. The principle modes describe characteristic
and meaningful anatomical properties of the population of
16 hearts.

The first principal component especially describes the non
linear size ratio of the left and right ventricle. This is phys-
iologically plausible, because of the different volume size
of the healthy and diseased hearts, which are characteristic
for CMP. The end-diastolic blood volume of the healthy left
ventricles is in mean 135 and 230 ml for the diseased ventri-
cles. The volumes of the right ventricles are not significantly
different; the volume for the healthy right ventricles is in
mean 168 ml, for the diseased ventricles it is 157 ml.

The second mode describes a deformation along the long
axis of the heart, especially of the right ventricle. This mode

seems to reflect the interdependent shape of the left and right
ventricle. Since the volume of the diseased left ventricles
increases, the right ventricles have to follow by thinning and
surrounding the left ventricle.

Discrimination of healthy and diseased hearts

The most interesting result of this study is that the discrimina-
tion between healthy and diseased ventricles is more complex
than a volume comparison. The additional variation concerns
the deformation of the right ventricle, depending on the defor-
mation of left ventricle. Both principal components cover
40% of the shape space.

Conclusion

The m-rep method, already successfully applied to some less
complex topologic anatomical objects, e.g., the kidney and
the hippocampus [25], works for the more complicated ven-
tricles of the heart as well.

The high SI (∼0.9 in mean) and the low ED (∼2.2 mm
in mean) between the segmented data and the model give a
sufficient global shape representation of the individual ob-
jects. The decomposition of the complex shape variations is
leading to characteristic shape changes, indicating that the
two different populations can be discriminated using the first
and second principal component. The major result shows the
potential of the approach to find additional criterions to the
size differences for discrimination. To increase the number
of data for healthy and diseased hearts is the crucial point for
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the interpretation of the discrimination analysis and is work
in progress.

Additionally, future work will have to validate this ap-
proach against other modeling techniques, especially the PDM
models using MDL [4] in 3D.
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