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Abstract
Purpose Radiomics is an emerging field that utilizes quantitative features extracted from medical images to predict clini-
cally meaningful outcomes. Validating findings is crucial to assess radiomics applicability. We aimed to validate previously 
published magnetic resonance imaging (MRI) radiomics models to predict oncological outcomes in oral tongue squamous 
cell carcinoma (OTSCC).
Materials and methods Retrospective multicentric study on OTSCC surgically treated from 2010 to 2019. All patients per-
formed preoperative MRI, including contrast-enhanced T1-weighted (CE-T1), diffusion-weighted sequences and apparent 
diffusion coefficient map. We evaluated overall survival (OS), locoregional recurrence-free survival (LRRFS), cause-specific 
mortality (CSM). We elaborated different models based on clinical and radiomic data. C-indexes assessed the prediction 
accuracy of the models.
Results We collected 112 consecutive independent patients from three Italian Institutions to validate the previously published 
MRI radiomic models based on 79 different patients. The C-indexes for the hybrid clinical-radiomic models in the validation 
cohort were lower than those in the training cohort but remained > 0.5 in most cases. CE-T1 sequence provided the best fit 
to the models: the C-indexes obtained were 0.61, 0.59, 0.64 (pretreatment model) and 0.65, 0.69, 0.70 (posttreatment model) 
for OS, LRRFS and CSM, respectively.
Conclusion Our clinical-radiomic models retain a potential to predict OS, LRRFS and CSM in heterogeneous cohorts across 
different centers. These findings encourage further research, aimed at overcoming current limitations, due to the variability 
of imaging acquisition, processing and tumor volume delineation.
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Introduction

Radiomics represents one of the most attractive fields in 
medicine that has taken hold in the last 10 years [1]. Radi-
omic features analysis from pretreatment images aimed at 
acquiring all possible data on cancer characteristics and 
prognosis prediction [2, 3]. Currently, oncological outcomes 
can be predicted only based on pathological and clinical 

tumor stage, leading to the need for innovative strategies to 
better foresee patients’ prognosis. Therefore, the quantitative 
information extracted from medical images, is the basis for 
radiomics to become unbiased and independent support in 
daily clinical practice. Despite the large number of published 
studies, the application of radiomics to clinical practice is 
not yet feasible because of the lack of radiomic validation in 
different cohorts [3–5].

In our study, we apply the radiomics workflow to oral 
tongue squamous cell carcinoma (OTSCC), the tumors that 
most frequently affect the oral cavity [6]. For preoperative 
staging, magnetic resonance imaging (MRI) is the gold 
standard imaging [7]. The first-choice therapeutic approach 
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for OTSCC is surgery, and the prognosis reported in the 
literature remains 60% at 5 years [8, 9]. Survival ranges 
from 80% for early stages (I–II) to 30% for advanced stages 
(III–IV). There is an increasing awareness that these esti-
mates may not adequately fit single patient's history, calling 
for a more tailored prediction approach. In precision medi-
cine, accurate risk prediction is necessary to plan personal-
ized therapeutic/follow-up schemes based on the individual 
survival curves, leading to the ability to predict “individual 
patient’s survival,” instead of a too general “global survival” 
[4].

To date, published studies have underlined how the 
hybrid clinical-radiomic predictive models are better than 
the clinical or radiomic models for predicting patients’ out-
comes [10–12].

Validating a radiomic model should be mandatory [5, 13] 
to confirm its potential use in clinical settings. The valida-
tion cohort should be independent and external, based on 
subjects other than the training set cohort [14], as validations 
based on the reference model's internal cohort are generally 
less robust [5, 14–16].

We have recently published a study with clinical-radiomic 
models in patients with OTSCC capable of preoperatively 
predicting patients' prognosis, better than clinical models 
alone [10]. In this published analysis we assessed preop-
erative MRI of 79 patients with OTSCC, aiming to define 
potential prognostic biomarkers using radiomic features. 
Upon evaluating clinical and radiomic features, the radiomic 
score maintained statistical significance in almost all clinical-
radiomic predictive models and apparent diffusion coefficient 
map (ADC) MRI provided the best fit to the models.

According to the concept set out in the previous para-
graph on the importance of external validation of radiomics 
studies [14] to highlight stability and reproducibility, the 
aim of this paper is to externally validate our previously 
published clinical-radiomics models [10] through a different 
and independent cohort of patients.

Materials and methods

Clinical dataset

We performed a retrospective radiomic analysis on preop-
erative MRI of consecutive patients with OTSCC surgically 
treated in a multicentric setting: Surgery performed at the 
European Institute of Oncology (IEO) Milan, Italy with MRI 
performed in other Italian facilities collected in the online 
imaging storage (IEO EXT); Surgery and Imaging at Poli-
clinico San Matteo, Pavia, Italy (PV); Surgery and Imaging 
at Spedali Civili, Brescia, Italy (BS).

The study was approved by the Ethics Committee of the 
IEO and by the IEO Radiomic Board (UID 2520), Spedali 

Civili of Brescia (120/Reg.IX) and Policlinico San Matteo 
of Pavia (96379/2020).

Inclusion criteria were: diagnosis of OTSCC; surgery 
performed between 2010 and 2019; preoperative MRI 
(≤ 4 weeks before surgery) including contrast-enhanced 
T1-weighted (CE-T1) and diffusion-weighted (DWI) 
sequences with at least two b values for the calculation of 
apparent diffusion coefficient map (ADC).

Exclusion criteria were: concurrent or previous cancer 
in head and neck (HN) region; inadequate follow-up infor-
mation (irretrievable medical information data); inadequate 
MRI for tumor volume segmentation and quantitative analy-
sis (i.e., cases were excluded when the primary tumor was 
not detectable or artifacts significantly degraded the images).

Clinical, pathological, treatment and follow-up informa-
tion were collected from medical reports. All patients were 
re-staged according to 7th and 8th edition of AJCC TNM 
[17, 18]. To re-stage all patients using the AJCC 8th edition 
we re-evaluated and collected all histological and radiologi-
cal Depth of Invasion (DOI). In both, histological specimen 
and radiological MRI DOI was measured perpendicularly 
from the line connecting the adjacent normal mucosal base-
ment membrane to the deepest point of tumor invasion.

All patients were surgically treated and then the need of 
adjuvant therapy was discussed and defined within a multi-
disciplinary tumor board according to stage disease [19, 20].

For at least 5 years from the end of treatment, all patients 
underwent state-of-art clinical assessments and procedures 
of standardize oncological follow-up according to the NCCN 
guidelines [20]. The distant or local events as metastases or 
locoregional recurrence were recorded during the follow-
up visits. Patients who did not attend scheduled follow-up 
appointments were phone interviewed to verify and update 
their medical information,

MRI acquisition parameters, segmentation, feature 
extraction

For the Training Group (TG), MRIs were performed at IEO 
on a 1.5-T system (Magnetom Avanto, Siemens Health-
ineers, Erlangen, Germany) with a dedicated 16-channel 
receive-only radiofrequency HN coil [10]. DWI sequences 
were obtained via single-shot spin-echo and echo-planar 
imaging (field of view 250 × 250 mm, TR/TE 5000/77 ms, 
slice thickness 5 mm, spacing between slices 1 mm, band-
width 1565 Hz/pixel). Three different b values were used 
(b = 0.500 and 900 s/mm2) with diffusion-sensitizing gra-
dients applied in three orthogonal directions to obtain 
trace-weighted images [10]. ADC maps derive from a 
mono-exponential analysis of diffusion-weighted images. 
The imaging protocol included post-contrast (Gado-
linium 0.2  ml/kg) isotropic T1-w images (acquisition 
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matrix 263 × 384 mm, field of view 187 × 240 mm, TR/
TE 7.43/2.88 ms, slice thickness 0.6 mm) [10].

For the Validation Group (VG) at Policlinico San Mat-
teo of Pavia, the MRI was performed on a 1.5-T system 
(Aera, Siemens Healthineers, Erlangen, Germany) with 
the dedicated 16-channel receive-only radiofrequency 
HN coil. DWI sequences were obtained via single-shot 
spin-echo and echo-planar imaging (260 × 260 mm, TR/
TE 7075 /58 ms, slice thickness 3 mm, spacing between 
slices 3.3  mm, bandwidth 1540  Hz/pixel). To obtain 
trace-weighted images, two different b values were used 
(b = 50, 800 s/mm2) with diffusion-sensitizing gradients 
applied in three orthogonal directions. The imaging pro-
tocol included post-contrast (Gadolinium 0.2 ml/kg) iso-
tropic T1-w images (acquisition matrix 256 × 256, field of 
view 260 × 260 mm, TR/TE 8.23/2.39 ms, slice thickness 
1 mm).

For the VG at Spedali Civili of Brescia, the MRI was 
performed on a 1.5-T system (Aera, Siemens Healthcare 
Sector, Erlangen, Germany) with the dedicated 16-chan-
nel receive-only radiofrequency HN coil. DWI sequences 
were obtained via single-shot spin-echo and echo-planar 
imaging (field of view 250 × 250 mm, TR/TE 4000/60 ms, 
slice thickness 3 mm, spacing between slices 1 mm, band-
width 1447 Hz/pixel). Two different b values were used 
(b = 0 and 1000 s/mm2) with diffusion-sensitizing gradi-
ents applied in three orthogonal directions to obtain trace-
weighted images. The imaging protocol included post-
contrast (Gadolinium 0.2 ml/kg) isotropic T1-w images 
(acquisition matrix 448 × 350, field of view 270 × 210 mm, 
TR/TE 8.2/3.16 ms, slice thickness 0.6 mm).

The MRI characteristics described above cannot be 
described in the same detail for patients treated at IEO 
with imaging performed in different external centers (IEO 
EXT). This is because the IEO imaging storage archives 

only the DICOM images of the MRIs performed in the 
external hospitals, leading to some lacking details.

Two dedicated HN radiologists [one senior radiologist 
(FR) with 7 years’ experience in HN and one junior (AN) 
with 1 year of experience in HN] manually segmented the 
entire tumor volume (region of interest, ROI) in CE-T1 
sequences and ADC maps (Fig. 1). Inter-reader agreement 
was evaluated and all discrepancies were solved through 
discussion. The radiologists were unaware of the patient 
characteristics and their follow-ups status.

DICOM files and ROIs were extracted as radiotherapy 
(RT) structure files on AW Server 3.2 workstation (GE 
Healthcare, Milwaukee, WI) and exported in DICOM for-
mat. Features extraction was performed using the Image 
Biomarker Standardization Initiative (IBSI) compliant tool 
PyRadiomics v3.0.1 (Numpy version 1.20.3, SimpleITK ver-
sion 2.0.2, PyWavelet version 1.1.1) with default settings. 
The radiomic features were extracted from all available filter 
classes (Laplacian of Gaussian, wavelet, logarithm, expo-
nential, local binary pattern 2D, local binary pattern 3D, 
square, square root and gradient). In total, 1967 features 
were extracted from each segmentation.

Oncological outcomes endpoints

Overall survival (OS) was defined as the time from surgery 
until death from any cause or the last contact date if alive. 
Locoregional recurrence-free survival (LRRFS) was defined 
as the time from surgery until locoregional recurrence or the 
last contact date without locoregional recurrence. LRRFS 
includes relapses on tumor (T), lymph nodes (N) or T and 
N, no distant metastasis or second primary were included. 
Cause-specific mortality (CSM) was defined as the time 
from surgery until the date of death for OTSCC. In case of 
no death due to OTSCC, the observation was censored at 
the last follow-up visit or the date of death for other causes. 

Fig. 1  Region of interest (ROI) manually delineated on the contrast-enhanced comparing them with ADC map imaging excluding peritumoral 
edema. ROIs on the ADC map was based on the lesion observed in the DWI sequence
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The Kaplan–Meier was estimated for 10-year OS, LRRFS 
and CSM.

Statistical analysis

We performed a validation of ahead trained models on a 
different and independent cohort of patients (TG) [10]. Spe-
cifically, we applied the radiomic models, the pretreatment 
clinical models (including gender, age and clinical status 
of the lymph node), and the posttreatment clinical models 
(including state of margins, state of lymph nodes, presence 
extracapsular metastases (ECE) [10].

Frequency and percentages for categorical variables and 
median and interquartile range (IQR) for continuous vari-
ables were used to summarize patients’ characteristics in 
the validation cohort. Pearson's chi-square and Fisher's exact 
tests were used to test for differences between categorical 
variables. Wilcoxon's rank sum and Kruskal–Wallis tests 
were used to assess for a continuous variable difference 
between two or more groups, respectively. First, clinical 
differences and median follow-up between patients in the 
TG and VG were analyzed, as well as between the cent-
ers involved. Differences of the radiomic features between 
VG and TG were evaluated (Supplementary Tables 1 and 
2). If significant differences among features were identified, 
these features were harmonized with the COMBAT method 
(“EZ. combat” library in R), considering each center as a 
batch variable [21]. The difference in OS, LRRFS and CSM 
between the TG and VG was tested with the Log-rank test. 
The centers involved in validation were compared in the OS, 
LRRFS and CSM. Risk estimates were quantified by hazard 
ratio (HR) and 95% confidence intervals (95%-CI).

Radiomic information was aggregated in the statistical 
analysis within a “radiomic score,” built with the coefficient 
used in the previous study [10]. For each patient, the radi-
omic score was defined as the sum of the product between 
the regression coefficients and their respective feature val-
ues. We evaluated the previously presented predictive mod-
els: clinical model (pre- and posttreatment), radiomic model 
and clinical-radiomic model (pre- and posttreatment). The 
models’ accuracy was tested by using the Concordance index 
(C-index), a measure of goodness of fit for survival out-
comes, which ranges from 0 (poor predictive model) to 1 
(hypothetical perfect predictive model). All analyses were 
repeated for CE-T1 and ADC. Lastly, a Bootstrap analysis 
with 5000 repetitions was performed to determine a 95%-
CI for the C-index estimate. As an exploratory analysis, we 
used the VG as a new dataset to build a new model with 
new coefficients using the preselected clinical variables and 
the radiomic score obtained in the training model. Analyses 
were performed using R (4.1.1).

Results

The study included 112 patients as VG. TG models were 
built on 79 different patients [10].

Out of the 112 patients included in the study based on 
inclusion and exclusion criteria, after MRI quality images 
reviewed by the HN Radiologists, 108 patients were 
included in the VG for CE-T1 sequences (IEO EXT N = 25; 
PV N = 19; BS N = 64) and 83 patients for ADC from DWI 
sequences (IEO EXT N = 13; PV N = 7; BS N = 63).

Table 1 reports the clinical and pathological characteris-
tics of patients in the two study groups: TG (79 patients), VG 
(112 patients) and Overall (191 patients). Sixty-nine percent 
of the entire population was male, with an average age of 62 
(IQR: 47–70), with VG including significantly older patients 
(64 years, IQR: 52–73) than the TG (55 years, IQR: 41–67).

Clinical staging (c) showed differences between TG and 
VG in tumor (cT) classification (p = 0.03) and clinical Stage 
cTNM (p = 0.05) with higher stages found for patients in TG.

Postsurgical information: vascular invasion, perineural 
invasion, surgical margins (positive or close) and lymph 
node stage (pathological (p)N) were statistically differ-
ent between the two groups TG and VG: < 0.001, < 0.001, 
0.017, 0.008, respectively (Table 1).

No difference was found between the pTNM and post-
operative treatments; p = 0.02 was found for the type of 
surgery, transoral (glossectomy type II) versus en block 
major surgery (glossectomies type III–V) [22].

The median follow-up time was 2.8 years IQR 
(1.84–5.44) for OS, 2.8 years (0.94–4.69) for LRRFS and 
2.75 years (1.45–4.87) for CSM.

No significant differences were detected between the 
TG and VG for OS, LRRFS and CSM (all p values > 0.05) 
(Fig. 2).

Even among the patients collected by the three differ-
ent clinical centers involved in the validation, there were 
no differences in survival: OS, LRRFS and CSM (Fig. 3).

Features selected in our previous model for OS, LRRFS 
and CSM were retrieved from the VG [10]. The radiomic 
score was calculated on the validation dataset with the 
previously defined coefficient.

Tables 2 and 3 summarize all the results of the valida-
tion analysis, comparing the C-Index in the training set 
and the fitted C-index (“C-index-validation”) in CE-T1 and 
ADC map for the pretreatment and posttreatment models, 
respectively. Radiomic models adequately fitted each end-
point: Table 2 depicts the comparison between the C-Index 
in the TG and the fitted C-Index (C-Index–VG) for ADC 
and CE-T1 sequences in the model base on pretreatment 
information.

Table 3 shows the comparison between the C-Index 
in the TG and the fitted C-Index (C-Index–VG) in ADC 
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Table 1  Patients, tumor and 
treatment characteristics, in the 
overall cohort, in the training 
and validation groups

Characteristics Overall, N = 191 Training,  N =  791 Validation,  N =  1121 p  value2

Age 62 (47, 70) 55 (41, 67) 64 (52, 73) 0.005
 < 45 43 (23) 24 (30) 19 (17) 0.029
 ≥ 45 148 (77) 55 (70) 93 (83)

Sex 0.13
 Female 60 (31) 20 (25) 40 (36)
 Male 131 (69) 59 (75) 72 (64)

Tobacco smoking habits 0.9
 No smoker 72 (39) 30 (38) 42 (39)
 Smoker/ex smoker 115 (61) 49 (62) 66 (61)
 Missing 4 0 4

PACK/YEAR (on smokers) 30 (18, 40) 30 (15, 40) 30 (20, 45) 0.7
 Missing (N patients) 76 30 46

Alcohol intake ≥ 3 Units per day 34 (19) 16 (21) 18 (17) 0.6
 Missing 11 2 9

Radiological DOI (mm) 15 (10, 21) 16 (9, 23) 14 (11, 20) 0.6
 ≤ 5 6 (3.1) 4 (5.1) 2 (1.8) 0.076
 5 < mm ≤ 10 46 (24) 24 (30) 22 (20)
 > 10 139 (73) 51 (65) 88 (79)

cT (TNM VIII ed.) 0.03
 cT1 4 (2.1) 3 (3.8) 1 (0.9)
 cT2 46 (24) 25 (32) 21 (19)
 cT3 125 (65) 48 (61) 77 (69)
 cT4 16 (8.4) 3 (3.8) 13 (12)

cN (TNM VIII ed.) 0.9
 cN0 102 (53) 45 (57) 57 (51)
 cN1 24 (13) 10 (13) 14 (12)
 cN2 62 (32) 23 (29) 39 (35)
 cN3 3 (1.6) 1 (1.3) 2 (1.8)

cStage (TNM VIII ed.) 0.05
 I 6 (3.1) 3 (3.8) 3 (2.7)
 II 32 (17) 20 (25) 12 (11)
 III 84 (44) 32 (41) 52 (46)
 IV 69 (36) 24 (30) 45 (40)

Grading 0.6
 G1 37 (19) 18 (23) 19 (17)
 G2 102 (54) 40 (51) 62 (55)
 G3 51 (27) 20 (26) 31 (28)
 Missing 1 1 0

Tumor diameter (mm) 30 (22, 40) 28 (20, 42) 30 (23, 40) 0.7
 ≤ 20 42 (22) 21 (27) 21 (19) 0.2
 20 < mm ≤ 40 101 (53) 36 (46) 65 (58)
 > 40 48 (25) 22 (28) 26 (23)

Glossectomy  type20 0.02
 II (transoral) 26 (14) 16 (20) 10 (9)
 III–V (major en block surgery) 165 (86) 63 (80) 102 (91)

Histological DOI (mm) 11 (9, 11) 12 (10, 18)
 ≤ 5 20 (10) 12 (15) 8 (7.1) 0.12
 5 < mm ≤ 10 32 (17) 10 (13) 22 (20)
 > 10 139 (73) 57 (72) 82 (73)

Micrometastases 0.2
 No 179 (94) 72 (91) 107 (96)
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and CE-T1 sequences for the Model using posttreatment 
information. The C-Index was generally > 0.5 in VG: OS 
C-index for radiomic score were 0.59; LRRFS C-index for 
ADC and CE-T1were 0.43 and 0.52, respectively; CSM 

C-index for ADC and CE-T1 were 0.63 and 0.61, respec-
tively. In Supplementary Tables 1 and 2 are reported the 
differences in radiomic features between VG and TG in 
CE-T1 and ADC sequences, respectively.

Table 1  (continued) Characteristics Overall, N = 191 Training,  N =  791 Validation,  N =  1121 p  value2

 Yes 12 (6.3) 7 (8.9) 5 (4.5)
Multifocality 0.5
 No 176 (92) 74 (94) 102 (91)
 Yes 15 (7.9) 5 (6.3) 10 (8.9)

Surgical margins 0.017
 Negative 156 (82) 72 (91) 84 (75)
 Positive 17 (8.9) 3 (3.8) 14 (12)
 Close (< 1 mm) 18 (9.4) 4 (5.1) 14 (12)

Vascular invasion < 0.001
 No 141 (74) 71 (90) 70 (62)
 Yes 50 (26) 8 (10) 42 (38)

Perineural infiltration < 0.001
 No 88 (46) 49 (62) 39 (35)
 Yes 103 (54) 30 (38) 73 (65)

pT (TNM VIII ed.) 0.2
 pT1 16 (8.4) 10 (13) 6 (5.4)
 pT2 31 (16) 10 (13) 21 (19)
 pT3 95 (50) 35 (44) 60 (54)
 pT4a 47 (25) 23 (29) 24 (21)
 pTis 2 (1.0) 1 (1.3) 1 (0.9)

pN (TNM VIII Ed.) 0.008
 pN0 67 (35) 19 (24) 48 (43)
 pN1 24 (13) 10 (13) 14 (12)
 pN2 32 (17) 16 (20) 16 (14)
 pN3 54 (28) 23 (29) 31 (28)
 pNx 14 (7.3) 11 (14) 3 (2.7)

Stage (TNM VIII ed.) 0.08
 0 1 (0.5) 0 (0) 1 (0.9)
 I 14 (7.3) 9 (11) 5 (4.5)
 II 18 (9.4) 9 (11) 9 (8.0)
 III 60 (31) 17 (22) 43 (38)
 IVA 44 (23) 21 (27) 23 (21)
 IVB 54 (28) 23 (29) 31 (28)

Adjuvant RT 66 (35) 29 (37) 37 (33) 0.6
CT/RT adjuvant 73 (38) 26 (33) 47 (42) 0.2
No adjuvant CT/RT 52 (27) 24 (30) 28 (25) 0.4
Time of follow-up (months) 28 (15, 60) 30 (17, 65) 27 (14, 53) 0.3
 AWD 65 (34) 24 (30) 41 (37) 0.4
 NED 126 (66) 55 (70) 71 (63)

Bold values indicate the p value < or = 0.05
1 Median (Inter quartile range-IQR); n ()
2 p values for the difference between Training and Validation cohorts: Wilcoxon rank sum or Kruskal–Wal-
lis test for continuous variables; Pearson's Chi-squared test or Fisher's exact test for categorical variables
DOI, depth of invasion; c, clinical staging; p, pathological staging; RT, radiotherapy; CT/RT, chemoradio-
therapy; AWD, alive with disease; NED, not evidence of disease
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Fig. 2  Oncological outcomes comparison between training and validation groups. OS, overall survival; LRRFS, locoregional recurrence-free 
survival; CSM: cause-specific mortality

Fig. 3  Oncological outcomes comparison between the three different 
clinical centers included in the Validation Group. OS, overall sur-
vival; LRRFS, locoregional recurrence-free survival; CSM, cause-
specific mortality; ADC, apparent diffusion coefficient map; CE-T1, 

contrast enhancement T1 sequence; TG, training group; VG, valida-
tion group; IEO EXT, patient treated at IEO with MRI performed in 
other hospitals; BS, brescia spedali civili; PV, Pavia San Matteo
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The C-indexes for the hybrid clinical-radiomic mod-
els in the validation cohort were lower than those in the 
training cohort but remained > 0.5 in most cases. CE-T1 
sequence provided the best fit to the models: the C-indexes 

obtained were 0.61, 0.59, 0.64 (pretreatment model) and 
0.65, 0.69, 0.70 (posttreatment model) for OS, LRRFS and 
CSM, respectively.

Table 2  Pretreatment model C-index in the training and in the validation group

Bold values indicate C-index clinical-radiomic models in the validation group
ADC, apparent diffusion coefficient map; CE-T1, contrast enhancement T1 sequence; OS, overall survival; LRRFS, locoregional recurrence-free 
survival; CSM, cause-specific mortality
1 For validation, two C-indexes were reported on the basis of the patients included in the ADC (N = 83) or CE-T1(N = 108) analysis

Pretreatment model

Sequence Clinical1 Radiomic Clinical-Radiomic

ADC CE-T1 ADC CE-T1

OS
 C-Index-training 0.70 0.72 0.79 0.76 0.82

[0.57, 0.77] [0.59, 0.78] [0.69, 0.84] [0.62, 0.78] [0.73, 0.86]
 C-Index-validation ADC 0.60 [0.49, 0.70] 0.59 [0.48, 0.70] 0.59 [0.49, 0.68] 0.60 [0.49, 0.71] 0.61 [0.52, 0.71]

CE-T1 0.60 [0.52, 0.70]
LRRFS
 C-Index-training 0.68 0.98 0.68 0.98 0.73

[0.48, 0.71] [0.98, 1.00] [0.65, 0.91] [0.98, 1.00] [0.66, 0.89]
 C-Index-validation ADC 0.64 [0.51, 0.76] 0.43 [0.25, 0.59] 0.52 [0.4, 0.62] 0.42 [0.24, 0.58] 0.59 [0.48, 0.70]

CE-T1 0.64 [0.53,0.75]
CSM
 C-Index-training 0.66 0.85 0.84 0.85 0.85

[0.59, 0.80] [0.77, 0.91] [0.76, 0.90] [0.75, 0.90] [0.73, 0.86]
 C-Index-validation ADC 0.63 [0.49, 0.74] 0.63 [0.49, 0.76] 0.61 [0.49, 0.72] 0.65 [0.50, 0.77] 0.64 [0.52, 0.75]

CE-T1 0.60 [0.48, 0.70]

Table 3  Posttreatment model 
C-index in the training and in 
the validation group

Bold values indicate C-index clinical-radiomic models in the validation group
ADC, apparent diffusion coefficient map; CE-T1, contrast enhancement T1 sequence; OS, overall survival; 
LRRFS, locoregional recurrence-free survival; CSM, cause-specific mortality
1 For validation, two C-indexes were reported on the basis of the patients included in the ADC (N = 83) or 
CE-T1(N = 108) analysis

Posttreatment model

Sequence Clinical1 Clinical-Radiomic

ADC CE-T1

OS
 C-Index-training 0.82 [0.74, 0.86] 0.84 [0.79, 0.92] 0.86 [0.80, 0.91
 C-Index-validation ADC 0.68 [0.57, 0.78] 0.69 [0.59, 0.78] 0.65 [0.56, 0.73]

CE-T1 0.70 [0.6, 0.78]
LRRFS
 C-Index-training 0.77 [0.67, 0.85] 0.98 [0.98, 1.00] 0.83 [0.89, 1.00]
 C-Index-validation ADC 0.67 [0.51, 0.81] 0.44 [0.25, 0.61] 0.69 [0.57, 0.8]

CE-T1 0.70 [0.58, 0.81]
CSM
 C-Index-training 0.77 [0.70, 0.86] 0.86 [0.79, 0.91] 0.87 [0.79, 0.91]
 C-Index-validation ADC 0.73 [0.63, 0.84] 0.75 [0.60, 0.84] 0.70 [0.58, 0.79]

CE-T1 0.74 [0.63, 0.81]
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Other additional details are reported in the Supplemen-
tary Material (S1–S2).

Discussion

The application of radiomics in HN cancers is a barely 
explored field, especially when tongue tumors are consid-
ered [23]. To date, upon a non-systematic search in Pubmed 
and Embase with the keywords “radiomic” AND “tongue 
cancer,” few publications emerge: 11 on Pubmed and 15 
on Embase. Of these, 9 are in common between the two 
search engines, one paper is written in Chinese, 3 are con-
gress abstracts, one is focused on lung cancer and the latter 
is a review [24–29]. Of the remaining publications, one is 
a review, and five proposed radiomic models to predict the 
lymph node status in the neck, occult metastases or lymph 
node ECE [11, 30–34]. Two articles focused on predicting 
prognosis through MRI radiomic-based features, and others 
on tumor grading radiomic determination before histology 
[10, 35–37].

Regarding the use of MRI, the most recent article by 
Corti et al. reported how MRI-based radiomic signature 
could be a prognostic marker for OS in oral cavity cancer 
patients, comparing it with gene expression signatures [38].

Our manuscript presented the validation of clinical-
radiomic models for prognosis prediction in mobile tongue 
tumors, considering OS, CSM and LRRFS.

The validation phase is crucial for radiomics application 
in clinical practice. As expected, the C-indexes for the clin-
ical-radiomic models in the VG were lower than those in the 
TG. This is a common feature in validating studies mainly 
due to the unavoidable differences between the training 
and validating cohorts [39]. In the present analysis, the VG 
resulted to have some worse prognostic histological charac-
teristics compared to the TG. However, the C-indexes still 
remained > 0.5 in most cases, predicting a good adherence 
of the hybrid model to reality.

In our previous publication, the combined clinical-
radiomic models for prognosis prediction showed a strong 
association between clinical variables, radiomic features 
and oncological outcomes in OTSCC [10]. We focused our 
radiomic study on this specific patient group because it is 
known that HN cancers are very heterogeneous due to dif-
ferent risk factors, anatomical site and prognosis [40]. This 
heterogeneity is also reported within the same anatomical 
site: for example, oral cavity subsites are considered cheek, 
floor of the mouth, mobile tongue, maxillary tuber, mandi-
ble. Tumors of these subsites have different survival rates 
even within the same staging [40]. Furthermore, the gold 
standard preoperative imaging also varies by subsites: MRI 
for OTSCC or cheek; computed tomography for maxillary 
tuber and mandible. For these reasons and to maximize the 

models’ accuracy, the study group was selected as OTSCC 
patients and not general oral cavity cancer.

As already mentioned, MRI is the gold standard imag-
ing for local evaluation in OTSCC [7]. The protocol for 
proper MRI in these patients includes T1- and T2-weighted 
sequences, CE-T1 with fat saturation and optionally DWI 
and ADC. MRI can add important information such as pre-
operative radiological DOI which has been demonstrated to 
be an independent preoperative predictor of oncological out-
comes in OTSCC to and to better predict patients’ clinical 
stage [41]. This is in accordance with the idea that applying 
radiomics on MRI could represent an added value in prog-
nosis prediction for OTSCC. In this study we selected only 
CE-T1 sequences and ADC maps because they represented 
respectively the most widespread and reproducible sequence 
(CE-T1) and the best fit (ADC) in the previous published 
models that we aim to externally validate [10].

Our data confirmed that among the clinical models for 
prognosis prediction, the models with posttreatment infor-
mation showed on average better performance in oncological 
outcomes also in the combined clinical-radiomic models.

Notably, upon comparing the radiomic model (radiomic 
score) alone with the clinical model based on pretreatment 
information, we found an improvement in terms of C-index 
in the TG radiomic model. In the VG, the C-indexes values 
of the two models were very similar, with an average varia-
tion of 0.02, 0.001, suggesting that the radiomic score may 
have been specific to the population in which it was con-
structed (TG). The radiomic sequences studied and chosen 
in the TG for constructing the radiomic score were built with 
a brush on the TG itself. So, the radiomic score could overfit 
the TG but be less effective in predicting clinical outcomes 
in the VG.

Moreover, in the VG, all the MRIs studied belong to dif-
ferent hospitals, while the TG features were acquired on 
MRI performed at the same hospital (IEO) and some dif-
ferences may be attributable to the differences between the 
two cohorts.

In the VG, comparing the clinical model built on post-
treatment information and the radiomic model alone, we did 
not find a relevant advantage in the prognosis prediction 
accuracy of the radiomic model alone.

Focusing on the combined pre and posttreatment clinical-
radiomic models in OS, LRRFS and CSM, we presented 
comparable C-indexes between groups without significant 
increases.

Our data underlined that the CE-T1 sequences were 
suitable for prognosis prediction (C-index > 0.5) in 
OTSCC. This sequence is also widespread in other hos-
pitals, including non-tertiary centers as it is considered 
standard-of-care for tongue cancer evaluation, allowing 
the predictive model to be reproduced for all patients 
and across different facilities [10, 38]. Conversely, DWI 
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sequences and ADC map are not performed in the clinical 
routine of all centers, thus limiting its potential applica-
tion [10, 38].

This validation step on the previously created models 
underlined two different aspects. Firstly, it confirmed the 
potential ability of radiomics associated with clinical infor-
mation to predict the prognosis of a single patient, even in 
heterogeneous cohorts. Secondly, it also highlighted the fra-
gility of the technique due to the critical issues of validation, 
which is fundamental for models’ exportation and potential 
applicability to daily clinical practice [41]. The fact that the 
C-indexes of the VG were good but all lower than those 
obtained in the TG draws attention to how it could be dif-
ficult to speak a common language in this field [42, 43]. The 
discrepancy in predictive performance between the training 
and validation sets questions whether overfitting is an issue 
or if it is due to differences in external validation images.

Moreover, in our study not all patients presented both 
CE-T1 and ADC MRI sequences, after multidisciplinary and 
internal discussion we included all patients with CE-T1 data 
(108 patients), as represents the most widespread and repro-
ducible MRI sequences: its greater number in the sample, 
with respect to ADC (83 patients), also reflects its potential 
greater external applicability.

Multiple variables can influence MRI-based-radiomics 
on OTSCC, including the different machines, ROIs manual 
segmentation, relatively small number of cohorts analyzed 
for oral cancers [43, 44]. These aspects partly explain why 
radiomics represents a still-developing discipline and in 
its beginning in HN cancers, especially in tongue cancer 
[13, 43, 45]. Also, the importance of comparing data across 
study methodologies and structure with other cancer types, 
in which radiomics is already at a more advanced state, is 
essential [43]. Our study is one of the few currently pub-
lished with the intent to associate MRI radiomics with the 
ability to predict patients’ prognosis in OTSCC, and it pre-
sents strengths and limitations. The validation group, dif-
ferent from the TG cohort, should be considered the main 
strength of our work [46], followed by the completeness of 
all clinical and follow-up information of all patients. The 
major limitation is the suboptimal number of patients in 
the two cohorts. A more significant number of patients and 
prospective multicentric studies could increase the signifi-
cance of these results, their validation and reproducibility. 
This paper focused on the quantitative data demonstrating 
the significance of the radiomic data alone thus, we did not 
measure the ADC value or included radiological informa-
tion on surrounding structures invasion even if they could 
be important for tumor aggressiveness and prognosis predic-
tion. Moreover, using a multi-parametric image fusion could 
lead to better results in terms of models’ performance, this 
could be the subject of a future work on the same expanded 
dataset.

Conclusion

Radiomics represents a promising noninvasive method for 
the implementation of precision medicine. Our results con-
firmed that the validation step is one of the main limitations 
in radiomics, which is more evident when external cohorts 
are at stake. Nevertheless, our results confirmed the poten-
tial added value of radiomics to refine individual patients’ 
prognosis, even in the context of rather heterogeneous popu-
lations. The challenges in external validation may derive 
from many reasons, including different types of imaging 
acquisition parameters and variability of tumor volume 
delineation. Upon solving these issues, radiomics could be 
a potential instrument to perform tailored prognosis predic-
tion in OTSCC.
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